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Abstract 
 
The resource utilization level in open laboratories of several universities has been shown to be very 
low. Our aim is to take advantage of those idle resources for parallel computation without 
disturbing the local load. In order to provide a system that lets us execute parallel applications in 
such a non-dedicated cluster, we use an integral scheduling system that considers both Space and 
Time sharing concerns. For dealing with the Time Sharing (TS) aspect, we use a technique based on 
the communication-driven coscheduling principle. This kind of TS system has some implications on 
the Space Sharing (SS) system, that force us to modify the way job scheduling is traditionally done. 
In this paper, we analyze the relation between the TS and the SS systems in a non-dedicated cluster. 
As a consequence of this analysis, we propose a new technique, termed 3DBackfilling. This 
proposal implements the well known SS technique of backfilling, but applied to an environment 
with a MultiProgramming Level (MPL) of the parallel applications that is greater than one. Besides, 
3DBackfilling considers the requirements of the local workload running on each node. 
Our proposal was evaluated in a PVM/MPI Linux cluster, and it was compared with several more 
traditional SS policies applied to non-dedicated environments. 
 
Keywords: Space-Sharing, Non-Dedicated clusters, Backfilling, Coscheduling, Distributed Systems, 
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1. Introduction 
 
Studies like [1, 2] indicate that the workstations in a NOW are under-loaded, and hence, some 
resources are wasted. Some past studies [3, 2] demonstrated that it is possible to use those idle 
resources for parallel computation, generating advantages for the parallel user but not disturbing the 
local tasks. Many alternatives had been proposed for dealing with such a non-dedicated 
environment, like remote execution, migration, load balancing, hibernable computers, etc. Our 
proposal is oriented toward the Job Scheduling [4] alternative.  
Parallel job scheduling in a non-dedicated cluster can be performed at two different levels, space 
and time sharing. Time Sharing scheduling deals with the problem of distributing the CPU time 
between the parallel and local tasks. TS is done in such a way that it reduces the parallel application 
execution time by reducing the communication waiting time. This goal is achieved by a technique 
known as coscheduling [5, 1, 6]. This schema can be done in several ways, however, there are two 
mayor alternatives. In the first approach, all the processes forming a job are scheduled and 
descheduled by means of a global context switch. This technique, termed explicit coscheduling, or 
more generally Gang Scheduling [7, 2, 8], is suitable for environments where the time quantum 
given to the jobs are large enough to justify the global context switch. The second alternative relies 
primarily on local communications events (arrival and/or waiting for a message), to determine when 
and which process to schedule. A technique based on this alternative is Cooperating CoScheduling 
[1] (CCS), developed by our group and extensively evaluated in the past [9, 3]. It is based on 
increasing the receiving task priority, even causing CPU preemption of the task being executed. 
This kind of technique is more suitable for smaller quantums, and hence, for environments with 
some interactive local load running. Therefore, this technique fits into the requirements of a non-
dedicated cluster. In addition, CCS provides some load balancing characteristics and a job 
interaction mechanism. The load balancing schema tries to uniformize the resources given to each 
task of a parallel job. On the other hand, the job interaction mechanism lets the system control the 
level of intrusion into the local workload.  
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The other aspect to consider for doing job scheduling is the Space Sharing (SS) concern. According 
to the TS system characteristics explained above, the traditional SS policies have to be modified in 
order to be applied in a non-dedicated environment. This leads us to divide the SS policies into 
three different classes, where each one solves one different scheduling problem. The first one faces 
the problem of selecting the best set of nodes for executing an application (Node Selection policies), 
considering a non-dedicated cluster and its state. The second set of policies deals with the Job 
Selection process (i.e. Backfilling, Best Fit, Just First, etc) from a waiting queue, while the third set  
deals with the Job Ordering or prioritization process (i.e. First Come First Serve - FCFS, Shortest 
Job First - SJF, Largest Job First - LJF, etc).  
Regarding to the Node Selection problem, very little work (if any) has been done to study the 
effects of a communication-driven coscheduling system over the SS schema, and even less, if we 
consider non-dedicated clusters. In this work, we have defined some new approaches, termed 
Normal and Uniform, applicable to this kind of environment. Both policies consider two different 
variables for assuming scheduling decisions: the cluster state (intrusion level into the local 
workload, the parallel applications MPL and the memory and CPU usage) and the available nodes.  
On the other hand, the most successful approach described in the literature for dealing with this Job 
Selection and Job Ordering problem, is the combination of a simple FCFS queue with a Backfilling 
[10, 7] technique. With this kind of policy, a queued application not at the head could be executed, 
whenever this does not delay the start of the queued job at the head (EASY Backfilling [10]). Thus, 
backfilling requires the future state to be estimated in order to know when running jobs will finish 
and free up their processors. 
In this paper, we analyze the combination of our defined Node Selection policies with a FCFS-
Backfilling schema. It means that the two variables stated by the node selection policies (cluster 
state and available nodes), are complemented with the future estimation carried out by the 
backfilling policy. This determines a three dimensional policy, termed by us 3DBackfilling.  
This policy was compared with a set of traditional SS scheduling policies. The evaluation was 
carried out using an integral job scheduling system developed by us, termed CISNE [6]. The 
analysis shows the good performance and applicability of our proposal for this kind of environment. 
The remainder of this paper is as follows: in section 2 we define our problems. In section 3 the 
proposals for solving the stated problems are described. The efficiency measurements of our 
policies are performed in section 4. Finally, the main conclusions and future work are explained in 
section 5. 
 
2. SS and TS Interaction Problems  
 
In the past, several efforts [4], were applied for scheduling parallel application in dedicated clusters. 
In such an environment, the whole load was controlled by a global scheduling system that 
considered both Time and Space sharing concerns.  
Considering the TS problem, Figure 1 shows a taxonomy used for classifying several coscheduling 
methods. It is important to note that most of the past efforts were focused on explicitly coscheduled 
clusters (i.e. Gang Scheduling - GS [5] in Figure 1), where the coscheduling is guaranteed by a 
global context switch. In such a system, the parallel machine could be seen as a set of n parallel 
virtual machines (VM), forming what is known as an Ousterhout matrix [11]. The matrix provides 
information about the parallel jobs and their forming tasks, as well as mapping onto the VMs. Every 
VM is synchronized to the others by means of a global context switch. Thus, there is no interaction 
among the VMs, which also means none between the parallel tasks running in the same node. Gang 
scheduling, is an efficient coscheduling algorithm, which has mainly been used in supercomputers 
(CM-5, SGI workstations and so on). The advantage of a gang scheduler is a faster completion time, 
because the processes of a job are scheduled together. Its disadvantage is the global synchronization 
overhead needed to coordinate a set of processes and the high overhead introduced to local tasks. A 
GS coscheduling system normally uses quantums that are too large for providing interaction.  
 



 
 

Figure 1 Time Sharing Taxonomy. 

A more suitable alternative was proposed for non-dedicated clusters, where the quantum should be 
short enough for executing interactive local tasks. This kind of system, termed implicit, uses the 
communication behaviour of any parallel application for coscheduling. Among the proposed 
policies we can find the Demand based CoScheduling (DCS [12] in Figure 1) that modifies the 
parallel task priority on behalf of its communication behaviour, even causing CPU preemption of 
the current running task. Another alternative relies on Spinning [13] in the CPU after sending a 
message, waiting for a response to it. Finally, it is possible to find some hybrid approximations that 
combines characteristics from both implicit and explicit systems. One proposal, called Flexible 
CoScheduling (FCS [14] in Figure 1) applies GS to certain applications on behalf of its 
communication pattern (as an implicit method does).  
On the other hand, our TS system termed CCS [1] is based on a DCS system for managing the 
coscheduling, but enhanced with some explicit information exchange for balancing the resources 
given to the parallel tasks, while preserving the local task responsiveness. However, and due to 
CCS's particular characteristics, we came across some problems applying traditional SS techniques 
to a non-dedicated cluster managed by it. 
The main problem faced is related to the lack of an Ousterhout matrix, present in every explicit  
coscheduling schema. This is illustrated in Figure 2, that shows the cluster state for an explicit (a) 
and an implicit (b) TS system. In both cases, there is some load already running (present load), 
while a couple of jobs (  and ) are launched. Figure 2.a shows how  and  run on their own 
VMs (i.e. matrix rows 3 and 2 respectively) with no interaction with the other present load in the 
system. This behaviour assures the same computational power for every task of any job, and a 
MultiProgramming Level (MPL) of at most one application running on each VM (MPL = 1). 
Besides, it is possible to apply any SS technique to each VM, and consider an MPL of at most one.  
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Figure 2 Difference between applying SS to an explicit and dynamic (implicit) TS environment. 

In implicit coscheduling in general, and in CCS in particular, there is no such a matrix. Thus, we 
have only one VM, the whole cluster state, to which apply our SS techniques apply. As a 
consequence, the dimensionality of the SS problem is incremented because we have more than one 



application running on our single VM in the same set of nodes. This means a dynamic MPL greater 
than one (MPL > 1) across the cluster. Moreover, due to a lack of a global context switch, the tasks 
running in the same node have to compete for the CPU. Therefore, the computational power given 
to each task of a parallel job depends on the load of each node. This computational power difference 
among a job's tasks, makes job distribution a really important problem, because the coscheduling 
performance could be affected by the job placement.  
Figure 2.b depicts how  and  interact with the other present load (which could be either parallel 
or local). An example of different computational power could be seen for the  case, where some 
of its tasks have to share its CPUs with some load while others should not.  
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3. 3DBackfilling Proposal 
 
In order to tackle the problems stated above, we first define a taxonomy that lets us fix our 
proposals among the existing SS policies, and how our approach deals with a non-dedicated 
environment. Based on this, we merge policies from different classes taken from the taxonomy, to 
propose a SS approach applied to TS systems based on implicit coscheduling techniques and 
oriented to non-dedicated clusters. 
 
3.1 Our Space Sharing Taxonomy 
 
Even considering that there are some idle resources usable for parallel computation, these are finite. 
In consequence, a job cannot be executed every time it arrives at the system. In those cases where a 
job could not be executed, it has to wait in a jobs waiting queue. Considering such condition we 
have to manage those available resources and tackle several SS problems. Such problems include 
selecting the best set of nodes for executing a given job for a given cluster state, or the definition of 
a process for selecting a job for execution from the waiting queue or the relative priorities (order) 
between those waiting jobs. To deal with these concerning, we define a taxonomy (Figure 3) that let 
us face those problems separately, while it is possible to merge the solutions for each problem in a 
complete scheduling policy.  

 
 

Figure 3 Space Sharing Taxonomy. 

Assuming our taxonomy, we firstly focus on the class of policies termed Node Selection, which are 
oriented towards the selection of the best subset of nodes from the cluster to execute a given 
application. This process is done considering two main variables, the available nodes and its current 
state. For this reason, we have also called this kind of policy, 2D policies. It should be noticed that 
the defined Node Selection policies are mainly aimed at helping the coscheduling mechanism to 
perform better, and hence, to minimize the applications execution time.  
The first idea for enhancing coscheduling performance is oriented towards controlling the level of 
resources given to the parallel tasks throughout the cluster.  



This is done by not overloading a node with some local or parallel load already running. Following 
this principle, we propose a policy termed Normal that limits the resources used by the parallel 
applications across the cluster. The Normal policy launches an application on any set of nodes 
where the fact of executing it does not mean exceeding a system usage limit for some resource. This 
acceptable limit is established by the means of a social contract [15], and sets up the maximum 
parallel MPL or the percentage of memory or CPU that can be used by the parallel applications on 
each node. Besides, in order to select the best subset, this policy implements a mechanism that gives 
priority to the candidate nodes for executing an application. This prioritization mechanism is 
managed by parameters like the CPU or Memory usage in a node by the local and parallel load. It 
should be noticed, that in this prioritization process the most important parameter is the memory 
used in each node, followed by the MPL and CPU usage. This is justified because we want to avoid 
overloading the memory (i.e. avoiding paging), which is the worst problem that the TS has to face.  
Nevertheless, using the Normal policy we are still not considering the load interaction inside a node 
(Figure 2.b). Therefore, we add new characteristics to the scheduling decision process carried out 
by the Normal policy, defining a new policy, termed Uniform. This policy is characterized by the 
following: (a) it executes tasks from differently oriented applications (i.e. communication or 
computation bound) in the same node and (b) it runs applications one over another in an ordered 
manner, whenever possible. By ordering the applications we mean launching parallel applications in 
such a way that a couple of parallel applications run in the same set of nodes, trying to uniformize 
the load in every node given to a job. Figure 4.a shows how the Uniform policy executes a CPU 
bound application ( ) in the same set of nodes as a communication bound application ( ). In 
contrast, in fig. Figure 4.b a Normal policy executes the  application regardless of the load and its 
orientation. In this case, the computational power assigned to  is not the same for all of its tasks. 
However, in both cases the established system limit for every selected parameter is preserved by the 
defined policies. 
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Figure 4 Scheduling difference between the Normal and Uniform policies. 

It should be noticed that the Uniform policy could be used in two ways. The first possible usage 
imposes the (a) and (b) restrictions in a hard way, which means that if a set of nodes with the 
desired conditions is not found, the application has to wait in a queue. This usage is called Hard 
Uniform. On the other hand, it is possible to flexibilize the Uniform rules and launch an application 
in a Normal way if we do not found a Uniform set of nodes for a given application. In this case, we 
call the policy Light Uniform.  
The Node Selection problem described above only faced the job distribution problem. However 
some other aspects related to the Job policies (Figure 3) should be taken into account. Based on 
these, two main concerns have to be faced: the job order in the waiting queue and the job selection 
process for choosing one job from that queue. These kind of selection and ordering process is what 
we call more traditional space scheduling policies in dedicated environments [7].  
Among the traditional Job Selection policies (Figure 3) we have the Best Fit (BFit) approach, that 
always looks for the job that minimizes the resources left unused. Another strategy, defined by us, 
is the Just First (JFirst) policy, that being less restrictive than BFit, only tries to execute the first job 
in the queue. A separation should be made for the Backfilling [10, 7] policy, because it tries to 
execute applications by estimating the future resource usage. The most extensively analyzed 
backfilling strategy is the EASY [10] technique, and it states that any queued job can be executed 



given the fact that it will not delay the start of the job at the front of the queue. To guarantee this 
restriction, an estimation of the future cluster state has to be made. In principle, this estimation is 
based on information provided by the user about the execution time of the applications under 
certain conditions (i.e. number of needed processors and CPU or memory consumption, etc.). 
Figure 5.a shows how for a given queue, task 5 has to wait until task 3 finishes in order to start its 
execution. With a Backfilling approach (Figure 5.b), task 5 could be scheduled before task 1 
finishes, given the fact that it is expected to finish by task 3 start time. 
 

 
Figure 5  Example of a Backfilling policy. 

In addition, every time that a job arrives in the system, it has to be compared to the jobs waiting in 
the queue. This comparison process lets the system establish if the arrived job has enough priority 
to be executed at the current moment. Therefore, and to have a complete scheduling mechanism, it 
is necessary to choose a Job Order policy (Figure 3) that lets us determine the relative priorities (i.e. 
order) of the jobs in the queue. Among the traditional policies we found First-Come-First-Serve 
(FCFS), which orders the jobs according to their arrival time or SJF (LJF), that orders the 
applications in increasing (decreasing) execution time estimation. In order to minimize the number 
of different sets of merged policies to be evaluated, we fix this class of policy to FCFS for every 
evaluated schema. The FCFS choice is justified by the fact that most of the backfilling approaches 
use it as their job ordering policy. This is due to the simplicity, fairness and absence of starvation of 
FCFS. 
Finally, it should be noted that the Job Selection process is traditionally done by trying to maximize 
the resource usage, and hence, diminishing the job waiting time. By combining policies from the 
Node Selection and Job Selection classes, the turnaround time of the jobs is diminished in two 
different metrics, the execution and the waiting time. The turnaround minimization is important for 
us, due to the characteristics of our environment, where it is important to present some benefits for 
the parallel user using a non-dedicated cluster. Hence, doing this merging we not only have a 
complete scheduling proposal, but a scheduling policy that minimizes an important metric (for us) 
from different points of view. 
 
3.2 Merging Node Selection And Job Policies 
 
In order to have a complete scheduling policy that considers every concerning stated in the previous 
subsection, it is necessary to select a policy from each defined class (i.e. Node Selection, Job 
Selection and Job Ordering in Figure 3) and merge them into a complete policy. 
Considering that the Backfilling policy has been demonstrated to be one of the most effective job 
selection approaches, it is desirable for us to merge it into our complete scheduling proposal. 
However, some concerns have to be taken into account for combining a Backfilling technique with 
our 2D policies (i.e. Node Selection policies). The main problem comes from the need to estimate 
the future state of the environment. Such estimation should be applied to the whole cluster state, and 
not to a VM with an MPL of at most 1 (as in an explicit coscheduled system). Moreover, the 
estimation process has to consider the local load. Hence, to take a combined scheduling decision (i.e. 
Backfilling + 2D policy), we have to consider three variables: the available cluster nodes and their 
state (from 2D policies), and the future cluster state (from the Backfilling technique). The addition 
of this new concern (i.e. variable), raises our problem dimensionality from 2D to 3D. In Figure 6, it 



is possible to observe the variables to take into account for assuming a backfilling strategy in our 
environment. This figure also depicts a decision problem (assumes that a job J  arrives at the 
queue): which is the best thing to do, execute the  application right now in a Normal ( ) way or 
wait for a while, and execute it in a Uniform way ( )?. This is another problem that arises using a 
backfilling approach combined with our 2D policies that we have to deal with. 
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Figure 6 A 3DBackfilling example. 

Consequently, we define a pair of policies that include a backfilling mechanism and our 2D policies, 
termed 3DBackfilling techniques. The first 3D policy, called 3DBackfilling-Hard, is the 
combination of a backfilling schema with our 2D Uniform-Hard policy (  case in Figure 6). In the 
same way, we defined another policy, termed 3DBackfilling-Light, set up using a Uniform-Light 
policy (  case in Figure 6). The merging of a Backfilling technique with the Normal 2D policy is 
not considered because it is already included in the Uniform-Light approach. 
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4. Experimentation 
 
In the present section, we aim to show the evaluation of our SS proposals for dynamically 
coscheduled, non-dedicated clusters. To carry out the experimentation, we introduce the exercised 
workloads and metrics. Then, in the second subsection, we present a set of results that shows how 
our defined SS policies perform. 
 
4.1 Workloads and Metrics 
 
A necessary element for carrying out our evaluation is a way to represent a non-dedicated cluster. 
On one hand, we need several parallel applications that arrive at some intervals and, on the other 
hand, we need some local user activity. We also define some other policies to compare our proposal, 
giving a lower limit to compare with (e.g. considering an MPL = 1). Finally, we measure the system 
performance using system and user metrics from the parallel and local user point of view.  
The parallel workload was a list of 90 PVM/MPI NAS parallel applications with a size of 2, 4 or 8 
tasks that reached the system following a Poisson distribution, described in [5]. The chosen NAS 
applications and their resource consumptions are depicted in Table 1. 

 Memory (min/max) CPU (min/max) Exec. Time (min/max) 
CG 55 / 120 MB 67 / 75 % 37 / 51 sec. 
IS 70 /260 MB 58 / 69 % 40 / 205 sec. 

MG 60 / 220 MB 82 / 89 % 26 / 240 sec. 
BT 7 / 60 MB 85 / 93 % 90 / 180 sec. 

Table 1 The NAS benchmarks used. 



The parallel applications were merged so that the entire workload had a near-balanced requirement 
of computation and communication: each application comprised approximately 25% of the 
workload. It is important to note that the MPL reached for the workload depended on the system 
state at each moment, but in no case surpassed an MPL = 4. This was established in order to respect 
the social contract, which was set at 50% of the resources available for each kind of load 
(local/parallel) [3]. Besides, the system uses the whole node for the parallel applications if there is 
no local load.  
Moreover, to evaluate the influence of the relation between the application execution time and the 
application inter-arrival time, we define two type of workloads. The first one, termed SIT (Simple 
Inter-arrival Time), has an application inter-arrival time shorter than the average application 
execution time. The second, named DIT (Double Inter-arrival Time) makes the inter-arrival of the 
same order as the execution time. The case for an inter-arrival time greater than the execution time 
is not treated because in this scenario, the SS policy is almost irrelevant considering that every time 
an application arrives it finds the cluster idle.  
On the other hand, the local workload was carried out by running a synthetic benchmark. This 
allowed the CPU load, memory requirements and network traffic used by the local user to be fixed. 
To assign realistically these values, we monitored the average resources used by real users. 
According to this monitoring, we defined two local user profiles. The first profile identifies 65% of 
the users with high inter-activeness needs (called XWindows user: 15% CPU, 35% Mem., 
0,5KB/sec LAN), while the other profile distinguishes 35% of the users with web navigation needs 
(called Internet user: 20% CPU, 60% Mem., 3KB/sec. LAN). This benchmark alternates CPU 
activity with interactivity by running several system calls and different data transfers to memory. In 
order to measure the level of intrusion into the local load, our benchmark provide us with the 
system call latency. Besides, and according to the monitorized values, we loaded 25% of the nodes 
with local workload in our experiments.  
Both workloads were executed in a Linux cluster using 16 P-IV (1,8GHz) nodes with 512MB of 
memory and a fast ethernet interconnection network. In addition, a job scheduling system 
developed by us, termed CISNE [6, 16], was used to apply our proposals. This system integrates 
our TS system, CCS, with a job scheduler that lets us implement our 2D and 3D proposals easily.  
To give a lower limit to compare our proposals (Normal, Uniform-Hard, Uniform-Light, 
3DBackfilling-Hard and 3DBackfilling-Light), we defined an extra pair of policies. The first one, 
named Basic, is a Normal policy where the maximum MPL is set to 1. This policy will give us an 
idea of the benefits obtained by multiprogramming the cluster, when compared with the other 
policies that use an MPL > 1. In addition, we wanted to evaluate this multiprogramming profits, but  
from the Backfilling point of view. Hence, we defined another policy, termed 2DBackfilling, that 
merges a Normal policy with a backfilling schema, but with an MPL = 1. In such a scenario, the 
MPL is not an important variable, and therefore, the dimensionality of our problem is diminished 
(i.e. 2D-Backfilling: available nodes and its future state), even though we are considering estimation 
of the future state of the cluster. 
Table 2 shows the whole set of evaluated policies composed of one policy from each of the classes 
defined in Figure 3, and the allowed MPL in each case. 
 

 Node Selection Job Selection Job Order MPL ≤  
Basic Normal JFirst FCFS 1 
Normal Normal JFirst FCFS 4 
Uniform-Light Uniform JFirst FCFS 4 
Uniform-Hard Uniform JFirst FCFS 4 
2DBackfilling Normal Backfilling  FCFS 1 
3DBackfilling-Light Uniform Backfilling FCFS 4 
3DBackfilling-Hard Uniform Backfilling  FCFS 4 

Table 2 The whole set of evaluated policies. 

To evaluate our techniques, we first show some results comparing our proposed policies for a plain 
Linux scheduler and our CCS TS system. This allows us to analyze the influence of the SS policy 
on the coscheduling mechanism. The measures are done by means of the average execution time of 
the parallel applications for the SIT and DIT workloads. In a second step, we present results for our 



proposed SS policies considering the SIT and DIT workloads, but only for CCS. In this case we will 
show the average application waiting, execution and turnaround time, for each workload. To 
conclude the evaluation from the parallel point of view, we include some values representing the 
makespan (i.e. the turnaround of the whole workload). With this metric we evaluate how our SS 
policies perform from the system point of view. 
Finally, and to show that our integral scheduling system does not introduce an excessive load on 
each node, we use the local benchmark system call latency generated data. This way, it is possible 
to present results obtained for CCS compared with other coscheduling systems and the Linux plain 
scheduler.  
 
4.2 Results 
 
In the first part of the experimentation, we show how the proposed 2D and 3D policies could 
diminish the execution time of the parallel applications. Besides, we aim to depict the influence of 
CCS over the system performance.  
The first effect that it worth mentioning is related to the influence of the 2D policies (NORMAL, 
UNI-HARD, UNI-LIGHT) on the execution time considering the job inter-arrival time. In Figure 
7.left, where the SIT workload imposes a greater pressure on the system, it is possible to observe 
that a Uniform-Hard policy (UNI-HARD) improves the performance of a Normal policy. On the 
other hand, when the pressure over the system is lower (i.e. DIT workload, Figure 7.right), the 
performance of either 2D policy is almost the same. This confirms our assumptions about the 
importance of the job distribution considering the application execution performance, when the job 
arrival rate is elevated. Besides, combining a Uniform-Hard policy with a backfilling (3DBF-
HARD) schema, it is possible to obtain some gains for both workloads, compared with a 3DBF-
LIGHT approach. The Uniform-Hard gains are justified by an enhancement of the coscheduling 
system performance. This enhancement is obtained because it is easier for CCS to coschedule 
parallel applications when the tasks running in the same node have different CPU-I/O requirements. 
Figure 7 also shows the gains for the coscheduling system. It is important to remark that for the SIT 
workload, the load imposed on the system is greater due to the short inter-arrival time, which in turn 
increases the reachable MPL throughout the cluster. Therefore, the execution time for the SIT 
workload is, on average, higher than in the DIT case. Nevertheless, even considering a higher load, 
the performance of the CCS system compared to the plain Linux scheduler could reach 15% 
(3DFB-LIGHT policy) for the SIT workload. On the other hand, with a lower pressure over the 
waiting job queue (i.e. the DIT workload), and hence, a lower MPL across the cluster, the gains 
could reach 24% (NORMAL policy). In addition, for policies with an MPL = 1 (Basic and 2DBF), 
we also observe gains for the CCS system due to an enhancement when there is local user activity. 

 
Figure 7 Application execution time for the SIT (left) and DIT (right) workloads. 

In the Figure 8 we can observe the wait, execution and turnaround time for the evaluated SS 
policies under CCS for the SIT and DIT workloads. Figure 8.a shows that due to a short job inter-
arrival time, a policy that reduces the waiting time (backfilling) is preferable to another one that 
reduces the execution time, whenever we are scheduling with an MPL > 1. On the other hand, when 
the job execution time is similar to the job inter-arrival time (Figure 8.b), it is preferable to diminish 
the first, and hence, a backfilling (job selection) policy has almost no influence compared with the 
job allocation policy (Uniform Hard, Uniform Light and Normal policies). The inclusion of a 
backfilling policy is, nevertheless, harmless in this situation, so we can use it in both scenarios. 



Therefore, when the waiting time is the predominant factor, we want to schedule applications fast, 
with little care about the job distribution (Uniform Light or Normal policies). However, when the 
execution time is more important, we want to schedule well, which means trying to reduce the 
execution time by helping the coscheduling system with a more intelligent job distribution over the 
cluster (i.e. 3DBF-Hard).  
Considering the influence of the MPL, it is clear that using an MPL greater than one is always 
preferable over more conservative policies such as Basic or 2DBF that use an MPL = 1. This is 
because the reduction in the waiting time is greater than the increment in the execution time due to 
the MPL > 1, which results in a minimization of the turnaround time. 
 

 
Figure 8 Wait, execution and turnaround time for the evaluated SS policies under CCS.  

From the system point of view, Figure 9 presents the makespan for the SIT and DIT workloads. 
From the figure it is clear that a policy that schedules applications fast (Normal, Uni Light, 3DBF-
Hard and 3DBF-Light) is better than another that is more restrictive (Uni Hard or 2DBF). A policy 
such as Uniform Hard takes the same time for both workloads due to the restrictions imposed. 
However, if we are using resources that would otherwise be wasted, we believe that this kind of 
behaviour is tolerable if the user metrics are enhanced, which is the case for workloads like DIT. On 
the other hand, policies that merge backfilling are very suitable from the makespan point of view. 
This is true when the job inter-arrival time is short and the restrictions imposed by the node 
selection policy (Uni Light) are lighter. This scenario is depicted by the 3DBF-Light policy which 
gives us a really good performance (35% better than Basic) for the SIT workload. 
 

 
Figure 9 Workloads Makespan. 

Finally, we consider that it is fundamental to include some results concerning the system intrusion 
over the local tasks. Therefore, Figure 9 shows the performance of our CCS system in relation to 
the plain Linux scheduler and two well known communication-driven coscheduling strategies: 
Spinning and DCS coscheduling. In implicit coscheduling, a process waiting for messages spins for 
a determined time before blocking. In contrast, DCS coscheduling deals with all message arrivals 
(like CCS, but without resource balancing and local jobs preservation). It works by increasing the 



receiving task priority, even causing CPU preemption of the task being executed inside. Besides, 
they were evaluated by running the SIT parallel workload for several values of MPL (1 to 4), and 
applying a 3DBackfilling-Light SS policy. The choice of this SS policy is due to the higher load 
that it imposes on the system, and hence, a worst situation for the TS system. 
 

 
Figure 10. System call latency under the evaluated policies. 

In the figure it is possible to observe how the social contract implemented by CCS always maintains 
the response time (measured by mean of the local benchmark system call latency) under 400ms. 
This limit for the response time, established by [17, 18], is an acceptable threshold before the user 
can notice a lack of inter-activeness. Hence, our system really protects the local users from an 
excessive intrusion of the parallel applications. 
 
5. Conclusions and Future Work 
 
This work presents a set of new SS policies oriented towards dynamically-coscheduled, non-
dedicated clusters (2D and 3D policies). Using our policies and an integral scheduling system (Time 
and Space Sharing system), the paper analyzes how the performance of an implicit coscheduling 
system could be affected by the distribution policy over a non-dedicated cluster. With this aim, we 
evaluated our proposed policies, some of them complemented with a backfilling schema. From the 
combination of our proposals with a backfilling technique, a new backfilling approach for non-
dedicated clusters arises. We have called this policy 3DBackfilling, and it is also evaluated in this 
work. The policies were evaluated using a Linux cluster and considering user and system metrics, 
from the parallel and local user points of view. We found that a Uniform policy (i.e. a set of 
applications running on the same set of nodes), can enhance the coscheduling performance 
compared with other approaches. Nevertheless, in systems with a higher load, it is preferable to 
reduce the waiting time by combining such policy with a backfilling schema (3DBackflling). In 
addition, the inclusion of such a backfilling technique was shown to be very profitable in some 
cases, while it is never harmful. To resume, when the load is high it is preferable to diminish the 
waiting time (i.e. 3DBF-LIGHT), while with lower loads it is preferable to diminish the execution 
time (3DBF-HARD). Doing this we assure the minimization of the turnaround time, which is our 
main parallel user metric. 
Considering our future work we want to increase the system predictability, thus allowing us to 
establish the turnaround time within a certain range. In order to do this we will include a historical 
system that lets us estimate some parameters for the executing jobs. Besides, we will study the 
characterization of the parallel applications and the local user behaviour, and how this could be 
included into the estimating schema. 
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