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Abstract

The development of systems with the ability to reason about change notion and
actions has been of great importance for the artificial intelligence community. The de-
finition and implementation of systems capable of managing defeasible, incomplete,
unreliable, or uncertain information has been also an area of much interest. With a few
exceptions research on these two ways of reasoning was independently pursued. Never-
theless, they are complementary and closely related, since many applications that deal
with defeasible information also depends on the occurrence of events and time.

DeLP is an argumentative system appropriate for commonsense reasoning. The de-
feasible argumentation basis of DeLP allows to build applications that deal with incom-
plete and contradictory information in dynamic domains. Thus, the resulting approach
is suitable for representing agent’s knowledge and for providing an argumentation based
reasoning mechanism for that agent (see for example [6, 1]). It is interesting to extend
this system adding mechanisms to manage events and time as CDeLP [7]. Here we
analyze how to develop a comparison criteria for arguments built up from causal infor-
mation and considers commonsense rules of inertia.

Key words:Argumentative Systems, Knowledge Representation, Defeasible Reasoning, Com-
monsense Reasoning, Temporal Reasoning, Reasoning about change notion and actions.

1 Introduction

The development of systems with the ability to reason about causal information (information
inferred from events occurrence), has been of great importance for the artificial intelligence
community. Research in this area has been interested on this issue as a way to find a solution
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for a wider variety of problems where the occurrence of actions and the moment they occur
makes a difference [9].

Argumentation Systems [5, 17], were developed in order to deal with incomplete or un-
reliable information. In real scenarios this situation is quite common, specially when we deal
with dynamic systems, i.e., systems where the knowledge available to reason with changes
frequently (new information become available or information that used to be available be-
came unavailable or invalid). Usually, since it is very difficult to represent all the informa-
tion related to the objects under consideration, the information that appears as supporting
our reasoning is incomplete. As a matter of fact, there are formalisms such as the Situation
Calculus [20] where this problem is quite relevant. When new information about an entity
becomes available, i.e., knowledge changes, we must revise all the representation.

In order to improve on this problem we will follow an argumentative approach. DeLP [8]
is an argumentation system, which combines results from Logic Programming and Defea-
sible reasoning providing tools for knowledge representation and commonsense reasoning.
We are interested in the development of an argumentative system based on DeLP that can
deal with causal information, a first approach leads us to basics definition of CDeLP [7].
This extension introduces the concept of causal information, i.e. information events and/or
time dependant.

This work takes CDeLP basic definition and analyzes some difficulties in arguments
comparison criteria, since DeLP criteria is not proper enough to solve some new situations,
particularly observable from inertia chains and actions occurrences.

In some literature actions and events are consider as different things, it is necessary then
to clarify that in the context of the present work this terms are considered as synonyms.

The paper is structured as follows, on Section 2 a refresh of basic CDeLP s definitions
is made. Then a criteria for arguments comparison, taking in consideration only the strong
information of each argument, is presented. Later on, on Section 4 we establish a way
to compare looking only at inertial chains over arguments. On Section 5 we show some
examples where difficulties to compare arguments from the amount and kind of actions,
each argument uses, are emphasized. The last section presents the conclusions.

2 CDeLP Definition

In a previous work [7] we presented a new argumentation language based on a clausal lan-
guage Event Calculus [10, 22, 14] called CDeLP . The basics of this language depend on the
main predicates of a simple version of Event Calculus, (SEC), which are:

happens(E, T ): E takes place on T .
holdsAt(F, T ): F holds at T .

initiates(E,F, T ): F starts to hold after E, and is not freed on T + 1.
terminates(E,F, T ): F ceases to hold after E at T .

releases(E,F, T ): F is not subject to inertia after E at T
initiallyP (F ): F holds form time zero.

where E represents events, T time moments and F fluents. The calculus complete axiomati-
zation depends on the chosen time ontology. For example if we consider a discrete ontology,
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we can use the ontology presented by Mueller [15], or the more complete ontology from
Miller and Shanahan research [14].

Once we have the syntax of the literals of the language, we can define it:

DEFINITION 1 (CDeLP )
A CDeLP program is defined in terms of three disjoint sets: a set Π of facts and strict

rules, a set ∆ of defeasible rules, and a set Υ of inertial defeasible rules, where

• A fact is a literal, i.e., a ground atom, o a negated ground atom.

• A strict rule is a rule denoted as “Head← Body”, where Head is a literal and Body,
is finite set of literals. A strict rule can also be written as: L0 ← L1, . . . , Ln(n > 0),
where each Li, i ≥ 0 is a literal.

• A defeasible rule is a rule noted as L0 —≺L1, . . . , Ln. Again Li is a literal and i ≥ 0

• A inertial defeasible rule is a defeasible rule that denotes some fluent inertia.

Consequently, this modification causes a change on the definition of argument:

DEFINITION 2 (CDeLP Causal Argument Structure)
Let L be a literal and P = (Π, ∆, Υ) a CDeLP program. We say that 〈A,B, L〉 is a

causal argument structure for L, if A is a set of defeasible rules from ∆ and B is a set of
defeasible rules form Υ, such that A ∪ B verifies DeLP argument structure definition [8].

∆1 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

holdsAt(flies(X), T ) —≺holdsAt(bird(X), T ),
holdsAt(flies(X), T ) —≺ ∼holdsAt(injured(X), T ), holdsAt(bird(X), T )
∼holdsAt(flies(X), T ) —≺holdsAt(injured(X), T )
∼holdsAt(injured(X), T + 5) —≺holdsAt(injured(X), T ),

⎫

⎪

⎪

⎬

⎪

⎪

⎭

Υ1 =
{

holdsAt(injured(X), T + 1) —≺holdsAt(injured(X), T ),
∼holdsAt(injured(X), T + 1) —≺ ∼holdsAt(injured(X), T ),

}

〈D, I ∼ holdsAt(flies(tina), 5)〉 is the proper definition of argument A1 for fluent
∼holdsAt(flies(tina), 5), where:

D =
{ ∼holdsAt(flies(tina), 5) —≺holdsAt(injured(tina), 5),

}

I =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

holdsAt(injured(tina), 5) —≺holdsAt(injured(tina), 4),
holdsAt(injured(tina), 4) —≺holdsAt(injured(tina), 3),
holdsAt(injured(tina), 3) —≺holdsAt(injured(tina), 2),
holdsAt(injured(tina), 2) —≺holdsAt(injured(tina), 1),
holdsAt(injured(tina), 1) —≺holdsAt(injured(tina), 0)

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

In previous work [7] the comparison criteria among argument was pendant. In the fol-
lowing sections we will discuss several aspects the criteria should take on consideration. At
the same time some previous definition to achieve this goal will be presented.
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3 Comparing arguments from the base

In order to decide when an argument is better than other, we must design a comparison
criteria that allow the proper choice of the wining argument. As a first step, this criteria
should take on consideration the argument base, i.e. the subset of Π that origins the defeasible
reasoning that takes place after that. This subset may be formed by fluents (holdsAt(f, t)
kind of formula) or sentences that defines events occurrence (happens(a, t) kind of formula).
This last kind of formula clearly represents actions that actually take place or are granted to
happen through strong information use only.

Several aspects should be taken in consideration about the type of information that appear
at the tree’s base, for example we must evaluate if the same fluent, on different moments,
appears in the base an root of the tree; or the amount of events the argument considers, as
well as possible repetitions of the same event. At this point is necessary to point out that all
the events considered are facts or can be proven only form information in the Π set of the
program, this means that are always ‘strong’ information. This status of actions makes an
argument with more actions more plausible.

The fact that the same fluent is in the base and the root may imply the use of an inertial
rule in a direct way or that its state is a precondition to further gain of other fluents. As a first
approximation lets consider the simple example that follows:

EXAMPLE 1 Let P1 be a CDeLP program defined as: P1 = (Π1, ∆1, Υ1), where:

Π1 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

holdsAt(ligh off, 0)
happens(switch, 1)
happens(switch, 3)
happens(switch, 5)
holdsAt(ligh on, T )←∼holdsAt(light off, T )
holdsAt(ligh off, T )←∼holdsAt(light on, T )

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

∆1 =
{

holdsAt(light on, T + 1) —≺holdsAt(light off, T ), happens(switch, T + 1)
holdsAt(light off, T + 1) —≺holdsAt(light on, T ), happens(switch, T + 1)

}

Υ1 =
{

holdsAt(light off, T + 1) � holdsAt(light off(X), T ),
holdsAt(light on, T + 1) � holdsAt(light on(X), T ),

}

Form P1 we can built the arguments shown in figure 1. In this example, we clearly see that

      holdsAt[light off,5] 

                 (a)                                              (b)     (c)     (d)
holdsAt[light off,0]
 

      happens[switch,5] 

   holdsAt[light on,5] 

 holdsAt[light off,4] 

holdsAt[light off,0]
 

 holdsAt[light on,4] 

holdsAt[light off,0]
 

      happens[switch,3]  holdsAt[light off,2] 

holdsAt[light off,0]
 

      happens[switch,1] 

 holdsAt[light on,1] 

 holdsAt[light on,2] 

Figure 1: reasoning line

the first argument only appeals to the use of an inertial rule to warrant holdsAt(light on, 5)
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(this fact makes this argument very weak in a discussion since it will be very easy to defeat);
the other argument also uses an inertial rule, but the chain is shorter and it uses event’s
occurrence, so clearly is a better supporting argument than the first one.

If we take a look to the arguments against holdsAt(light on, 5) we can see we count with
two as well. In this case both arguments uses inertial rules and the happening of actions.
We can also see that the event is the same, but since the happening of events is part of
environment check (part of Π) the argument with more events is clearly more specific and
more adjusted to reality.

Looking at the previous example we can draw definitions, in order to formalize the ideas
shown there. One of them decide when two arguments are incomparable (from base), in-
formally this situation takes place if we can not decide which one is better for the basic
information they use to build up their conclusion. Formally this notion is captured on defin-
ition 3

DEFINITION 3 (incomparable from base)
Suppose we have arguments A1 and A2. Let F1 and F2 the set of fluents and E1 and E2

the set of events (both ∈ Π) such that are the basics of each argument. We state that the
arguments are incomparable from base if:

If F1 ∩ F2 = ∅ and, If E1 ∩ E2 = ∅
As we explain before the amount of events that take place are important in order to

determine the strength of an argument, particularly when the event that actually happens is
the same over and over again, as in the example 1 where the action that happens is switch
obviously on different moments. We can consider events repetition as a sign of strength and
define a criteria that considers this:

DEFINITION 4 (repeated events)
Suppose we are comparing two arguments A1 and A2, such that are not incomparable.

And some action a such that happens(a, T ) ∈ E1 ∩ E2 if happens(a, T2) ∈ E1 but �∈ E1 ∩ E2
with T2 �= T Then A1 is stronger than A2

or we can extend the criteria not analyzing the kind of event but only the amount like in
the following definition:

DEFINITION 5 (preferring from the base)
Suppose we are comparing two arguments A1 and A2, such that are not incomparable.
A1 is going to be preferred over A2 if the following condition holds:

1. A1 uses more observed events than A2. Formally: |E1−(E1∩E2)| = n, |E1−(E1∩E2)| =
m with n > m.

2. A1 uses more observed fluents than A2. Formally: |F1− (F1 ∩F2)| = n, |F1− (F1 ∩
E2)| = m with n > m.

Observed fluent or event are those that can be inferred only form information available in the
Π set of the corresponding program.
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4 Comparing arguments that uses inertia

If conflict appears through the use of inertial chains that are comparable, then the shorter
one should be preferred since it has less points of attacks, making the argument stronger in
certain sense.

In order to make an analysis over inertial chains, we must take in consideration the subset
of Υ used in both arguments (the inertial rules used on the construction of the arguments). If
the intersection of those sets is non empty then, both uses the same inertial rule. Being the
case, we should prefer the argument with the shorter inertial chain for that fluent.

DEFINITION 6 (inertial chains length)
For some argument structure A = 〈δ, υ, L〉 and some literal l granted through an inertial

chain. Then an inertial rule, i ∈ υ, is used several times. i has the form holdsAt(l, t) �

body, where body is a proper body for the rule. The length of the chain is evaluated like this:
Let Tmax be the maximal time point of the inertial chain and let Tmin be the minimal

value of parameter t in the argument structure such that:

∀m Tmin < m < Tmax[holdsAt(l, t) � body ∈ υ]

and there is no other time points x > Tmax, y < Tmin that verifies the previous condition.
Then the length of the inertial chain is Tmax − Tmin

DEFINITION 7 (analyzing inertial chains)
Suppose we are comparing two arguments A1 and A2, such that are not incomparable.

Let A1 = 〈δ1, υ1, L〉 and A2 = 〈δ2, υ2, L〉. If υ1 ∩ υ2 �= ∅ (both arguments uses inertia over
the same fluent) then, we should consider the following algorithm:

no argument is marked for each rule in the intersection do
while only one or none is marked do

take the literal on the head of the rule
get the length of inertial rule from both arguments
compare lengths
mark the argument with shorter inertial chain length

If both are marked then return blocking situation
else return as preferred argument the marked one

Notice that can be the case that we can decide that neither are preferable since more than
one inertial chains are applied and the shorter one is not in the same argument.

If we consider example 1 we can see that among the fact that the argument that ends to be
preferred form the base (has more events), that same argument is preferred under definition
above. Looking at figure 1 argument (a) has an inertial chain of length 5 for fluent light off ,
while the one for argument (b) is 4, 2 for argument (c) and finally 1 for argument (d).

Let us illustrate a blocking situation through a very well known example in frame prob-
lem literature, the Yale Shooting Problem. This problem presents a scenario where the neces-
sity of the inertial rules on the specification of causal information is clear. In this sense we
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are going to use Steve Hanks and Drew McDermott [9] problem to show a pair of arguments
that are defeated by a mutual blocking status.

EXAMPLE 2 Let consider the following program P2 = (Π2, ∆2, Υ2), where:

Π2 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

initiallyP (alive(fred))
initiallyP (moving(fred))
happens(load(gun), 0)
happens(shoot(gun), 2)

holdsAt(loaded(gun), T )← happens(load(gun), T )
holdsAt(moving(X), T )← happens(startMovement(X), T )
∼holdsAt(moving(X), T )← happens(endMovement(X), T )

holdsAt(alive(X), T )← holdsAt(alive(X), T1),∼happens(shoot(Y ), T1), T = T1 + 1

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

∆2 =
{ ¬holdsAt(alive(X), T ) —≺ holdsAt(loaded(Y ), T ), happens(shoot(Y ), T )

holdsAt(alive(X), T ) —≺ holdsAt(moving(X), T ), happens(shoot(Y ), T )

}

Υ2 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

holdsAt(loaded(Y ), T + 1) � holdsAt(loaded(Y ), T )
∼holdsAt(loaded(Y ), T + 1) �∼holdsAt(loaded(Y ), T )
holdsAt(moving(X), T + 1) � holdsAt(moving(X), T )
∼holdsAt(moving(X), T + 1) �∼holdsAt(moving(X), T )

⎫

⎪

⎪

⎬

⎪

⎪

⎭

If we take a look to arguments in figure 2 we see that no choice among them is possible.

      happens[shoot(gun),2] 

      holdsAt[alive(fred),2] 

                 (a)                                              (b)

   holdsAt[moving(fred),0]
 

   holdsAt[moving(fred),1]
 

   holdsAt[moving(fred),2]
 

      happens[shoot(gun),2] 

   ~ holdsAt[alive(fred),2] 

     holdsAt[loaded(gun),0]
 

     holdsAt[loaded(gun),1]
 

     holdsAt[loaded(gun),2]
 

Figure 2: complementary arguments that leads to blocking defeat

Since both arguments are structurally identical, both uses a chain of inertial rules but over
different fluents, independent fluents i.e. not comparable from the information available in
the program.
If we eliminate intiallyP (moving(fred)) from set Π, and then we add
happens(startMovement(fred), 1) the arguments shown in figure 2 will look like this:
In this case, the argument (a) has de shorter inertial chain than the argument shown in argu-
ment (b). If we decide to choose this measure as a way to avoid blocking then argument (a)
should be preferred; but we can avoid the fact that this is the only fact that favors one of the
arguments because looking at the base both sets are not comparable.
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      happens[shoot(gun),2] 

      holdsAt[alive(fred),2] 

                 (a)                                              (b)

   holdsAt[moving(fred),1]
 

   holdsAt[moving(fred),2]
 

      happens[shoot(gun),2] 

    ~ holdsAt[alive(fred),2] 

     holdsAt[loaded(gun),0]
 

     holdsAt[loaded(gun),1]
 

     holdsAt[loaded(gun),2]
 

Figure 3: complementary arguments

5 Analyzing ‘defeasible’ events

There may events that are not registered in Π in a direct way, i.e. their real happening may
depend on fluents that are granted in a defeasible way (‘defeasible’ events). If this is the
case, we must analyze the supporting information for that event to take place, for granting
the hole argument. If this is the case, the analysis of the base is not enough an we must take
a look to the inner nodes of the tree in order to detect this kind of situation.

In general fluents are properties that holds on certain time point, i.e. properties that are
either true or false at any time (‘strong’ fluents). With the introduction of defeasibility we
lead to a situation where some fluents are granted or not. This means that we can build a
defeasible proof for the fluent, since the defeasible nature of the proof a fluent granted in this
way has less strength (from a knowledge perspective) than ‘strong’ fluents. So the following
definition is needed:

DEFINITION 8 Defeasible fluents
Let F be a fluent. F is a defeasible fluent if its status is granted through an argument

structure that can not be defeated.-

Let see an example where event occurrence depend on defeasible fluents:

EXAMPLE 3 Imagine an scenario where certain alarm clock must ring at some determine
moment, only if it has enough battery. Here is the program, P3 = (Π3, ∆3, Υ3), where:

Π3 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

initiallyP (asleep(fred))
initiallyP (enough battery)
happens(clock rings, T )← holdsAt(enough battery, T )

∼holdsAt(asleep(fred), T )← happens(clock rings, T )

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

∆3 =
{ ∼holdsAt(enough battery, T ) —≺ holdsAt(enough battery, T1), T = T1 + 10)

}

Υ3 =

⎧

⎨

⎩

holdsAt(asleep(X), T + 1) � holdsAt(asleep(X), T )
∼holdsAt(asleep(X), T + 1) �∼holdsAt(asleep(X), T )
holdsAt(enough battery, T + 1) � holdsAt(enough battery, T )

⎫

⎬

⎭

Taking a look to arguments, we can see that clock rings depends on fluent enough battery
to take place. This fluent can or can not be granted in a defeasible way. Can be granted
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through an inertial rule an can not by a defeasible rule that captures the notion of informa-
tion’s ageing (more details can be found at [7]). Clearly in this case the argument that uses
the defeasible rule beats the one that uses de inertial rule. Situation like the one in figure 3

       holdsAt[asleep(fred),10] 

                 (a)                                              (b)
initiallyP(asleep(fred))
 

     holdsAt[asleep(fred),9]
 

      ~ holdsAt[asleep(fred),10] 

 initiallyP(enough battery)
 

     happens[clock rings,10]
 

 holdsAt[enough battery,10]
 

 initiallyP(enough battery)
 

 ~ holdsAt[enough battery,10]
 

Figure 4: events that depend on defeasible fluents

are solved through the following definition:

DEFINITION 9 (Inertia, Actions and Ageing) Suppose we are comparing two arguments A1

and A2, and some fluent f such that holdsAt(f, t) is granted on both arguments if:

1. there is a rule i ∈ A1 such that forms an inertial chain that granted f at other time
point T ; and there is a rule r ∈ A2 such that is an information ageing rule or an event
rule such that grants ∼ f at the same T , or

2. there is a rule a ∈ A1 such that is an information ageing rule such that grants f ; and
there is a rule e ∈ A2 such that is an event rule such that grants f at the same T

then A2 is preferred over A1

It must be taken in consideration that an information ageing rule is a sentence a ∈ ∆
of the form head —≺ body where body does not include literals like happens(action, time)
and must have head at a previous moment. On the other hand an event rule is also a sen-
tence ∈ ∆ also of the form head —≺ body but in this case body must include a literals like
happens(action, time). As example of information ageing rule we can take
∼ holdsAt(enough battery, T ) —≺holdsAt(enough battery, T1), T = T1 + 10) while
holdsAt(enough battery, T ) —≺happens(replace battery, T ) is an event rule.

Clearly we can consider the possibility of changing the battery, modifying the program on
example 3. Leading to the same program with the addition of the boxed sentence.

Π3 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

initiallyP (asleep(fred))
initiallyP (enough battery)
happens(clock rings, T )← holdsAt(enough battery, T )
happens(replace battery, T )←∼holdsAt(enough battery, T )
∼holdsAt(asleep(fred), T )← happens(clock rings, T )

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

∆3 =

{ ¬holdsAt(enough battery, T ) —≺holdsAt(enough battery, T1), T = T1 + 10)
holdsAt(enough battery, T ) —≺happens(replace battery, T )

}

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

 
VIII Workshop de Agentes y Sistemas Inteligentes
_________________________________________________________________________

 
 

1437



Υ3 =

⎧

⎨

⎩

holdsAt(asleep(X), T + 1) � holdsAt(asleep(X), T )
∼holdsAt(asleep(X), T + 1) �∼holdsAt(asleep(X), T )
holdsAt(enough battery, T + 1) � holdsAt(enough battery, T )

⎫

⎬

⎭

In this case we can see that the wining argument is build due to the occurrence of new
event introduced. Figure 3 illustrate this new argument.

                 (c) 

      ~ holdsAt[asleep(fred),10] 

     happens[clock rings,10]
 

 holdsAt[enough battery,10]
 

 initiallyP(enough battery)
 

 ~ holdsAt[enough battery,10]
 

 happens[replace battery,10]
 

Figure 5: additional argument

Other situation that follows from the previous one, is what happens if the action under con-
sideration can only takes place once, like born. This is so because a certain individual can
born only once. In other to deal with this kind of events we need to introduce axioms on set Π
of the program that sets the uniqueness on action occurrence and use Temporal disagreement
notion as well (see definition 10).

DEFINITION 10 (Temporal Disagreement)
Two arguments At1

1 = 〈A1, (l1, t1))〉, At2
2 = 〈A1, (l2, t2))〉 are in temporal disagree-

ment of there are time points t1, t2 such that At1
1 , At2

2 are in disagreement. Meaning that:
Π ∪ {(l1, t1), (l2, t2)} ⊥
Let see an example where this kind of disagreement actually happens.

EXAMPLE 4 Imagine an scenario where certain alarm clock must ring at some determine
moment, only if it has enough battery. Here is the program, P4 = (Π4, ∆4, ∅), where:

Π4 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∼happens(born(baby), T )← happens(born(baby), T1), T > T1

∼happens(fall umbilical cord(baby), T )← happens(fall umbilical cord(baby), T1),
T > T1

happens(born(mary′s baby), T )← holdsAt(at term, T )
happens(born(mary′s baby), T )← holdsAt(before term, T )

happens(fall umbilical cord(mary′s baby), T )← happens(born(baby, T1),
holdsAt(before term, T1), T = T1 + 10

happens(fall umbilical cord(mary′s baby), T )← happens(born(baby, T1),
holdsAt(at term1), T = T1 + 7

happens(become pregnant(mary), 1) holdsAt(first baby(mary), T )
holdsAt(calm person(mary), T )

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭
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∆4 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

holdsAt(at term, T ) —≺ happens(become pregnant(mary), T1),
holdsAt(calm person(mary), T1), T = T1 + 40)

holdsAt(before term, T ) —≺ happens(become pregnant(mary), T1),
holdsAt(first baby(mary), T1), T = T1 + 38)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

We can observe that these arguments are very similar, their base has the same number of
sentences and they are of the same kind also. At first sight it seems to be no conflict among
them, but both appearing events can only happens once. If we choose to keep with the first
happening of the event (over the time line) then for event fall umbilical cord(baby) we
must choose argument (b), but for event born(baby) the sub-argument of (a) must win.

      happens[born(baby),38] 

       happens[fall umbillical cord(baby),48]

                 (a)                                              (b)

   holdsAt[before term,38]
 

      holdsAt[at term,40]  

    happens[fall umbillical cord(baby),47] 

 happens[born(baby),40]
 

     holdsAt[become pregnant(mary),0]
       holds At[first baby(mary),0]

     holdsAt[become pregnant(mary),0]
          holds At[calm person(mary),0]

Figure 6: unique events on conflict

Although these considerations are extremely important for the preference criteria, the addi-
tion of these facts to a proper definition is in current analysis.

6 Conclusions and Future work

Argumentative systems such as DeLP have been significant for the evolution of common-
sense reasoning area. We have already presented CDeLP as an alternative argumentative
system that captures today’s definition of this kind of reasoning (i.e reason with events, time,
cause-effect principle).
CDeLP , differentiates two kind of defeasible rules, the ones already available at plain

DeLP and the ones that captures inertia over fluents truth value. These modifications make
urgent a change in preference criteria among arguments. In that sense we present several
definitions to solve some of the critical points.

A complete definition of the comparison criteria is needed. The analysis must take in
consideration how the use of inertial rules are used in the construction of arguments and
counterarguments. Clearly, an argument that uses inertial rules is weaker than an argument
that uses only non-inertial defeasible rules. Definitions and examples presented in this work
offers a solution to these items. Nevertheless, some other questions remain. We must define
how to determine preference when ‘defeasible’ events are used on arguments. In which order
we should apply the definitions presented in this work and the remaining ones in order to get
better results?
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