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Highlights 

 Evaluated various handling and storage conditions post-surgery 

 Developed method for preparation of S9 with emphasis on cofactor addition 

 Activity of Phase II enzymes measured in up to 90 individuals 

 Comprehensive statistical analysis of results 

 

Abstract  

Understanding skin metabolism is key to improve in vitro to in vivo extrapolations used to inform risk 

assessments of topically applied products. However, published literature is scarce and usually covers a 

limited and non-representative number of donors. We developed a protocol to handle and store ex vivo 

skin samples post-surgery and prepare skin S9 fractions to measure the metabolic activity of Phase II 

enzymes. Preincubation of an excess of cofactors at 37°C for fifteen minutes in the S9 before introduction 
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of the testing probe, greatly increased the stability of the enzymes. Using this standardised assay, the 

rates of sulphation (SULT) and glucuronidation (UGT) of 7-hydroxycoumarin, methylation (COMT) of 

dopamine and N-acetylation (NAT) of procainamide were measured in the ng/mg protein/h (converted to 

ng/cm2/h) range in eighty-seven individuals. Glutathione conjugation (GST) of 1-chloro-2,4-

dinitrobenzene was assessed in a smaller pool of fifty donors; the metabolic rate was much faster and 

measured over six minutes using a different methodology to express rates in µg/mg protein/min 

(converted to µg/cm2/min). A comprehensive statistical analysis of these results was carried out, 

separating donors by age, gender and metabolic rate measured. 

 

Abbreviations 

ACD: Allergic contact dermatitis. COMT: catechol-O-methyl transferases. GST: glutathione-S-transferases. 

HaCaT: Immortalised keratinocytes “Human Adult Low Calcium High Temperature”. NAT: N-

acetyltransferases. NHEK:  Normal Human Epidermal Keratinocytes. SULT: sulphotransferases. UGT: UDP-

glucuronyltransferases. 

 

 

Keywords 

Phase II metabolism, ex vivo skin, S9 incubations, cofactors 

 

Introduction 

Human skin forms the first protective barrier between our body and the environment (Bouwstra and 

Ponec, 2006; Madison, 2003). Despite being accepted as a physical barrier, the skin is under constant 

exposure to xenobiotic chemicals able to diffuse through the skin layers (Berard et al., 2003; Zalko et al., 

2011). This could potentially cause toxicity in the skin itself and other parts of the body due to systemic 

exposure.  The second line of defence in the skin’s barrier function, often described as a chemical barrier, 

ACCEPTED M
ANUSCRIP

T



 
 

Page | 3 
 

is its capacity to detoxify and eliminate these compounds via metabolism using phase I and phase II 

metabolic enzymes (Oesch et al., 2014; Svensson, 2009).  Although cutaneous metabolism is actively 

exploited in the application of dermally applied pro-drugs (Møllgaard et al., 1982), metabolic activation is 

almost certainly why seemingly unreactive compounds cause skin sensitisation reactions (Schmidt and 

Khan, 1989). Conversely, it can be argued that the sensitisation risk from a reactive chemical would be 

reduced if it were metabolised to a non-reactive form in the skin (Manwaring et al., 2015). The redox 

mechanisms present in the skin might also be involved (Korkina, 2016), though the two phenomena can 

be difficult to separate in cases such as glutathione metabolism. Thus, skin metabolism needs to be 

characterised thoroughly to understand its impact on the magnitude of adverse outcomes such as allergic 

contact dermatitis (ACD).  

Published literature regarding cutaneous metabolism is limited and clearance mechanisms within skin are 

still poorly understood.  Studies on the mRNA expression levels in skin have identified the presence of 

phase I and phase II enzymes, including the phase II enzymes UDP-glucuronyltransferases (UGT), 

sulphotransferases (SULT), N-acetyltransferases (NAT), catechol-O-methyl transferases (COMT) and 

glutathione-S-transferases (GST) (Hu et al., 2010; Luu-The et al., 2009; van Eijl et al., 2012).  However, 

mRNA levels often show poor correlation to protein expression levels (Maier et al., 2009) and quantitative 

measurement of metabolism in skin remains a challenge.  

The closest experimental approach under which to study metabolism in skin to compare to in vivo 

situations, is to use viable ex vivo human skin in culture (Manevski et al., 2015; Zalko et al., 2011).  

Effectively a living system, the various compartments (both inter and intra cellular) remain relatively intact 

and tissue viability as well as the levels of some biomarkers are preserved for several days (de Wever et 

al., 2015; Varani et al., 2007). Several studies have used the incubation of whole skin in media containing 

concentrations of chemical substrate to study activity rates (Eilstein et al., 2014; Manevski et al., 2015), 

while topical application  of the substrate on cultured skin explants or models is favoured in studies 

covering both skin penetration of the test substrate and identification of its major metabolites (Jacques 
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et al., 2014).  Whilst such studies have shown promising results, obtaining fresh ex vivo skin consistently 

is difficult, and these studies often represent only a small number of donors.  

Models commonly used in metabolism studies include primary keratinocytes such as Normal Human 

Epidermal Keratinocytes (NHEK) or immortalised keratinocytes such as the “Human adult Low Calcium 

High Temperature” (HaCaT) cell line. The N-acetylated product of 4-amino-2-hydroxytoluene, a common 

hair dye, has been reported in both ex vivo skin and HaCaT experiments (Goebel et al., 2009). The activity 

level of NAT1 enzyme in HaCaT cells has been estimated to be 3.4 fold higher than in NHEK (Bonifas et al., 

2010) but still comparable to levels expected in the skin. Models more closely related to skin such as 

reconstructed 3D skin models consisting of keratinocytes-derived layers (e.g. Episkin, EpiDerm, Phenion) 

and their Full Thickness versions, which include a layer of cultured fibroblasts in collagen under the 

keratinocytes to mimic the effect of the dermis, have been used, but understanding the differences 

between all these models and ex vivo skin is still the subject of investigations (Eilstein et al., 2014; Gotz et 

al., 2012a; Gotz et al., 2012b; Hewitt et al., 2013; Jackh et al., 2011; Wiegand et al., 2014). 

When skin culture is not practical, freshly excised skin can be preserved, typically by snap freezing in liquid 

nitrogen, and stored frozen. However, metabolism studies using frozen skin have yielded mixed results in 

the past and protocols tend to vary from study to study. We investigated the influence of storage on both 

fresh skin and S9 fractions and developed approaches to homogenise skin and handle S9 during metabolic 

assays. We used 7-hydroxycoumarin (7-HC) to study sulphation and glucuronidation (Wang et al., 2005), 

procainamide for acetylation (Dreyfuss et al., 1972) , dopamine for methylation (Mannisto and Kaakkola, 

1999) and 1-chloro-2,4-dinitrobenzene (DNCB) for glutathione conjugation (Harris et al., 2002).  A 

standard protocol derived from these experiments was then applied to samples from up to 90 volunteers 

to generate metabolic rates for each of the five Phase II pathways studied. The metabolic rates obtained 

for each enzyme were statistically analysed to evaluate similarities within the dataset, mainly by 

comparing age or gender and creating “high metaboliser” versus” low metaboliser” groups based on one 

enzyme and comparing with the others.  Even without consideration of statistical differences between 
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groups of individuals, the mean metabolic rate for each enzyme can still be a useful piece of information 

to integrate into in silico models of human skin. 

In silico models aiming to extrapolate in vitro data to in vivo exposure scenarios are built using chemicals 

for which historical data is available such as caffeine (Gajewska et al., 2015) or para-phenylenediamine 

(Manwaring et al., 2015). While some examples have been provided to show that skin metabolism can be 

a major factor affecting skin bioavailability (Jacques et al., 2010; Jacques et al., 2014), refinements of these 

in silico models will require a broader use of skin detoxification potential data such as the ones presented 

here.  

 

Materials and methods 

 Chemicals and reagents 

Dopamine, procainamide, 7-hydroxycoumarin, 1-chloro-2,4-dinitrobenzene, S-adenosyl-methionine 

(SAM), 3'-Phosphoadenosine-5'-phosphosulphate (PAPS), Acetyl Coenzyme A (AcCoA), Uridine 

diphosphoglucoronic acid (UDPGA), glutathione (GSH), glutathione disulphide (GSSG), 7-hydroxycoumarin 

glucuronide (7-HCG), 7-hydroxycoumarin sulphate potassium salt (7-HCS), N-acetylprocainamide 

hydrochloride (NAPA) were purchased from Sigma Aldrich (Gillingham, UK) and used without further 

purification.  The methylated dopamine standard, i.e. 3-methoxytyramine hydrochloride (3-MT), was 

purchased from Fisher Scientific Ltd (Loughborough, UK). Deuterated 7-hydroxycoumarin (7HC-d5) was 

purchased from BD BioSciences Ltd.   All solvents were purchased at the highest purity available (HPLC 

grade minimum).  

A mass labelled internal standard of the glucuronide of 7-HC, i.e. 7HC-d5-glucuronide (7-HCG-d5) was 

created in house by incubating 200µg/mL 7HC-d5 in concentrated skin S9 containing 5mM UDPGA for 4 

hours at 37°C.  7-HCG was isolated from a methanol extract by HPLC and stored at -80°C until use. 
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Dinitrophenyl-glutathione (DNP-SG), the GSH conjugate formed with DNCB, was created in house by 

incubating 200µg/mL DNCB in concentrated skin S9 for 4 hours at 37°C.  The mixture was extracted in 

acetonitrile, the supernatant separated by HPLC, the fraction containing the metabolite DNP-SG obtained 

frozen at -20°C until use. 

Human skin samples 

All skin samples were sourced from the Bradford Ethical Tissue Bank. The Ethical Tissue Bank was 

authorized by the Leeds flagged REC to release samples to researchers. The Ethical Tissue Bank also acts 

on behalf of the Recipient’s Institution for the collection, use and storage of Material and associated data. 

Samples were provided anonymously with only the minimum data set and handled in compliance with 

the Human Tissue Act.  All full thickness skin samples were frozen within 120 minutes of excision. 

Protocol optimisation for skin S9 preparation  

First, freshly excised skin samples were cut to size (triangle of approximately 1cm side length), weighed 

and measured (the height and base of each triangle was measured with a ruler and the surface area 

calculated), homogenised in Phosphate Buffered Saline (PBS) (4mL/g skin) on ice using an Ultra Turrax 

blender (IKA) (4°C, 30 seconds).  The homogenate was then centrifuged at 9000g (4°C, 20 minutes) and 

the S9 fraction collected as the supernatant.  

As a separate experiment, freshly excised skin triangles were snap frozen in liquid nitrogen and pulverised 

using a cell crusher (Stratech) using a mallet until the frozen skin had a dust-like powder appearance. PBS 

was added to the pulverised tissue (4mL/g skin) and the sample sonicated on ice (4°C, 6x30 seconds).  

The protein content of the resulting S9 was determined using the Bradford Method (Bradford, 1976). We 

compared the two methods of homogenisation for a single skin sample by submitting fractions of S9 

generated by each approach to the same incubations with 7-HC, dopamine and procainamide (with 

corresponding cofactor). 

Protocol optimisation for preserving enzymatic stability 
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First, to assess the effect of time on the handling procedure for fresh ex vivo skin (post-surgical procedure), 

whole skin (one triangle placed in PBS, volume adjusted to the weight of each triangle so that the ratio 

was 4mL/g tissue) and freshly prepared S9 fraction (skin homogenised in PBS at a concentration of 4mL 

PBS per g of tissue) from the same single donor were incubated at 37°C or 25°C for 0, 3, 6 and 24 hours, 

after which the incubated skin was homogenised to prepare S9 for analysis (as above) and the incubated 

S9 was used as collected. Enzymatic activity was assessed at each time point for all enzymes except GST. 

The rates were measured in ng metabolite/mg protein/h, the initial rate fixed at 100% activity and all 

subsequent activities expressed as a percentage depletion of the initial rate.  

GST activity is thought to be mostly dependant on the availability of its cofactor, GSH, which is prone to 

oxidation. To determine the effect of freeze-thawing on GSH levels, whole skin samples from five donors 

were aliquoted.  Half the samples were analysed immediately for GSH and GSSG content (qualitative 

measurement expressed in peak area), while the other half were frozen and stored at -80°C then thawed 

the following day and analysed. GST activity was assessed in whole skin from a single donor by monitoring 

the formation of DNP-SG in freshly prepared S9 and S9 prepared after one freeze thaw cycle (-80°C for 

one day), with and without addition of GSH.  

Finally, the time at which cofactor addition was carried out in S9 incubations was investigated. Using S9 

prepared from a single donor, cofactors were either introduced immediately upon preparation of the S9 

and the S9 fractions then pre-incubated for 15 minutes before addition of the probe, or the cofactors 

were added to the S9 at the same time as the probe substrate. Both sets of samples were then incubated 

for 0, 10, 30, 60 and 190 minutes. The activity of GST being significantly faster than other enzymes studied, 

these pre-incubation studies were not carried out. Instead, an arbitrary high concentration of GSH 

(10µg/mL) was added immediately after preparation of S9 fractions. 

Skin S9 preparation (optimised method) 

Skin samples were either snap frozen in liquid nitrogen and stored whole at -80°C until use or used fresh 

within 120 minutes of collection from the clinic. Freshly defrosted skin samples or freshly excised skin 
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samples were cut to size (triangle with 1cm base), weighed and measured, homogenised in PBS (4mL/g 

skin for standard enzymatic assay, 50mL/g skin for GST activity) on ice using an Ultra Turrax blender (IKA) 

(4°C, 30 seconds).  The homogenate was then centrifuged at 9000g (4°C, 20 minutes) and the S9 fraction 

collected as the supernatant.  

Skin S9 incubations (optimised method)  

Each S9 fraction was split into multiple aliquots to study glucuronidation, sulphation, methylation, 

acetylation and glutathione conjugation separately.  S9 aliquots were pre-incubated for 15 minutes at 

37oC with specific cofactors in each tube, SAM (2.5mM), PAPS (5mM), AcCoA (1mM), UDPGA (0.5mM) or 

GSH (10 µg/mL).   Dopamine, procainamide, 7-HC were then introduced at 2µg/mL and DNCB at 10µg/mL 

to the S9. 

At each time point (t= 0, 1, 2 and 4 hours for UGT, SULT, COMT and NAT activities, t= 0, 3 and 6 minutes 

for GST activity), one volume of the metabolism assay mixture was removed and diluted with three 

volumes of ice cold methanol (containing the internal standard 7-HCG-d5 when required or 0.2% formic 

acid for the GST assay samples) and the mixture centrifuged at 10 000g for 4min (4°C).  Supernatants were 

dried down using a rotary evaporator and reconstituted in water: methanol (90:10 v/v). 

Assessment of skin metabolic activity in multiple donors 

Over a period of two years, 87 donor skin samples were collected and analysed for metabolic activity of 

glucuronidation, sulphation, acetylation and methylation.  The population was 83% female and 17% male, 

aged between 17 and 90 years old. Age was not specified in 4 out of the 72 samples given by women. 

Calculations were therefore carried out on a set of 68 samples.  The mean age for women donors was 

45.9± 9.6 years (the median age being 46.5 years old). The youngest female donor was 20 years old and 

the oldest 65 years old. Similar calculations were carried out with male samples when information about 

age was provided (15 out of 17).  The mean age for men donors was 51.1± 17.8 years (the median age 

being 54 years old). The youngest male donor was 17 years old and the oldest 90 years old. The majority 

of skin samples were taken from the abdomen, with some taken from other areas such as arm, breast and 
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thigh. Afterwards, 50 samples were assayed to measure glutathione conjugation rate, 48 of which being 

from the same donors as the previous analysis, picked randomly, as the amount of frozen skin was still 

available. The population for this analysis was 82% female and 18% male, aged between 20 and 90 years 

old, with most donors being in the range 40-60 years old. 

The rate of metabolism was expressed as ng/mg protein/hour in the standard assay for the formation of 

7-HCG, 7-HCS, NAPA and 3-MT. For statistical analysis and ease of understanding (doses used in skin 

penetration data are usually expressed per cm2) these were also converted to ng/cm2/h: for each sample, 

the skin triangle was measured so that the surface area could be calculated (triangles were cut and their 

base and height was measured with a ruler to calculate the surface area) and weighed so that results 

could be expressed per mg tissue if required. The volume of PBS used for generating the S9 was 4mL/g 

tissue. The S9 protein content (as determined by Bradford method) was expressed in mg protein/mL.  

Converted rate (µg/cm2/h) = [Rate (µg/mg protein/h) x Protein concentration (mg/mL)] / [Volume PBS in 

S9 (mL) x Surface area of skin triangle (cm2)] 

 Due to the speed at which GST activity was measured, i.e. the amount of DNP-SG formed at the initial 

time point was already significant, the rate of metabolism was presented as the slope of the linear 

regression, expressed in µg /mg protein/min, and the intercept at the origin, expressed in µg /mg protein. 

For ease of understanding and statistical analysis this was converted to µg/cm2/min following the same 

method as the one used for the other enzymes. 

All rates measured are presented per enzyme in Supplementary data, Figures D-H. 

LC-MS-MS analysis 

Metabolite quantification was determined by LC-MS analysis of sample extracts using calibration 

standards containing the expected metabolites (with the addition of the internal standard 7-HCG-d5 for 7-

HC standards). 
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An Acquity Ultra-High Pressure Liquid Chromatography (UPLC) system from Waters was used for the LC 

separation of the compounds of interest. Chromatographic separation was obtained using an Acquity 

UPLC BEH C18 column from Waters (1.7µm, 2.1x100mm for standard enzymatic assay, 1.7µm, 2.1x150 

mm for GST assay) with a column temperature of 40°C. Mobile phases consisted of 1% methanol in 

distilled water containing 0.1% formic acid (mobile phase A) and 90% Methanol in distilled water 

containing 0.1% formic acid (mobile phase B). A flow rate of 0.3mL/min was used. In the standard assay, 

the mobile phase composition was initially set to 100% A, then increased to 20%B over 20 minutes, the 

gradient was then increased to 100% B for 2 minutes, before re-equilibrating to 100% A for the remaining 

8 minutes.  In the GST assay, the mobile phase composition was initially set to 100% A for 5 minutes, then 

increased to 100% B over 10 minutes, the gradient was held 100% B for 5 minutes, before re-equilibrating 

to 100% A for the remaining 10 minutes. 

A Quattro Premier Mass Spectrometer (MS) from Waters was used with an ESI (Electrospray Ionisation) 

source. All samples were analysed using Multiple Reaction Monitoring (MRM) for the complete length of 

the UPLC acquisition time (30min).  In positive ion mode, the MRM transitions used were: for 7-HCG m/z 

339.93>162.86 (Collision energy 25eV), for 7-HCG-d5 m/z 344.27>167.86 (25eV), for 3-MT m/z 

167.8>151.3 (12eV), for NAPA m/z 278.07>205.05 (25eV) and for DNP-SG m/z 475.40>345.30 (25eV). The 

ESI source was operated in negative ionisation mode for the detection of 7-hydroxycoumarin sulphate 

(7HCS) with a MRM transition m/z 241.3>160.8 (15eV). 

Data processing was carried out using MassLynx software (Version 4.1), and concentrations of metabolites 

formed at each time point were calculated from standard curves.  

Statistical analysis and correlations between groups of the population studied 

Statistical analysis of the results was carried out using the SAS version 9.4 software (SAS Institute, Marlow, 

UK) and pictures produced using the software. Results from one donor (2372) were removed from the 

statistical analysis as rates measured were negative for two enzymes and very close to zero for the other 

enzymes, hinting at a loss of metabolic activity linked to sample handling rather than a donor deprived 

from metabolic capacity for all enzymes. The sample from donor 2970 was used for GST analysis. All 
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instances of negative values (three occurrences in N-acetylation) were artificially fixed to zero. Reaction 

rates were converted to ng/cm2/h (UGT, NAT, COMT, SULT) and µg/cm2/min (GST). However, a square 

root transformation was applied to ensure that the largest values do not have excessive influence over 

the statistical analysis. 

We investigated potential correlations between metabolic activity and the gender of the skin donors by 

fitting a linear regression y = a x b (gender) where gender equals 1 for males or 0 for females to the data 

and testing the effect of b (P-value). The test was carried out using the GLM (General Linear Model) 

procedure in SAS.  

 

Evaluation of correlations between metabolic activity and the age of the skin donors was carried out by 

fitting a linear regression with age as the only factor. If the gradient of the slope of the line was significantly 

greater than zero, age was deemed a significant factor. A P-value was obtained to estimate the difference 

between the gradient and zero. Scatter plots representing square root of enzymatic activity versus age 

were constructed using the REG (Regression) Procedure in SAS.  

 

We also questioned whether a donor showing a high metabolism rate for one enzyme (i.e. SULT) would 

demonstrate a high level for all enzymes, helping to define a person as a “high metaboliser”. Or 

conversely, would a person with a low activity for one enzyme would also have low metabolic activity for 

all enzymes. These analyses covered all enzymes studied excepting GST. We plotted the square root of 

one enzyme versus another for each donor and highlighted the metabolisers that had high activity (top 

25% of recorded values) for all enzymes or a low activity (bottom 25% of recorded values) for all enzymes 

for illustrative purposes. 

 

Results 
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The use of a mechanical homogeniser for skin S9 preparation is preferable for metabolic rates 

measurements  

To investigate homogenisation methods limiting temperature increases while delivering consistent 

enzyme recovery, we compared mechanical homogenisation on ice using the Ultra Turrax homogeniser 

to a “cell crusher” method, which required snap frozen tissue to be pulverised under force.  The use of 

the cell crusher, whilst reducing risks posed by heat generation of mechanical techniques, was found to 

leave clumps of tissue and ultrasonication was required to fully extract enzymes, which caused sample 

heating.  Both sets of S9 generated were submitted to the same incubations with 7-HC, dopamine and 

procainamide (with corresponding cofactor) and led to comparable metabolic rates (Table 1), except for 

glucuronidation which was ten times faster in Ultra Turrax prepared samples.   

Enzyme Metabolic rate “Cell crusher” Metabolic rate “Ultra Turrax” 

UGT 1 10 

SULT 94 98 

COMT 14 20 

NAT 3 2 

Table 1: Metabolic rates in S9 fractions prepared by manual pulverisation or mechanic homogenisation 
are comparable. Both sets of S9 were prepared from a single donor and used immediately with 7-HC, 
dopamine and procainamide. Metabolic rates are expressed in ng metabolite/mg protein/h (n=1). 
 
For practical reasons and considering the improvement observed for UGT activity, all subsequent S9 

samples were prepared using the Ultra Turrax homogeniser method. 

 Fresh ex vivo skin samples should be snap frozen immediately, whole, in liquid nitrogen or used fresh 

within 2 hours  

Maintaining whole skin samples or S9 fractions at either 25°C or 37°C, over 24 hours, reduced enzymatic 

activity in whole skin and S9 significantly for all four enzymes in our standard assay (Table 2).  Metabolic 

rates in whole skin were better preserved when the skin was maintained at 37°C rather than 25°C, for all 

enzymes except NAT. However, the reverse effect was observed for S9 fractions, which had lost tissue 

integrity during preparation and were more stable at 25°C. After 3 hours, the enzymatic activity was 

reduced by 10-38% in whole skin samples kept at 37°C and 2-78% in S9 fractions kept at 25°C. We would 
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therefore recommend using ex vivo skin within 2 hours post-surgery to carry out metabolism studies. In a 

separate experiment, GST activity was significantly lower following freeze thawing when no additional 

cofactor was added.  However, the addition of GSH was found to restore activity to pre-freezing levels 

(Supplementary data, Figure C).   

 Whole skin S9 fraction 

Temperature ( in °C) 25 37 25 37 

 Time points (in hours) 3 6 24 3 6 24 3 6 24 3 6 24 

UGT 49 70 62 33 44 60 5 21 50 22 54 50 

SULT 30 60 100 10 42 100 30 26 40 42 50 68 

COMT 59 73 42 22 19 30 2 23 85 79 82 100 

NAT 25 39 27 38 59 83 78 72 93 100 100 102 

Table 2: Enzymatic activity in whole skin samples or S9 fractions for UGT, SULT, COMT and NAT after 
storage at 25°C or 37°C for up to 24 hours. Enzymatic activity is expressed as a percentage reduction 
compared to the enzymatic activity measured at t= 0 (start of the experiment). (n=1). 

 

Pre-incubation of S9 fractions with cofactors for enzymatic activities  

We investigated the influence of time at which the cofactors were first put in contact with Phase II 

enzymes. We found that the addition of cofactor immediately on preparation of the S9 fractions, followed 

by 15 minutes pre-incubation at 37°C before the inclusion of the chemical probe tested, might be 

beneficial for enzymatic activity measurements (Figure 1). For this particular skin sample, the most 

significant effect was found with the addition of AcCoA, where NAT activity would otherwise be 

completely lost within 10 minutes of incubation (Figure 1b). Conversely, pre-incubation with UDPGA 

showed little improvement to UGT activity during the first hour and the benefit from the technique was 

only visible at the 190 minutes time point (Figure 1c). Overall, we would recommend that all S9 fractions 

were pre-incubated with the cofactors (separately) for 15 minutes before the addition of the chemicals 

tested. 
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Figure 1: Illustrating the effect of cofactor addition on enzymatic activity in skin S9 incubated at 37°C 
for 190 minutes. Enzymatic activity in skin S9 for a) sulphation, b) N-acetylation, c) glucuronidation and 
d) O-methylation where (- CoF) S9 fractions were used with cofactors added at the same time as the 
chemical tested (dark colour) and (+ CoF) S9 fractions were pre-incubated with cofactors for 15min before 
addition of the chemical tested (light colour) (n=1).  

Metabolic activity measurements in multiple donors 

All donors showed metabolic activity for one or more enzymes, with the majority showing measurable 

activity for all five enzymes. Details of all rates measured, per enzyme, are available in Supplementary 

data, Figures C-G. The mean metabolic rates measured for all enzymes are presented in Table 3. The mean 

rate of DNP-SG formation (GSH conjugate of DNCB) was very fast and a 1:50 dilution of skin S9 (in PBS, 

before addition of GSH) was used in incubations to reduce the rate of the reaction, which was then 

measured over 6 minutes. The initial amount of DNP-SG measurable at t= 0min ranged from 0.00-

5.19µg/mg protein, which was considered significant. Therefore, GST activity was reported as the slope 

of the linear regression (metabolic rate) and the intercept at the origin (Supplementary data).  

Enzyme Metabolic rate   
(ng/mg protein/h) 

Metabolic rate 
 (ng/cm2 /h) 

SULT 12.22± 14.82 262.70±373.57 

UGT 4.92±6.39 109.94±191.83 

COMT 2.27±1.94 47.03±49.54 

NAT 0.20±0.20 4.37±5.42 

Enzyme Metabolic rate   
(µg/mg protein/min) 

Metabolic rate 
 (µg/cm2 /min) 

GST 0.19±0.22 0.99±1.06 
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Table 3: Metabolic rates measured in S9 fractions. S9 fractions were incubated with 7-hydroxycoumarin, 
dopamine and procainamide for up to 4 hours and metabolic rates expressed in ng metabolite/mg 
protein/h (n=87). 1-chloro-2,4-dinitrobenzene was incubated for up to 6 minutes and the GST rate 
expressed in µg/mg protein/min (n=48). 
 
For all enzymes, a high level of inter-patient variability was observed. Some of the variability might be 

imparted to differences in handling of skin post-surgery, whether used fresh within 120 minutes or snap 

frozen. High variability might also have originated from storage conditions and affected the five enzymes 

studies differently. Moreover, five samples did not show any GST activity and were reported as zero value 

(Supplementary data Figure D) but this has more likely been due to sample handling rather than being a 

true representation of GST activity for these donors.  

Metabolic activity measured in skin of donors is not gender related  

We investigated whether there was a correlation between gender and metabolic activity and carried out 

a linear regression. The P-values, ranging from 0.08 to 0.80, did not present enough evidence to relate 

gender and metabolic activity in our 90-donor study. A set of box plots representing the enzymatic 

activities measured for all donors and the subsets for each gender illustrates the lack of differentiation 

between male and female donors as both groups largely overlap with the overall activities measured 

(Figure 2). 
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Figure 2: Gender is not a differentiating factor for metabolic activity in skin. Enzymatic activity in skin 
S9 for all enzymes (represented as Square root, expressed in ng/cm2/h or µg/cm2/min) where male and 
female donors have been compiled into two subsets and compared to the overall activity measured. 
Outliers are the values that are larger than 1.5 times the interquartile range above the 75th percentile 
(white squares) automatically selected by the software. (n =15 males, 71 females for COMT, NAT, UGT 
and SULT , 9 males, 40 females for GST)  

 

GST activity is age dependent  

We carried out a linear regression test on all five enzymes to establish whether enzymatic activity was 

linked to the age of the donor.  We found that the GST activity level was negatively correlated to age 

(Pearson correlation statistic value: -0.3053, P-value 0.0348) but the other enzymes showed no evidence 

of correlation. To illustrate this further, we plotted the square root of the enzymatic activity (in ng/cm2/h 
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or µg/cm2/min for GST) against the age of the donor (known for 82 out of 90 donors for NAT, COMT, UGT 

and SULT or 48 out of 50 donors for GST) (Figure 3). 

 

Figure 3: Correlation between enzymatic activity and the age of the donor. Enzymatic activity was 
expressed in ng/cm2/h or µg/cm2/min. This is an overlay of the scattered data with a linear regression 
where values within the 95% confidence limit of the mean (filled blue) and 95% prediction interval of the 
data (blue spotted line) are estimated using the FITPLOT function. GST activity was negatively correlated 
to age but no relation could be established for the other enzymes. (n=82 for UGT, COMT, NAT and SULT 
and n=48 for GST). 

 

Enzymatic activity level in a 90-donor study 
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It was found that most donors have a unique metabolic activity profile and may have a high activity for 

one enzyme and much lower than average activity for another (Figure 4). In a 90-donor study where 

statistical perfect order would be observed the subset of donors who would have high enzymatic activities 

for all four enzymes would represent 22 people, while the probability of a donor to have all enzymatic 

activities in the bottom 25% of recorded data by chance only is very low (0.4%), hence less than one donor 

would fit the criteria. Of the 87 donors analysed, 5 qualified as “low metabolisers” and 8 as “high 

metabolisers” (Figure 4).  

 

Figure 4: Enzymatic activity in a 90-donor study present very few cases of donors that could be identified 
as high or low metabolisers. The square root of the activity of one enzyme is plotted against another. All 
permutations are presented, where donors who have enzymatic activity in the top 25% of recorded values 
for all enzymes (blue circle) and donors who are systematically in the bottom 25% (red triangles) have 
been differentiated from the pool of donors (grey crosses). 

 

Discussion 
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Understanding metabolism is key to successful in vitro to in vivo extrapolation in PBPK modelling.  The 

identity and amount of chemical reaching different target sites is what ultimately leads to physiological 

effects and toxicity.  Currently there is great interest in building more accurate models for cutaneous 

exposure, particularly for cosmetics ingredients.  The impact of metabolism on local effects in the skin, 

such as sensitisation and genotoxicity is also of interest to toxicological risk assessors.  There is no direct 

measure of skin metabolism in clinical or animal studies as metabolite levels in blood or urine are the 

result of metabolism from multiple tissue types.  Similar in vitro approaches to that used to predict liver 

metabolism have been developed for skin, though the challenge of in vitro to in vivo extrapolation is 

arguably greater for skin due to the absence of specific skin metabolism data in vivo.  Just as for liver 

metabolism, in vitro assays for skin metabolism need to ensure enzyme activity is preserved and 

appropriate conditions (such as cofactor levels) are used so that in vitro to in vivo extrapolation is 

meaningful. 

Technically, preparing skin extracts can be difficult compared to softer tissues such as liver or kidney with 

the specific requirement for mechanical homogenisation which may accelerate enzyme deactivation 

(Berglund et al., 2007).  Due to the complexity and potential instability of the enzymes in skin, a detailed 

knowledge of appropriate handling procedures is essential to producing reliable results in future skin 

studies. While the viability of skin is often described exclusively by the level of mitochondrial activity (MTT 

assay) still present in ex vivo skin purposefully preserved for surgical procedures (Alotto et al., 2002), little 

is known of the metabolic activity linked to clearance or defences against oxidative stress, though a few 

reviews are available (Gibbs et al., 2007; Oesch et al., 2014).  Methods for ex vivo skin storage are limited: 

samples are either stored on culture medium (Lebonvallet et al., 2010) at 4°C, 37°C or cryopreserved using 

DMSO as a stabiliser. Samples that are not processed immediately post-surgery can see their viability 

levels decrease by a quarter over 30 hours and half within 60 hours (Castagnoli et al., 2003). We found 

that metabolic activity linked to the Phase II enzymes studied here, decreased even quicker (3-6 hours). 

We have established that enzymatic activity deteriorates in skin the moment it is removed from a donor 

and therefore skin should be frozen to -80°C, whole, as soon as available. S9 should only be generated on 
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the day of the metabolic assay, immediately on thawing a skin sample.  Freeze-thawing of S9 should be 

avoided.  

Immediate addition of cofactors to S9 benefited the metabolic potential of the enzymes involved, which 

is in accordance with previous observations made on N-acetyltransferase activity (Binkley et al., 1976).  In 

our study, GSH conjugation, methylation, N-acetylation, sulphation and glucuronidation all took place to 

some extent thanks to the addition of the cofactors. This is accordance with general procedures for 

metabolic studies using liver fractions (Iyer and Sinz, 1999).  Historically, extensive work has been carried 

out to characterise the biosynthesis pathways controlling cofactors ability in liver (Reinke L.A., 1994). It is 

not clear whether skin cells carry out the totality of synthesis of cofactors necessary to Phase II 

metabolism or whether some cofactors can be imported from other body organs via plasma. Although it 

is difficult to pinpoint which foods could be specifically beneficial for the induction of xenobiotic 

metabolising enzymes in skin by increasing the availability of cofactors, nutrition might be a differentiating 

factor in healthy donors. The consumption of certain foods such as cruciferous has been linked to an 

increase of metabolic activity for UGTs and GSTs. Isolated active ingredients such as resveratrol or 

quercetin, available in certain foods, have also increased metabolic activity in vivo (Hodges and Minich, 

2015).  

 However, a Phase II metabolism study carried out using freshly excised skin maintained in medium and 

used immediately (Manevski et al., 2015) did not benefit from the addition of cofactors to the medium 

and the clearance rates of the chemical probes tested remained unchanged. The differences observed 

between a study using homogenised skin S9 and whole skin in culture highlight the importance of the 

localisation of the enzymes themselves. Human skin has a complex structure and is constituted of many 

cell layers, at different stages of differentiation. For metabolism study purposes, three distinct layers 

namely the stratum corneum (coneocytes in a lipid rich layer), the epidermis (keratinocytes) and the 

dermis (fibroblasts in a collagen matrix) can be of interest. Studies carried out in skin explants by Lu-The 

et al showed that the epidermis contained up to ten times more mRNA for SULT2B1b than the dermis, 

while SULT1A1 mRNA was found primarily in the dermis (Luu-The et al., 2009). While GST activity in human 
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skin as well as rat skin was also thought to be more prominent in the dermis, GST had been localized 

primarily in the sebaceous glands and outer root sheath of hair follicles of rat skin (Raza et al., 1991). 

Another study located UGT activity in the stratum corneum (Peters et al., 1987). The use of S9 allows to 

investigate all these enzymes in a single homogenate and was our preferred approach for this study. 

Measuring rates of metabolism in skin is key to understanding the bioavailability of topically applied 

chemicals, both systemically and locally (Gibbs et al., 2007). Therefore, any protocol chosen needs to be 

standardised to enable direct comparison of results. One must be aware when interpreting the data 

shown here that due to the artificially optimal conditions used (i.e. excess of cofactors) the data might 

not be fully representative of the scenario of clearance in vivo.   

The availability of the cofactor, for example i.e. the capacity of skin to generate or import cofactors on 

demand, could also play an important part in the defence system against exogenous chemicals. As clearly 

illustrated by comparing rates of glutathione conjugation with and without the addition of GSH 

(Supplementary data Figure C), cofactor amounts are an important influence on metabolic rates (Spriggs 

et al., 2016) and should be considered when studying inter-individual variability using sub cellular 

fractions.  In addition, it was also found in the initial method development stages, that co-incubating all 

cofactors and drugs simultaneously induced a competition of enzymes for substrate and/or cofactors 

resulting in an inhibitory effect on one another compared to when incubated separately; this was 

particularly the case when a test chemical could undergo multiple metabolic pathways (Data not shown). 

This has been shown previously in the case of inhibition of NAT-1 in keratinocytes by competing substrates 

(Kawakubo et al., 1990).   

Using our optimised and standardised assay, we analysed skin samples from 90 donors. The first 

observation we made was that there did not seem to be any statistical differences between gender, and 

age played a very limited role in enzymatic levels observed. Only GST activity was shown to decrease with 

the age of the donors, which is not surprising as GSH production tends to decrease with ageing (Maher, 

2005) and GST activity is closely linked to the availability of its cofactor. The variability in the physiology 

and appearance of skin has also be evaluated against factors related to lifestyle. For example, a study 
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reported that the thickness of the stratum corneum could be negatively correlated to the number of years 

the donors had been smoking (Sandby-Moller et al., 2003). Conversely, moderate protective effects 

against UV can be observed in volunteers supplemented with vitamins E and C, carotenoids and 

polyunsaturated fatty acids in various combinations on top of their usual diet (Boelsma et al., 2001). It is 

possible that the same factors, which we could not investigate specifically here, might influence metabolic 

capacity.  

We tried to identify any donor whose metabolic activities were clearly in the top or bottom 25% of the 

values recorded. While the donors presenting an overall low metabolic activity could be real “low 

metabolisers”, it is likely that the sample handling procedure post-surgery might also have played a role 

in decreasing the viability of these five specific skin samples. On the other hand, donors with high overall 

metabolic capacity had individual rates that were different enough from the other members of this group 

to limit the likelihood that the results were due to sample handling alone. Lacking the information from 

medical conditions, including skin allergy, that these donors might have, it is difficult to link the high 

metabolic activity to either lifestyle, health effects or induction due to the regular prescription of medical 

drugs.  It has been hypothesised that some individuals have a metabolic predisposition that leads to skin 

reactions when dermally applying sulphonamides (Wolkenstein et al., 1995) but this has not been fully 

explored in the area of skin allergy. There is now a potential to explore in future studies whether patients 

with known allergies possess a different metabolic capacity to the general population using the data 

presented here. 

Conclusion 

The use of subcellular fractions derived from skin, such as S9, is a practical approach for comparing inter-

individual enzyme activity when many skin samples are available, providing the protocols for excision of 

the skin and handling in the laboratory are carefully controlled.  S9 samples can be of use in predicting 

skin metabolism as part of a PBPK model and the approach is akin to the use of subcellular fractions in 

predicting liver metabolism (Harrison et al., 2012) although an analogous scaling approach is yet to be 

devised for skin.  We presented a standardised protocol for the generation of skin metabolism data using 
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S9, which can easily be used for any specific probe of interest in the future. Applying this methodology to 

a 90-donor study, has enabled us to define the metabolic rates for Phase II enzymes  in a format allowing 

the introduction of these data into mathematical models to refine the biological understanding of human 

skin and its role as a detoxifying organ. This might help increasing the mechanistic relevance of risk 

assessments and reducing uncertainty linked to chemical fate and systemic exposure.  
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