

Framework for GRID Metascheduling with SLAs

Bertogna, Leandro M. - Del Castillo, Rodolfo
Computer Science Department, Universidad Nacional del Comahue,

Buenos Aires 1400, Neuquén, Argentina
{mlbertog, rolo}@uncoma.edu.ar

Abstract
Integration of heterogeneous resources in
different administrative domains makes
control and management of these
environments a hard task, and this could be
even worse if organizations intend to use
these resources in a coordinate manner. Our
goal is to simplify these labors with a policy
based management schema. Policies with a
high level of abstraction will be transform
automatically in business rules to the right
entities.
In this paper we define a framework and
several design aspects to show how this
policy based management schema can be
done. Besides we will give an example of a
task scheduler for a computer cluster and
how the latest version of grid tools available
in the market fit in this proposal.
Key words: Grid, SLA, metascheduling
Workshop de Procesamiento Distribuido y
Paralelo

1. Introduction
In most of organizations, computer networks
computing and information resources, are
critical points to do an optimal administration.
With their evolution these resources become
complex and singular; different type of users,
different type of services, access control,
software and hardware heterogeneity, require
a lot of funds for maintenance. To satisfy
these requirements personal with different
profiles and high skills are needed. This can
be seen more clearly in Grid environments,
because not only they have different

administrative domains but also different kind
of resources, like storage, computing,
visualizations, networks, etc.
Our goal is to fusion, quality of service
parameters, admission control, congestion
management, congestion avoidance, load
balance, etc, with high level policies or
business rules, in one simple, centralized
management schema.
An example of these policies could be job
submission from grid organizations. Policies
will modify schedulers queues without
knowing where the resources are located or if
they are heterogeneous, and local schedulers
where these resources are physically located
and where the policies are enforced.
We can see that the use of rules covers a great
range of administrative tasks and involves
classification of users in roles, classification
of services, differentiate services over time,
each one of these tasks have to be tuned with
packet lose, jitter, MTT, etc. These policies
have to be interpreted, stored and applied in
the correct locations automatically, and have
to be flexible to include new requirements and
future devices.
This work shows an architecture to achieve
this framework based in the RFC 2753 [1].
This RFC is concerned with specifying a
framework for providing policy-based control
over admission control decisions.
In the rest of this paper we will analyze how
can we extend most of the RFC elements to
grid environments and we will propose
implementations for each one. The first
section will describe policy based networks
elements, and grid environments, the second

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15779942?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:rolo}@uncoma.edu.ar

section we will develop the framework and
some adaptations to grid. In the next sections
we will describe examples and show how
different tools fit easily in this schema.

2. Background
At some point, it will become necessary for
systems to become much easier to manage, so
that they do not require significant amounts of
routine administration. Ideally, they should
require no routine administration tasks like
allocation of file systems, shuffling of
computer resources, or job scheduling.
System administration as a discipline will
continue to be of critical importance, though,
as the function that determines the policies to
be implemented by self-managing systems;
these goals are under research by groups
working in autonomic computing [2].
As we can see from [3] self-administering
systems are critical in grid computing. Several
works trying to solve this kind of problems do
exist, first tries were policy based networks
[4][5]. When grid turned up there were some
migration works [6][7], but these ones
showed the practical benefit using policies
rather than how these policies are stored and
managed.

2.1 Policy based Networks
The elements that will be the base of our
framework are: the Policy Decision Point
(PDP), the point where policy decisions are
made and the Policy Enforcement Point
(PEP), the point where the policy decisions
are actually enforced.
The PEP corresponds directly to a grid node
and the PDP is an entity that can be located in
the policy server and can use other
functionality like authentication servers,
account management, information storage,
etc.
Policies represent goals in the organization, in
our case goals of the virtual and local
organization. A translation must be made
between these goals and objectives and their
realization in the network. An example of

this could be a Service Level Agreement
(SLA), and its objectives and metrics (Service
Level Objectives, or SLOs), which are used to
specify services that the network will provide
for a given client. The SLA will usually be
written in high-level business terminology.
SLOs address more specific metrics in
support of the SLA. These high-level
descriptions of network services and metrics
must be translated into lower level, but also
vendor and device independent specifications.

2.2 Web Services
There are experiences trying to obtain
platform independence to assure a service
agreement between peers.
At application level, web services is a
technology widely used to achieve this
independency based on a service-oriented
architecture (SOA).
Grid applications are more restrictive and
possess special characteristics, like complex
data structures for I/O or the need to express
stateful resources. To solve this aspects a set
of devices like WS-Resource [8] have been
proposed as a means of expressing the
relationship between stateful resources and
Web services, and the WS-Resource
framework [9], a set of proposed Web
services specifications that define a rendering
of the WS-Resource approach in terms of
specific message exchanges and related XML
definitions. These specifications allow the
programmer to declare and implement the
association between a Web service and one or
more stateful resources.
To accomplish some kind of contract between
a service provider and a customer, such as to
define the obligations of the parties, there is a
specification language for service level
agreements for Web Services, the Web
Service Level Agreement [10]. This idea is
naturally extended to grid like in the WS-
Agreement [11], this draft describes an XML
language for specifying an agreement
between a resource/service provider and a
consumer, and some works can be seen in
[12].

3. Framework
The basic architecture proposed by the RFC
2753 says that the interaction between the
components begins with the PEP. The PEP
will receive a notification or a message that
requires a policy decision. Given such an
event, the PEP then formulates a request for a
policy decision and sends it to the PDP.
However, this is based on the assumption that
most of the cases fall within the scenario of
one administrative domain with a relative low
number of resources. If we replicate this to
other domains and we combine them like in
grid usage, this idea will be hardly scalable.
Virtual organizations [13] add another level
of abstraction in the decision hierarchy, we
have a local level control, the organizations
that have the resource physically and a meta
level, the organizations that have the resource
virtually. These two levels may overlap or
have conflicts.
To allow these levels of decisions to work
correctly, and trying to achieve modularity
and scalability, another architectural element
that describes the RFC is the extension of the
PDP with a local representative (LPDP). The
RFC interprets this representative as a
network node and this means that the PEP
will first use the LPDP to reach a local
decision. This partial decision and the original
policy request are next sent to the PDP, which
yields a final decision (possibly, overriding
the LPDP). It must be noted that the PDP acts
as the final authority for the decision returned
to the PEP and the PEP must enforce the
decision yielded by the PDP.
If we extend this behavior to grid
environments and modify this concept, we
will assume the LDPD as representative of the
local organization that is a component of the
VO. We could store local policies in the
LPDP and global policies or VO policies in
the PDP: both level of policies will be
analyzed, but in some cases global policies
will have high priority; in other cases, local
policies will be independent, without
interaction with the global PDP. This could
reduce the policy search domain. An example

of this is an authentication service: we have
local users and global users, and some of
these are not the same. There is no point for
both decision points to have knowledge of
both users, they should only know their scope
instead. Once permitted access by the PDP or
the LPDP the PEP just do the job, achieving
task logic cohesion and improving decision-
making performance.

Fig.1

2.Mechanisms for metascheduling
We have defined the framework, but not how
it will be carried out. Now we have to
evaluate which mechanisms are desirable for
it. Mechanisms must include support for
monitoring policy state, resource usage, and
provide access information. In particular,
mechanisms must be included to provide
usage and access information. This may be
used for example for accounting and billing
purposes.
Most of these mechanisms are already in use
or proposed. Let us take a job submission
scenario proposed on the WS-agreement
draft, and we will be able to see how this
procedure can be adapted to the
administration framework.

4.1 Submitting a job
The RFC[1] says that the translation of
policies into SLAs is possible. We will use
WS-Agreement as a model and we will
suppose that resources policies defined by
administrators are already translated into

SLAs.
To use the same terminology with the WS-
Agreement draft we will call these SLAs
Agreement-Template. These are resource
templates and will be store in each PDP
where the resource is published.
A service provider may post an agreement
template to the local PDP and grid PDPs. In
this scenario, the agreement template defines
the list of applications to be executed, and the
software execution environment typically
specified in a job submission. Service
consumers are given a quality of service
guarantee in terms of number of nodes and/or
per node memory and storage for a specific
time period. Alternatively, the guarantees can
be on the completion time. A service
consumer requesting a submitted job must fill
in the name of the application to be executed,
input and output files. In addition, a service
consumer chooses the number of nodes (or
any other resource requirements) that the
application is guaranteed to execute on.
To submit a job, a service consumer retrieves
the template from the PDP, selects the
application name, and provides URL of the
input and output files as well as the details of
resource guarantees. The filled template is
sent as an offer to the provider; in our case
this provider will be a PDP. The PDP
analyzes this by sharing the decision among
others PDPs, VO´s PDP or LDPD where the
resource is located. Finally decides whether to
accept or reject the request. This may depend
on the queue of jobs waiting to be processed
and the current allocation of resources. The
service provider answers the offer with a
confirmation or a fault. In due time, the
service provider processes the job.
These agreements will be stored in different
PDPs for the next requirements.

4.2 Monitoring
One of the most important parts of this
schema is task information gathering;
decisions and agreement verifications are
based on this data. This information is
obtained from tools like the Monitoring and

Discovery System (MDS)[14] component of
Globus Toolkit V4. This component can
streamline the tasks of monitoring and
discovering services and resources in a
distributed system or Grid.
The MDS framework requires that resources
explicitly register with the aggregator service.
The aggregator service periodically collects
up-to-date state or status information from all
registered Grid resources using specific
information sources. In clusters, we have the
GLUE [15] resource property that collects
information from the schedulers and the
cluster information system, for example
Ganglia [16] or Hawkeye [17], and makes this
information available to the user.
If we observe the task of explicit register, we
have already done it by the Agreement-
Template publication, as we see in the section
before; this reminds us that the aggregator
service is located in the PDPs.
Based on the monitoring tool information,
task submitting will be done by
metaschedulers. This software allows
interaction with underlying resource
managers in a system independent fashion. In
addition, the metascheduler is a high-level
abstraction for some of the concepts like
“job”, a “resource reservation”, and a
“scheduler”. This level of abstraction is in the
VO PDP, submitting tasks to a local PEP. In
grids we already have this schedulers
implemented like the CSF [18]
metascheduler. This metascheduler has
adapters that can communicate with local
schedulers OpenPBS [19], SGE [20], LSF
[21], so combining their functions could
enforce policies globally and locally.

3.Conclusion
The model discussed in this paper defines an
adaptation of policy based network
administration into a grid environment. This
schema has several benefits such that
configuration of multiple instances of the
same entity is feasible, or that the
configuration of different entities can be done
from a single tool in a centralized manner.

Defining administration scopes, pointing out
where decision points are located, and using
well-defined interfaces, ensure consistent
configuration across products using the same
objects in their configuration.
Now we are developing a state of the art
report of monitoring tools so we can test
which one, or which combination of them, fits
better in our schema. In the near future we
plan to implement a small testbed with a
meta-scheduler and a few local schedulers
controls by SLAs and SLOs in both levels of
control: grid and local.

Acknowledgement
We would like to thank other members of the
computer science department for their
support, especially Eduardo Grosclaude.

4.Bibliography
[1] Yavatkar, R., Pendarakis, D. and R.
Guerin, "A Framework for Policy-based
Admission Control", RFC 2753, January
2000.
[2] Jeffrey O. Kephart, David M. Chess, ”The
Vision of Autonomic Computing”, IEEE
Computer 36(1): 41-50 2003.
[3] I. Foster et al., “The Grid2003 Production
Grid: Principles and Practice”, Proceedings of
the 13th IEEE International Symposium on
High Performance Distributed Computing,
2004.
[4] Moore, B., Ellesson, E., Strassner, J. and
A. Westerinen, "Policy Core Information
Model -- ", RFC 3060, February 2001.
[5] Jean-Christophe Martin,. Policy-Based
Networks., Sun BluePrints. OnLine, October
1999.
[6] Czajkowski, K., Foster, I., Kesselman,
C.,Sander, V. and Tuecke, S., SNAP: A
Protocol for Negotiating Service Level
Agreements and Coordinating Resource
Management in Distributed Systems. in 8th
Workshop on Job Scheduling Strategies for
Parallel Processing, (2002).
[7] Dumitrescu, C. and I. Foster. Usage
Policy-based CPU Sharing in Virtual

Organizations. in 5th International Workshop
in Grid Computing. 2004.
[8] Modeling Stateful Resources With Web
Services. http://www-106.ibm.com
/developerworks/library/ws-resource/ws-
modelingresources.pdf
[9] The Web Services Resource Framework.
http://www-106.ibm.com/developerworks
/library/ws-resource/ws-wsrfpaper.html
[10] IBM, WSLA Language Specification,
Version 1.0. 2003.
[11] K. Czajkowski, A. Dan, J. Rofrano, S.
Tuecke and M. Xu.Agreement-based Grid
Service Management (OGSIAgreement)
Version 0. https://forge.gridforum.org
/projects/graap-wg/document/Draft_OGSI-
agreement_Specification/en/1/Draft_ OGSI-
Agreement_Specification.doc
[12] Providing Data Transfer with QoS as
Agreement-Based Service, H. Zhang, K.
Keahey,W. Allcock. 2004.
[13] I. Foster, C. Kesselman, S. Tuecke. The
Anatomy of the Grid: Enabling Scalable
Virtual Organizations. International J.
Supercomputer Applications, 15(3), 2001
[14] MDS, http://www.globus.org
[15] GLUE, http://www.cnaf.infn.it
/sergio/datatag/glue/
[16] Massie, M., B. Chun, and D. Culler. The
Ganglia Distributed Monitoring: Design,
Implementation, and Experience. in
ParallelComputing. May 2004.
[17] Hawkeye monitoring tool,
http://www.cs.wisc.edu/condor/hawkeye/
[18] Community Scheduler Framework.
http://sourceforge.net/projects/gcsf/
[19] OpenPBS Project, A Batching Queuing
System, Software Project, Altair Grid
Technologies, LLC, www.openpbs.org.
[20]Sun Grid Engine.
http://gridengine.sunsource.net/
[21] LSF Administrator’s Guide, Version 4.1,
Platform Computing Corporation, February
2001.

http://www.faqs.org/frfcs/rfc3060.html
http://www.faqs.org/frfcs/rfc3060.html
http://www-106.ibm.com/developerworks
http://www-106.ibm.com/developerworks
http://www-106.ibm.com/developerworks
https://forge.gridforum.org/

