
Precompilation: an alternative approach to provide

native Generic Programming support in C++

Daniel F. Gutson

GSG Argentina

daniel.gutson@motorola.com

Román L. Alarcón

GSG Argentina

roman.alarcon@motorola.com

Abstract

In C++, Generative Programming (GP)

techniques are being used to generate highly

customized and optimized products

automatically manufactured at compile-time; to

provide these functionalities increasing

compiling power is required.

This work presents an improved compilation

model for C++ by adding the ‘precompilation’

phase, leading beyond the Template Meta

Programming technique to produce constants

and conditional code.

Procedural, object-oriented and all the

remaining language features become available

to produce constants, instances, and compile-

time checks, opening, at the same time, a new

way for metadata types treatment. In addition

to that, when compiling for embedded

platforms, some calculi may be moved from

resource-critical run time to compile time,

taking advantage of the processing power of the

host platform.

A tool named PRECOMP C++ is also

presented in this work as a precompilation-

enabled C++ extension that supports GP in

standard C++ execution during compile time,

providing the ability to run metaprograms that

operate with more complex data types and

features than those supported in Template Meta

Programming, such as floating point, pointers

arithmetic, inclusion polymorphism, and

dynamic memory.

Keywords: C++, C++ Templates, Code Generation,

Generative Programming, Metacompiler, Template

Metaprogramming.

1. Introduction

One of the current trends in Computer

Science aims at facilitating the development of

applications using compile-time code

generation techniques. Through these

techniques it is possible to build software

components that can be customized before

building the final application [4].

The use of templates (Generic

Programming) in C++ provides a way to

perform static computations and generate code

at compile-time. From this fact, and almost

accidentally, the template metaprogramming

technique arose. The template

metaprogramming technique uses the compiler

as a transformational function that interprets a

template and generates other programs that are

later compiled as normal C++ code. With this

in mind, templates can be seen as

metaprograms (programs that generate other

programs), because they are “executed” by the

compiler and generate code that constitutes a

new program, according to the parameters used

during the template instantiation. By using this

technique it is possible to perform partial

evaluations such as loop unrolling [10], which

is useful to create optimized applications.

As a simple example of a template

metaprogram, let’s suppose that we want to

calculate the factorial of a number at compile-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15779869?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

time and use its output value as the input of

some function. We can write the metaprogram

as follows:

template<int n> struct Factorial
{
 enum {value = n*Factorial<n-1>::value};
};

template<> struct Factorial<0>
{
 enum {value = 1};
};

This is a simple C++ template structure

containing an enumeration which has only one

value. This value is computed by recursively

“invoking” at compile time the Factorial

metaprogram as the template is interpreted. The

first template represents the inductive step in

the recursion, and the last one acts as the base

case. To invoke this metaprogram we can write

something like this:

int main()
{
 ...
 Array a(Factorial<6>::value);
 ...
}

supposing that there is a class Array having a

constructor requiring an integer value to know

the length of the array to be constructed.

Metaprograms are taken as a base for

Generative Programming (GP), a programming

paradigm that allows the modeling of families

of highly customized and optimized software

systems, by means of the use of software

entities able to build those families

automatically under demand. Active Libraries

(AL) use generative programming, and put

together normal code and metacode

(metaprograms). ALs can generate components

and algorithms and can also specialize or

optimize code. In addition, they can interact

with other libraries to produce concrete

components and to adapt them to a particular

system [4].

In this paper we show an alternative way to

provide native GP support in C++ by

introducing metaprogram execution in a pre-

compilation phase. This new phase is separated

from the rest of the normal C++ compiling

process, and allows the simulation of

metaprogram calling by the introduction of tags

representing metaprograms added to the user

code. The new phase of pre-compilation along

the rest of the phases of the C++ compiling

process (preprocessing, compiling, optimizing

and linking) is referred here as the

macrocompiling process. In macrocompilation

a program containing metacode goes through

the following phases:

1. Preprocessing (the normal C++

preprocessor behavior);

2. Precompilation, which performs parsing

of tags, code generation and injection of

the generated code in the final code to be

compiled;

3. Compilation (normal C++ compiling-

optimizing-linking behavior).

Metaprograms inserted in the code can be

considered as part of an AL that generates

customized and optimized code according to

the target system. Once the final code is

generated by the AL, the C++ compiler

receives the output and treats it as a normal

C++ program, as if it was written “by hand”.

With this technique we can run many tasks at

compile time, avoiding them once the program

is executing. Thus, the target platform can be

focused only on those tasks that are really

important.

A brief description of some techniques and

tools that use GP is offered. Also, we describe a

simple tool called PRECOMP C++ that

implements the proposed pre-compilation phase

combining tag parsing and transformation with

template metaprogramming. There are some

case studies and a qualitative comparison

between our approach and that selected by

other tools. Also, we describe the further work

regarding this alternative concept.

Notation note: we’ll refer “precomp-C++” as

the concept described in this work, whose

compilation model includes the precompilation

phase, whereas we will refer PRECOMP C++

as the tool for implementing the concept.

2. Current implementations

There are many ways to implement GP that

are different in complexity and ability to

generate code at compile time. The most trivial

one is that related to the computation of a single

value from an expression involving only

constant values. For example, in the expression

(2+3)*5 the compiler generates the constant

value 25 before using it to assign to a variable

or to pass as argument of some function.

Second, we have the C++ preprocessor. This

preprocessor allows the programmer to control

the flow of the preprocessing activity by means

of directives such as #if and #elif, thus allowing

to format the code to be compiled and to tailor

it regarding the target platform. Macro

expansion provides another simple way to

inject code into an application by replacing

each macro calling by the text written in the

#define used to define the macro. However,

macros have fewer uses in C++, and it is

suggested not to use them unless it is necessary.

Because only the expanded form of a macro is

seen by the compiler, it’s difficult for the

compiler to report errors before the expansion

is performed [8].

As stated in the previous section, another way

to implement GP is by means of the Template

Metaprogramming technique (TMP). Templates

were designed to provide generic programming,

but accidentally it was discovered that they

allowed writing code generators and executing

static computations. Using templates facilitates

the injection and inlining of code when the

template is instantiated, thus allowing (in some

cases) optimizations such as forcing the use of

the stack instead of using dynamic memory

[10]. However, the construction of template

metaprograms is not easy and the resulting

syntax gets hard to read [10]. The programmer

needs a solid background to develop useful and

interesting metaprograms.

Through his work, Daveed Vandevoorde

proposed an extended C++ language

implementing metacode [9]. In a program using

metacode there are some functions that can be

evaluated at compile time. Also, there exist

some mechanisms of code injection (in the

scope of a class or a namespace) and a standard

library of metacode can be used. As a

limitation, none of the functions involved in the

metacode (meta-functions) can be virtual or

invoke other non meta-functions.

There are other tools such as Open C++ that

implement a mixing between the C++ language

and the Metaobject Protocol. A metaobject is

any entity that exhibits aspects of an object (the

object’s type, its interface, its methods and

attributes, and so on), and a metaobject protocol

is a generalized way to handle a group of

metaobjects as a whole. With Open C++ a

programmer can develop different translations

of the source code, define new syntax and new

object behavior [3]. With these elements at

hand, it is possible for a programmer to develop

a mechanism to introduce a phase of

precompilation. In this work, Open C++ was

considered to implement the concepts; after the

analysis a simpler alternative was selected to

demonstrate the feasibility of using existing,

well known off-the-shelf standard-compliant

C++ compilers.

Another work about the need to improve the

way C++ language is compiled is, for example,

proposed in [11], where it's possible to remove

type analysis from the compiler by introducing

a separate type system library that is treated by

the compiler as source code. The library is

used along with the user code as input to the

phase of lexical and syntax analysis of the

compiler. The compiler's front-end inserts calls

to this library when translating the source code.

This shows that the idea of separating (or

adding) some activities from (or

Macrocompilation

preprocessing

precompilation

parsing

compilation+linkage

execution

injection

compilation+linkage

to) the compiling process is an important and

useful approach.

There also exists a metacompiler, called FOG

(Flexible Object Generator) [12], that offers an

alternative to the C++ preprocessor. FOG

extends C++ doing the C++ preprocessor

redundant (that is, it is no necessary to use it)

by providing a C++ dialect in which it is

possible to write metaprograms. In this dialect,

all of the macros are replaced by meta-variables

and meta-functions, and the preprocessor

statements are replaced by meta-statements.

3. Precomp-C++ implementation

The main goal of the compilation model

described in this paper (referred as

macrocompilation) is to provide the ability of

writing metacode in standard C++ language,

including the ability of invoking user and

standard libraries. A secondary goal is to use

the host system (where the macrocompilation

occurs) to execute the metacode. Lastly, a third

goal of this work is to keep the syntax standard-

C++ compliant.

In order to achieve these goals, the

macrocompilation herein described includes a

phase named precompilation, after the

preprocessing and before the compilation.

The basic idea of the precompilation phase is to

extract the metaprograms contained in tags,

compile them using a standard C++ compiler,

execute them, and inject the output back in the

original code. The effect is seen as replacing

the tags by their evaluation results.

To do so, the precompilation phase requires

the following components:

• a simple parser

• a standard C++ compiler

• a system caller for executing the code

• a results injector

3.1 Syntax Specialization

In order to identify the code to extract and

execute (and which results will be injected back

into the original code) we propose to identify a

specific tag which looks exactly like a standard

template-function call, which will be referred as

the PRECOMP-TAG. The C++ declaration of

the PRECOMP-TAG is:

template <class T> T PRECOMP(T expression);

We define the ‘expression associated to a

PRECOMP-TAG’ to the PRECOMP-TAG

function parameter. Similarly, we define the

‘type associated to a PRECOMP-TAG’ to its

template parameter. We also define the

‘metaprogram M of the program P’ to the set of

statements contained in the PRECOMP-TAG

calls present in program P. We will use the

following notation:

M = metaprogram(P)

According to the third goal mentioned early in

this section, M shall be standard C++

compliant.

3.2 Semantic

Given a program P, the semantic that the

precompilation phase carries out is to compile

and execute the metaprogram(P), using a

standard C++ compiler and the host system

respectively; finally, the precompilation phase

replaces each PRECOMP-TAG by the actual

execution result of its associated statement.

The semantic is achieved by the components

mentioned above, which have the following

roles:

• The role of the precompilation parser is to

obtain the metaprogram, by identifying

the PRECOMP-TAG calls, extracting both

their associated expressions and their

associated types.

• The role of the standard C++ compiler

(within the precompilation context) is to

compile the metaprogram extracted by the

parser, and generate an executable (named

‘temporal-executable‘).

• The role of the system caller is to execute

the temporal-executable, using the host

system

• The role of the results injector is to get the

results generated by the execution of the

metaprogram, and replace with them each

PRECOMP-TAG which they were

obtained from, generating a new standard

C++ code (named ‘transformed-code‘)

Parsing errors detected by the precompilation

parser, compilation errors detected while

executing the standard C++ compiler, and

execution errors (or thrown exceptions)

occurred during execution of the temporal-

executable will be called macrocompilation

errors. This set of situations act as an early

fault barrier that allows safe checking before

run time.

During the precompilation phase, the

following actions may take place:

• calculate constants

• interact with I/O streams (such as reading

and parsing external files)

• check conditions and throw exceptions

(which will be seen as macro compilation

errors)

• invoke external APIs

It’s important to note that any of these actions

can be coded in standard C++ code, optionally

involving Template Meta Programming code.

Since the metacode is actually executed in the

host system, the following features are

available:

1. STL and stdlib

2. Dynamic memory

3. Global instances and singletons

4. Polymorphism (parametric and inclusion)

5. Exception handling, RTTI

6. Template Meta Programming

7. User libraries

8. Standard input/output

Additionally, the PRECOMP execution limits

are the same as the host system limits,

including performance and resources.

3.3 The PRECOMP C++ prototype

We developed an implementation tool named

PRECOMP C++ to prove the

macrocompilation concept. The PRECOMP

C++ generates instances of data during

precompilation-time, which will become

constants in run-time. Additionally, the

PRECOMP C++ catches any exceptions thrown

by the metaprogram, reporting them as

macrocompilation errors.

The PRECOMP C++ implements the

macrocompilation model by using the

following components:

• a script batch file to invoke the phases in

a sequenced manner, providing the

macrocompilation front-end

• a handwritten parser as the

precompilation parser (written in C++)

• three commercial compilers (Intel® C++

Compiler, Microsoft® Visual C++ Toolkit

2003, and Comeau C/C++TM Compiler) to

alternately play the role of the standard

compiler (being the host and target

systems the same)

• a C++ library to generate results with the

metaprogram (referred as ‘precomp-time

library’), acting as the precompilation-

time part of the results injector

• a C++ library with inlined functions to

embed the results (referred as ‘compile-

time library’), acting as the compile time

part of the results injector.

Usage:

According to the syntax specialization

described before, the user encloses the

expressions to be evaluated during

precompilation time by providing the

PRECOMP-TAGs, in the following syntax:

PRECOMP<type>(expr)

where expr is the expression associated to the

PRECOMP-TAG, and can be any C++-valid

expression (including a function call), and type

is the return type of expr.

The whole compilation process is led by the

script, which invokes the parser and the

standard C++ compiler. The parser recognizes

all the PRECOMP-TAGs, and generates a

temporary C++ file containing the metaprogram

of the Input, and a temporary C++ header file.

Next, the script invokes the host standard

C++ compiler for compiling the generated

temporary code together with the precomp-

time library and any user-defined library, to

generate a temporal executable.

Then, the script runs the temporal executable,

which generates a C++ header containing the

results of the PRECOMP-TAGs associated

expressions. This C++ header file with the

generated C++ file will constitute the

transformed code.

Finally, the script invokes the (target)

standard C++ compiler again with the

transformed code plus the compile-time

library for compiling the final object file,

which embeds the results generated during

precompilation-time.

When cross-compiling for a different

platform, the first compiler is the compiler for

the host platform, whereas the second is the

cross-compiler.

During the whole macrocompilation process,

the following events may occur:

1. a parsing error, from the parser

2. a compiler error when compiling the

intermediate files

3. a run-time error when executing the

temporal executable (such as an exception

caught)

4. a compiler error when compiling the

transformed code

4. Case Studies

In order to evaluate the abilities of the

precompilation phase, the following cases were

analyzed using the PRECOMP C++ tool:

a. calculus of constants

b. embedding external raw data files

c. user-defined literals

d. compile-time memory allocation

e. others: Finite State Machines (FSMs) and

Graphic User Interfaces (GUIs).

These examples are used to illustrate the

concept that, by itself, it is not limited to the

presented cases. The tool was built as an

instrument to put the concept into practice and

can be easily extended.

A) Calculus of constants

Constant values calculus requires both the

source code to perform the calculation, memory

for temporary variables, and the time for the

process itself. In tight-equipped systems (such

as many embedded systems), this process is not

possible to be performed in run-time. Two

examples are exposed here: the calculus of PI,

and the calculus of a number raised to a power:

const double PI = PRECOMP<double>(atn(1)*4);
const char str[PRECOMP<int>(pow(3,4))];

In the first example, the constant value of PI

is obtained by invoking the ATN function and

the * operator, as the PRECOMP expression.

In the second example, the result of the

expression 3
4
 is used as the dimension of the

‘str’ array. Note that ANSI/ISO C++ forbids the

declaration of a static array dimensioned by a

non-const expression [7].

B) Embedding external raw data files

When data is stored externally to the C++

source file, the application may include the data

statically (during compile time), or dynamically

(by loading it during run time from an external

file).

The usual way of embedding data statically

into a source file is through constant arrays

initialized with braces, such as

const int c[]={ 0x123, 0x321, 0x333, 0x222};

This involves importing the external data and

performing a C++-like syntax conversion,

either manually or with a tool.

The following two examples show how

PRECOMP can be used to embed external raw

data:

Example 1: the text file. Let’s assume that a

command-line console application has to show

a help text when it receives the wrong number

of arguments. Such text is maintained

externally in a free-text file named ‘help.txt’.

The PRECOMP C++ environment has the

ability of storing dynamically loaded

precompilation-time data as static constant

compile-time data. The example can be solved

by loading the text file into a

PRECOMP_STRING (which is a specialization

of the STL’s string):

#include <string>
#include <fstream>
#include “precomp_types.h”
using namespace std;

PRECOMP_STRING loadFile(const char* file)
{
 ifstream f;
 string line, ret;
 f.open(file);
 if(f.bad()) throw “File not found!”;
 while (getline(f,line))
 ret += line;
 return ret;
}

void showHelp()
{
 const PRECOMP_STRING help =
 PRECOMP<PRECOMP_STRING>(
 loadFile(“help.txt”));

 cout << help;
}

Three important observations can be made in

this example: the first is that the ‘loadFile’

function would be executed during run-time in

a standard C++ file; however, such execution

takes place in precompilation time due to the

PRECOMP<>() statement. The second is that if

the “help.txt” file is not found, an exception is

thrown during precompilation time, which will

be seen as a MACROCOMPILER ERROR.

The PRECOMP C++ tool catches all the

exception types (instead of showing up during

run-time), and has specific behavior for some of

them; in the case of a const char*, the

PRECOMP C++ shows the text and stops the

execution of the temporal generated

application. Lastly, the PRECOMP C++

provides class wrappers for some of the

standard containers (i.e. string, vector, map) in

order to encapsulate the constant storage of

dynamically-allocated content. Additionally,

the PRECOMP C++ defines an interface for

any data type that contains pointers, so any

user-defined class can be properly used for

precompilation time processing. Specifically,

any type provided in the PRECOMP-TAG that

is a model of the PRECOMP template concept

can be used in the precompilation process.

The PRECOMP template concept implies:

• The casting-to-unsigned integral operator

• The casting-to-void pointer operator

In fact, the PRECOMP_STRING wrapper just

provides those operators by returning the size

of the string, and the address of the first

character, respectively.

Example 2: embedding an image stored as a

graphic format file. Another usage not detailed

in this publication can be loading a graphic file

(e.g. a GIF file) from a file during

precompilation time. In such case, both file

access and format consistency can be checked

before run time.

C) User defined literals

There are several generic-length integer C++

library implementations. However, there is a

performance bottleneck to enter literals since

they have to be parsed. For example, the

number

12,345,678,901,234,567,890

does not fit in a 32-bits integer. Many big-

integer libraries, such as GMP [6], use strings

to assign values. The latter number should be

assigned in GMP with the following statement:

e=mpz_set_str(R, “12345678901234567890”, 0);

This statement parses the string, determines the

base, and assigns it to the big-integer R. The

error code is returned to e. However, the whole

process could take place during precompilation-

time, including the validation, where a parsing

error (i.e. the string contains an invalid

character) would be reported as a

MACROCOMPILER ERROR. Additionally,

new literal prefixes can be parsed, such as ‘0b’

for binary integer literals. Example:

int literal(const char* lit)
{
 /* parse lit */
}
const int binInt =
 PRECOMP<int>(literal(“0b1001”));

The literal function parses a string and

determines its base from the prefix. It may

perform a validation (for example, in the case

of a binary base, all digits shall be either 0 or

1). In the case of an invalid digit, an exception

is thrown.

D) Compile time memory allocation

Memory arrangement and organization must

take place during design-time for some

embedded systems, when there is no memory

management unit or operating system. This

involves a static pre-planned data organization,

and therefore no memory fragmentation.

One technique of implementing this

organization is using a structure and placing all

the address-fixed data as fields of the structure,

to finally place a unique instance of the

structure in a known position. This requires the

planning and maintenance of the structure

during design and coding.

The PRECOMP solution is to ‘allocate’ the

data space during precompilation time, and

track all the allocations to become fixed-located

during compile time. Moreover, if the

PRECOMP allocation exceeds the (future)

available run-time memory, an exception can

be thrown alerting that it’ll not fit in the

memory.

As an example, let’s suppose that there are 4

elements that need fixed-allocation, a runtime

RAM size of 64 bytes, and that the data shall

start at address 0x010. The 4 elements are: an

array of 4 16-bit integers, an array of 20

characters, one 32-bit float, and a 12-bytes

length structure:

int element1[4];
char element2[20];
float element3;
struct Type element4;

According to the technique described above,

the four elements should be enclosed in a

structure.

The proposed way of performing this in

PRECOMP C++, could be defining a

‘precomp_alloc’ function and a global precomp

instance tracking the latest pointer:

size_t lastPos = 0;
char* const initPos = (char*)0x10;
const size_t RAM_size = 64;
template <class T>
void* precomp_alloc(size_t size = 1)
{
 void* const ret = initPos + lastPos;
 lastPos += size*sizeof(T);
 if(ret > initPos+RAM_size)
 throw bad_alloc();
 return ret;

}

//define the ‘At’ macro:
#define At(instance, type, address) \
 type& instance = \
 reinterpret_cast<type>(address)

At(element1, int,
 PRECOMP<int*>(precomp_alloc<int>(4)));

At(element2, char,
 PRECOMP<char*>(precomp_alloc<char>(20)));

At(element3, float,
 PRECOMP<float*>(precomp_alloc<float>()));

At(element4, Type,
 PRECOMP<Type*>(precomp_alloc<Type>()));

The ‘At’ macro is a tool to place a variable in a

given address, and it’s defined here just to

clarify the code.

A better C++-like syntax could be reached by

overloading the ‘new’ operator, but such case is

not exposed here due to sizing reasons.

E) others: FSMs, GUIs

This last case study is just mentioned but not

deeply analyzed here, in order to consider the

precompilation phase to instantiate Finite States

Machines (FSMs), and Graphic User Interfaces

(GUIs) from external editors.

An FSM can be described by the State

Transition Table, which contains the

information that given a stimulus, what

transition function shall be invoked and the

next state to transition to.

This information could be described in an

external data file (i.e. generated from a tool)

and then it can be read and parsed during

precompilation in order to generate

instantiation information for state-classes (as

described in Gamma [5]).

Similarly, information regarding GUI controls

can be provided in a separate file, which can be

read during precompilation in order to

instantiate GUI classes, instead of generating

code with an external tool.

5. Qualitative Comparison

The TMP technique can be used to calculate

values during compile-time; however, resources

are limited to the capabilities of the compiler

and only the Functional-programming paradigm

is allowed. On the other hand, the preprocessor

cannot use pointers, or dynamic memory or

execute I/O stream operations. The

preprocessor does not respect scope; therefore

macros can accidentally and sometimes silently

replace code. In practice, preprocessor

metaprogramming is far simpler and more

portable than template metaprogramming [2].

It turns out that the current ways of

implementing GP have some weaknesses. A

comparative table summarizes some of the

features that are or aren’t present in the other

techniques mentioned before:

 Tools

Features P

re
p
ro

ce
ss

o
r

T
M

P

P
R
E
C
O
M
P

C
+
+

Allows Reflection NO NO NO(*)

Allows Debugging NO NO YES

Allows Compile

time assertions
YES YES YES

Readability of

code?
Sometimes

Only in

trivial cases
YES

Easy to use YES
Only in

trivial cases
YES

Is C++ syntactic

compliant?
YES YES YES

Static / dynamic

language
symmetry

NO NO YES

Can emit friendly
diagnostic

messages

YES NO YES

Can use I/O
streams

NO NO YES

Can use Pointers NO NO YES

Can use Dynamic

Memory
NO NO YES

Can compute non

integral
expressions

NO NO YES

(*) planned for future evolutions. Refer to the Future Work section.

In a two level language it is important to

achieve symmetry between its static and

dynamic aspects [9], that is, execute tasks at

compile time or execution time without noting

any difference. By taking Veldhuizen’s view of

C++ as a two-level language, this work

homogenizes the dynamic and static levels into

a seamless syntactical and functional

unification. Another important thing this work

provides is the notion of compile time

assertions, which are assertions that are

evaluated during the compilation process. This

kind of assertions is useful when it is necessary

to perform static checking to prevent errors

during the execution of the application [1].

Also, the use of non-integral types is conflicting

in both preprocessor and TMP, but is simple in

precomp-C++. For example, given

#define PI 3.14

the preprocessor statement,

#if PI > 3

becomes a preprocessor error. Similarly, given

a template metaprogram to calculate the cosine,

templates cannot accept floating points as non-

type template parameters; for example these

statements are invalid:

Cos<1.25>::value
Cos<getValue()>::value

because the instantiation of templates with non

integral values or with unknown values at

compile time (as in the case of te getValue

function call) is not allowed. In contrast, these

features are available in precomp-C++: non-

integral values and function calls can be used

within each PRECOMP-TAGs and all of the

functions invoked exist in standard libraries

such as stdlib, whereas in TMP we need to

create these functions (as templates) to use

them in template instantiation.

7. Future Work

This paper currently presents a mechanism to

generate constant data during compilation time.

Two evolutions will be addressed:

• types generation

• statements and flow control generation

A C++ template structure can be thought of a

function that receives data types as parameters,

and returns a data type. The ‘types generation’

evolution will address the ability of generating

types as regular C++ templates do, as well as

generating type in an object-oriented manner,

that is, objects whose methods receive data

types as parameters and return data types, to be

evaluated in precompilation time. Some

reflection features will be present, by both

enhancing the typeid operator (imperative-like),

and by pattern matching (functional-like).

Similarly, the statements and flow control

generation evolution will provide the ability to

consider statements as precompilation-time

objects, and the ability to define functions that

accept statement-objects as parameters, and

return (transformed) statement-objects, as well

as objects whose methods accept statement-

objects as parameters and return statement-

objects. Reflection will be available for

statement-objects as well, following the

analogy of a statementid operator returning a

statement_info class.

8. Conclusions

This work exposes the benefits of adding the

precompilation phase, over the current

compilation model. Comparison between

current techniques (such as TMP) and the

precompilation-enabled C++ is provided,

including constants calculus, early checking

and data importing during precompilation time.

While TMP requires re-writing all the

numeric libraries in a functional style (with

limitations on precision and compiler abilities),

PRECOMP C++ just invokes them as any

regular C++ program does.

Finally, an implementation is provided in

order to show that current compilers have all

they need to implement the precompilation

phase, since no new syntax is required, but just

the ability to execute a generated binary using

the system.

Both embedded systems and system

programming can be benefited from the

proposed enhanced compilation model.

9. References

[1] Alexandrescu, Andrei, “Modern C++ Design: Generic

Programming and Design Patterns Applied”. Addison Wesley,

Reading, Massachusetts, 2001.

[2] Boost libraries, http://www.boost.org, Known Problems of

the C/C++ Preprocessor.

[3] Chiba, Shigeru, “A Metaobject Protocol for {C++}”,

ACM Conference on Object-Oriented Programming Systems,

Languages, and Applications (OOPSLA'95), SIGPLAN Notices

30(10), Austin, Texas, USA, pp 285-299, 1995.

[4] Czarnecki, Krzysztof, U. Eisenecker, R. Glück, D.

Vandevoorde, and T. Veldhuizen, “Generative programming

and active libraries (extended abstract)”. In Generic

Programming. Proceedings (M. Jazayeri, D. Musser, and R.

Loos, eds.), pp. 25-39. Volume 1766 of Lecture Notes in

Computer Science. Springer-Verlag. 2000.

[5] Gamma, Erich, R. Halm, R. Johnson, J.Vlissides, “Design

Patterns: elements of reusable object-oriented software”,

Addison Wesley, 1995.

[6] GNU MP Bignum Library, http://www.swox.com/gmp/

[7] INCITS ISO IEC 14882-1998 International

Standard, Programming Languages - C++, 8.3.4 § 1

[8] Stroustrup, Bjarne, “The C++ programming language

Special Edition”, Addison Wesley Publishing Co., Reading,

Mass., 2000, pp. 160-161.

[9] Vandevoorde, Daveed, “Reflective Metaprogramming in

C++”, N1471/03-0054, JTC1.22.32 Programming Language

C++ Evolution Working Group, ISO/IEC IS 14882:2003(E),

2003.

[10] Veldhuizen, Todd, “C++ templates as partial

evaluation”, ACMSIGPLAN Workshop on Partial Evaluation

and Semantics-Based Program Manipulation (PEPM'98), ACM

Press, San Antonio, TX, USA, 1999.

[11] Veldhuizen, Todd, “Five Compilation Models for C++

Templates”, First Workshop on {C++} Template Programming,

Erfurt, Germany, 2000.

[12] E. D. Willink, V. B. Muchnick. “An Object-Oriented

Preprocessor Fit for C++”, IEEE Proc. on Software, 147(2),

2000.

