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Abstract 
 

In C++, Generative Programming (GP) 

techniques are being used to generate highly 

customized and optimized products 

automatically manufactured at compile-time; to 

provide these functionalities increasing 

compiling power is required. 

 

This work presents an improved compilation 

model for C++ by adding the ‘precompilation’ 

phase, leading beyond the Template Meta 

Programming technique to produce constants 

and conditional code. 

 

Procedural, object-oriented and all the 

remaining language features become available 

to produce constants, instances, and compile-

time checks, opening, at the same time, a new 

way for metadata types treatment. In addition 

to that, when compiling for embedded 

platforms, some calculi may be moved from 

resource-critical run time to compile time, 

taking advantage of the processing power of the 

host platform.  

 

A tool named PRECOMP C++ is also 

presented in this work as a precompilation-

enabled C++ extension that supports GP in 

standard C++ execution during compile time, 

providing the ability to run metaprograms that 

operate with more complex data types and 

features than those supported in Template Meta 

Programming, such as floating point, pointers 

arithmetic, inclusion polymorphism, and 

dynamic memory.  

 
Keywords: C++, C++ Templates, Code Generation, 

Generative Programming, Metacompiler, Template 

Metaprogramming. 

 

1. Introduction 
 

One of the current trends in Computer 

Science aims at facilitating the development of 

applications using compile-time code 

generation techniques. Through these 

techniques it is possible to build software 

components that can be customized before 

building the final application [4].  

The use of templates (Generic 

Programming) in C++ provides a way to 

perform static computations and generate code 

at compile-time. From this fact, and almost 

accidentally, the template metaprogramming 

technique arose. The template 

metaprogramming technique uses the compiler 

as a transformational function that interprets a 

template and generates other programs that are 

later compiled as normal C++ code. With this 

in mind, templates can be seen as 

metaprograms (programs that generate other 

programs), because they are “executed” by the 

compiler and generate code that constitutes a 

new program, according to the parameters used 

during the template instantiation. By using this 

technique it is possible to perform partial 

evaluations such as loop unrolling [10], which 

is useful to create optimized applications.  

As a simple example of a template 

metaprogram, let’s suppose that we want to 

calculate the factorial of a number at compile-
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time and use its output value as the input of 

some function. We can write the metaprogram 

as follows: 
 
 
 
template<int n> struct Factorial 
{ 
  enum {value = n*Factorial<n-1>::value}; 
}; 
 
template<> struct Factorial<0> 
{ 
  enum {value = 1}; 
}; 
 

This is a simple C++ template structure 

containing an enumeration which has only one 

value. This value is computed by recursively 

“invoking” at compile time the Factorial 

metaprogram as the template is interpreted. The 

first template represents the inductive step in 

the recursion, and the last one acts as the base 

case. To invoke this metaprogram we can write 

something like this: 
 

int main() 
{ 
  ... 
  Array a(Factorial<6>::value);    
  ... 
} 

 

supposing that there is a class Array having a 

constructor requiring an integer value to know 

the length of the array to be constructed. 

Metaprograms are taken as a base for 

Generative Programming (GP), a programming 

paradigm that allows the modeling of families 

of highly customized and optimized software 

systems, by means of the use of software 

entities able to build those families 

automatically under demand. Active Libraries 

(AL) use generative programming, and put 

together normal code and metacode 

(metaprograms). ALs can generate components 

and algorithms and can also specialize or 

optimize code. In addition, they can interact 

with other libraries to produce concrete 

components and to adapt them to a particular 

system [4]. 

In this paper we show an alternative way to 

provide native GP support in C++ by 

introducing metaprogram execution in a pre-

compilation phase. This new phase is separated 

from the rest of the normal C++ compiling 

process, and allows the simulation of 

metaprogram calling by the introduction of tags 

representing metaprograms added to the user 

code. The new phase of pre-compilation along 

the rest of the phases of the C++ compiling 

process (preprocessing, compiling, optimizing 

and linking) is referred here as the 

macrocompiling process. In macrocompilation 

a program containing metacode goes through 

the following phases: 

  

1. Preprocessing (the normal C++ 

preprocessor behavior); 

2. Precompilation, which performs parsing 

of tags, code generation and injection of 

the generated code in the final code to be 

compiled; 

3. Compilation (normal C++ compiling-

optimizing-linking behavior).  
 

Metaprograms inserted in the code can be 

considered as part of an AL that generates 

customized and optimized code according to 

the target system. Once the final code is 

generated by the AL, the C++ compiler 

receives the output and treats it as a normal 

C++ program, as if it was written “by hand”. 

With this technique we can run many tasks at 

compile time, avoiding them once the program 

is executing. Thus, the target platform can be 

focused only on those tasks that are really 

important. 

A brief description of some techniques and 

tools that use GP is offered. Also, we describe a 

simple tool called PRECOMP C++ that 

implements the proposed pre-compilation phase 

combining tag parsing and transformation with 

template metaprogramming. There are some 

case studies and a qualitative comparison 

between our approach and that selected by 

other tools. Also, we describe the further work 

regarding this alternative concept. 



Notation note: we’ll refer “precomp-C++” as 

the concept described in this work, whose 

compilation model includes the precompilation 

phase, whereas we will refer PRECOMP C++ 

as the tool for implementing the concept. 

 

2. Current implementations 
 

There are many ways to implement GP that 

are different in complexity and ability to 

generate code at compile time. The most trivial 

one is that related to the computation of a single 

value from an expression involving only 

constant values. For example, in the expression 

(2+3)*5 the compiler generates the constant 

value 25 before using it to assign to a variable 

or to pass as argument of some function. 

Second, we have the C++ preprocessor. This 

preprocessor allows the programmer to control 

the flow of the preprocessing activity by means 

of directives such as #if and #elif, thus allowing 

to format the code to be compiled and to tailor 

it regarding the target platform. Macro 

expansion provides another simple way to 

inject code into an application by replacing 

each macro calling by the text written in the 

#define used to define the macro. However, 

macros have fewer uses in C++, and it is 

suggested not to use them unless it is necessary. 

Because only the expanded form of a macro is 

seen by the compiler, it’s difficult for the 

compiler to report errors before the expansion 

is performed [8].  

As stated in the previous section, another way 

to implement GP is by means of the Template 

Metaprogramming technique (TMP). Templates 

were designed to provide generic programming, 

but accidentally it was discovered that they 

allowed writing code generators and executing 

static computations. Using templates facilitates 

the injection and inlining of code when the 

template is instantiated, thus allowing (in some 

cases) optimizations such as forcing the use of 

the stack instead of using dynamic memory 

[10]. However, the construction of template 

metaprograms is not easy and the resulting 

syntax gets hard to read [10]. The programmer 

needs a solid background to develop useful and 

interesting metaprograms. 

Through his work, Daveed Vandevoorde 

proposed an extended C++ language 

implementing metacode [9]. In a program using 

metacode there are some functions that can be 

evaluated at compile time. Also, there exist 

some mechanisms of code injection (in the 

scope of a class or a namespace) and a standard 

library of metacode can be used. As a 

limitation, none of the functions involved in the 

metacode (meta-functions) can be virtual or 

invoke other non meta-functions. 

There are other tools such as Open C++ that 

implement a mixing between the C++ language 

and the Metaobject Protocol. A metaobject is 

any entity that exhibits aspects of an object (the 

object’s type, its interface, its methods and 

attributes, and so on), and a metaobject protocol 

is a generalized way to handle a group of 

metaobjects as a whole. With Open C++ a 

programmer can develop different translations 

of the source code, define new syntax and new 

object behavior [3]. With these elements at 

hand, it is possible for a programmer to develop 

a mechanism to introduce a phase of 

precompilation. In this work, Open C++ was 

considered to implement the concepts; after the 

analysis a simpler alternative was selected to 

demonstrate the feasibility of using existing, 

well known off-the-shelf standard-compliant 

C++ compilers.  

Another work about the need to improve the 

way C++ language is compiled is, for example, 

proposed in [11], where it's possible to remove 

type analysis from the compiler by introducing 

a separate type system library that is treated by 

the compiler as source code. The library is 

used along with the user code as input to the 

phase of lexical and syntax analysis of the 

compiler. The compiler's front-end inserts calls 

to this library when translating the source code. 

This shows that the idea of separating (or 

adding) some activities from (or 
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to) the compiling process is an important and 

useful approach. 

There also exists a metacompiler, called FOG 

(Flexible Object Generator) [12], that offers an 

alternative to the C++ preprocessor. FOG 

extends C++ doing the C++ preprocessor 

redundant (that is, it is no necessary to use it) 

by providing a C++ dialect in which it is 

possible to write metaprograms. In this dialect, 

all of the macros are replaced by meta-variables 

and meta-functions, and the preprocessor 

statements are replaced by meta-statements. 
 

3. Precomp-C++ implementation 
 

The main goal of the compilation model 

described in this paper (referred as 

macrocompilation) is to provide the ability of 

writing metacode in standard C++ language, 

including the ability of invoking user and 

standard libraries. A secondary goal is to use 

the host system (where the macrocompilation 

occurs) to execute the metacode. Lastly, a third 

goal of this work is to keep the syntax standard-

C++ compliant. 

In order to achieve these goals, the 

macrocompilation herein described includes a 

phase named precompilation, after the 

preprocessing and before the compilation. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The basic idea of the precompilation phase is to 

extract the metaprograms contained in tags, 

compile them using a standard C++ compiler, 

execute them, and inject the output back in the 

original code. The effect is seen as replacing 

the tags by their evaluation results. 

To do so, the precompilation phase requires 

the following components: 

 

• a simple parser 

• a standard C++ compiler 

• a system caller for executing the code 

• a results injector 
 

3.1 Syntax Specialization 
 

In order to identify the code to extract and 

execute (and which results will be injected back 

into the original code) we propose to identify a 

specific tag which looks exactly like a standard 

template-function call, which will be referred as 

the PRECOMP-TAG.  The C++ declaration of 

the PRECOMP-TAG is: 
 
template <class T> T PRECOMP(T expression); 

 

We define the ‘expression associated to a 

PRECOMP-TAG’ to the PRECOMP-TAG 

function parameter. Similarly, we define the 

‘type associated to a PRECOMP-TAG’ to its 

template parameter. We also define the 

‘metaprogram M of the program P’ to the set of 

statements contained in the PRECOMP-TAG 

calls present in program P. We will use the 

following notation: 
 

M = metaprogram(P) 

 

According to the third goal mentioned early in 

this section, M shall be standard C++ 

compliant. 

 

3.2 Semantic 
 

Given a program P, the semantic that the 

precompilation phase carries out is to compile 

and execute the metaprogram(P), using a 

standard C++ compiler and the host system 

respectively; finally, the precompilation phase 



replaces each PRECOMP-TAG by the actual 

execution result of its associated statement. 

The semantic is achieved by the components 

mentioned above, which have the following 

roles: 

 

• The role of the precompilation parser is to 

obtain the metaprogram, by identifying 

the PRECOMP-TAG calls, extracting both 

their associated expressions and their 

associated types. 

• The role of the standard C++ compiler 

(within the precompilation context) is to 

compile the metaprogram extracted by the 

parser, and generate an executable (named 

‘temporal-executable‘). 

• The role of the system caller is to execute 

the temporal-executable, using the host 

system 

• The role of the results injector is to get the 

results generated by the execution of the 

metaprogram, and replace with them each 

PRECOMP-TAG which they were 

obtained from, generating a new standard 

C++ code (named ‘transformed-code‘) 

 

Parsing errors detected by the precompilation 

parser, compilation errors detected while 

executing the standard C++ compiler, and 

execution errors (or thrown exceptions) 

occurred during execution of the temporal-

executable will be called macrocompilation 

errors. This set of situations act as an early 

fault barrier that allows safe checking before 

run time. 

During the precompilation phase, the 

following actions may take place: 

 

• calculate constants 

• interact with I/O streams (such as reading 

and parsing external files) 

• check conditions and throw exceptions 

(which will be seen as macro compilation 

errors) 

• invoke external APIs 

It’s important to note that any of these actions 

can be coded in standard C++ code, optionally 

involving Template Meta Programming code. 

Since the metacode is actually executed in the 

host system, the following features are 

available: 

 

1. STL and stdlib 

2. Dynamic memory 

3. Global instances and singletons 

4. Polymorphism (parametric and inclusion) 

5. Exception handling, RTTI 

6. Template Meta Programming 

7. User libraries 

8. Standard input/output 

 

Additionally, the PRECOMP execution limits 

are the same as the host system limits, 

including performance and resources. 

 

3.3 The PRECOMP C++ prototype 
 

We developed an implementation tool named 

PRECOMP C++ to prove the 

macrocompilation concept. The PRECOMP 

C++ generates instances of data during 

precompilation-time, which will become 

constants in run-time. Additionally, the 

PRECOMP C++ catches any exceptions thrown 

by the metaprogram, reporting them as 

macrocompilation errors. 

The PRECOMP C++ implements the 

macrocompilation model by using the 

following components: 

 

• a script batch file to invoke the phases in 

a sequenced manner, providing the 

macrocompilation front-end 

• a handwritten parser as the 

precompilation parser (written in C++) 

• three commercial compilers (Intel® C++ 

Compiler, Microsoft® Visual C++ Toolkit 

2003, and Comeau C/C++TM Compiler) to 

alternately play the role of the standard 

compiler (being the host and target 



systems the same) 

• a C++ library to generate results with the 

metaprogram (referred as ‘precomp-time 

library’), acting as the precompilation-

time part of the results injector 

• a C++ library with inlined functions to 

embed the results (referred as ‘compile-

time library’), acting as the  compile time 

part of the results injector. 

 

Usage: 

 

 

According to the syntax specialization 

described before, the user encloses the 

expressions to be evaluated during 

precompilation time by providing the 

PRECOMP-TAGs, in the following syntax: 
 

PRECOMP<type>(expr) 
 

where expr is the expression associated to the 

PRECOMP-TAG, and can be any C++-valid 

expression (including a function call), and type 

is the return type of expr. 

 

The whole compilation process is led by the 

script, which invokes the parser and the 

standard C++ compiler. The parser recognizes 

all the PRECOMP-TAGs, and generates a 

temporary C++ file containing the metaprogram 

of the Input, and a temporary C++ header file.  

Next, the script invokes the host standard 

C++ compiler for compiling the generated 

temporary code together with the precomp-

time library and any user-defined   library, to 

generate a temporal executable.  

Then, the script runs the temporal executable, 

which generates a C++ header containing the 

results of the PRECOMP-TAGs associated 

expressions. This C++ header file with the 

generated C++ file will constitute the 

transformed code.  

Finally, the script invokes the (target) 

standard C++ compiler again with the 

transformed code plus the compile-time 

library for compiling the final object file, 

which embeds the results generated during 

precompilation-time. 

When cross-compiling for a different 

platform, the first compiler is the compiler for 

the host platform, whereas the second is the 

cross-compiler. 

During the whole macrocompilation process, 

the following events may occur: 

 

1. a parsing error, from the parser 

2. a compiler error when compiling the 

intermediate files 

3. a run-time error when executing the 

temporal executable (such as an exception 

caught) 



4. a compiler error when compiling the 

transformed code 
 

4. Case Studies 

 
In order to evaluate the abilities of the 

precompilation phase, the following cases were 

analyzed using the PRECOMP C++ tool: 

 

a. calculus of constants 

b. embedding external raw data files 

c. user-defined literals 

d. compile-time memory allocation 

e. others: Finite State Machines (FSMs) and 

Graphic User Interfaces (GUIs). 

 

These examples are used to illustrate the 

concept that, by itself, it is not limited to the 

presented cases. The tool was built as an 

instrument to put the concept into practice and 

can be easily extended. 

 

A) Calculus of constants 

 

Constant values calculus requires both the 

source code to perform the calculation, memory 

for temporary variables, and the time for the 

process itself. In tight-equipped systems (such 

as many embedded systems), this process is not 

possible to be performed in run-time. Two 

examples are exposed here: the calculus of PI, 

and the calculus of a number raised to a power: 
 
const double PI = PRECOMP<double>(atn(1)*4); 
const char str[PRECOMP<int>(pow(3,4))]; 

 
In the first example, the constant value of PI 

is obtained by invoking the ATN function and 

the * operator, as the PRECOMP expression. 

In the second example, the result of the 

expression 3
4
 is used as the dimension of the 

‘str’ array. Note that ANSI/ISO C++ forbids the 

declaration of a static array dimensioned by a 

non-const expression [7]. 

 

 

B) Embedding external raw data files 

 

When data is stored externally to the C++ 

source file, the application may include the data 

statically (during compile time), or dynamically 

(by loading it during run time from an external 

file). 

The usual way of embedding data statically 

into a source file is through constant arrays 

initialized with braces, such as 
 

const int c[]={ 0x123, 0x321, 0x333, 0x222}; 
 

This involves importing the external data and 

performing a C++-like syntax conversion, 

either manually or with a tool. 

The following two examples show how 

PRECOMP can be used to embed external raw 

data: 

 

Example 1: the text file. Let’s assume that a 

command-line console application has to show 

a help text when it receives the wrong number 

of arguments. Such text is maintained 

externally in a free-text file named ‘help.txt’. 

The PRECOMP C++ environment has the 

ability of storing dynamically loaded 

precompilation-time data as static constant 

compile-time data. The example can be solved 

by loading the text file into a 

PRECOMP_STRING (which is a specialization 

of the STL’s string): 
 
#include <string> 
#include <fstream> 
#include “precomp_types.h” 
using namespace std; 
 
PRECOMP_STRING loadFile(const char* file) 
{ 
  ifstream f; 
  string line, ret; 
  f.open(file); 
  if(f.bad()) throw “File not found!”; 
  while (getline(f,line)) 
    ret += line; 
  return ret;  
} 
 
void showHelp() 
{ 
  const PRECOMP_STRING help =      
     PRECOMP<PRECOMP_STRING>( 
        loadFile(“help.txt”)); 



  cout << help; 
} 

 

Three important observations can be made in 

this example: the first is that the ‘loadFile’ 

function would be executed during run-time in 

a standard C++ file; however, such execution 

takes place in precompilation time due to the 

PRECOMP<>() statement. The second is that if 

the “help.txt” file is not found, an exception is 

thrown during precompilation time, which will 

be seen as a MACROCOMPILER ERROR. 

The PRECOMP C++ tool catches all the 

exception types (instead of showing up during 

run-time), and has specific behavior for some of 

them; in the case of a const char*, the 

PRECOMP C++ shows the text and stops the 

execution of the temporal generated 

application. Lastly, the PRECOMP C++ 

provides class wrappers for some of the 

standard containers (i.e. string, vector, map) in 

order to encapsulate the constant storage of 

dynamically-allocated content. Additionally, 

the PRECOMP C++ defines an interface for 

any data type that contains pointers, so any 

user-defined class can be properly used for 

precompilation time processing. Specifically, 

any type provided in the PRECOMP-TAG that 

is a model of the PRECOMP template concept 

can be used in the precompilation process. 

 

The PRECOMP template concept implies: 

 

• The casting-to-unsigned integral operator 

• The casting-to-void pointer operator 

 

In fact, the PRECOMP_STRING wrapper just 

provides those operators by returning the size 

of the string, and the address of the first 

character, respectively. 
 

Example 2: embedding an image stored as a 

graphic format file. Another usage not detailed 

in this publication can be loading a graphic file 

(e.g. a GIF file) from a file during 

precompilation time. In such case, both file 

access and format consistency can be checked 

before run time. 

 

C) User defined literals 

 

There are several generic-length integer C++ 

library implementations. However, there is a 

performance bottleneck to enter literals since 

they have to be parsed. For example, the 

number 

 
12,345,678,901,234,567,890 

 

does not fit in a 32-bits integer. Many big-

integer libraries, such as GMP [6], use strings 

to assign values. The latter number should be 

assigned in GMP with the following statement: 

 
e=mpz_set_str(R, “12345678901234567890”, 0); 

 

This statement parses the string, determines the 

base, and assigns it to the big-integer R. The 

error code is returned to e. However, the whole 

process could take place during precompilation-

time, including the validation, where a parsing 

error (i.e. the string contains an invalid 

character) would be reported as a 

MACROCOMPILER ERROR. Additionally, 

new literal prefixes can be parsed, such as ‘0b’ 

for binary integer literals. Example: 
 
int literal(const char* lit) 
{  
   /* parse lit */  
} 
const int binInt =   
      PRECOMP<int>(literal(“0b1001”)); 

 

The literal function parses a string and 

determines its base from the prefix. It may 

perform a validation (for example, in the case 

of a binary base, all digits shall be either 0 or 

1). In the case of an invalid digit, an exception 

is thrown. 

 

D) Compile time memory allocation 

 

Memory arrangement and organization must 

take place during design-time for some 



embedded systems, when there is no memory 

management unit or operating system. This 

involves a static pre-planned data organization, 

and therefore no memory fragmentation. 

One technique of implementing this 

organization is using a structure and placing all 

the address-fixed data as fields of the structure, 

to finally place a unique instance of the 

structure in a known position. This requires the 

planning and maintenance of the structure 

during design and coding. 

The PRECOMP solution is to ‘allocate’ the 

data space during precompilation time, and 

track all the allocations to become fixed-located 

during compile time. Moreover, if the 

PRECOMP allocation exceeds the (future) 

available run-time memory, an exception can 

be thrown alerting that it’ll not fit in the 

memory. 

As an example, let’s suppose that there are 4 

elements that need fixed-allocation, a runtime 

RAM size of 64 bytes, and that the data shall 

start at address 0x010. The 4 elements are: an 

array of 4 16-bit integers, an array of 20 

characters, one 32-bit float, and a 12-bytes 

length structure: 

 
int element1[4]; 
char element2[20]; 
float element3; 
struct Type element4; 

 

According to the technique described above, 

the four elements should be enclosed in a 

structure. 

The proposed way of performing this in 

PRECOMP C++, could be defining a 

‘precomp_alloc’ function and a global precomp 

instance tracking the latest pointer: 
 
size_t lastPos = 0; 
char* const initPos = (char*)0x10; 
const size_t RAM_size = 64; 
template <class T> 
void* precomp_alloc(size_t size = 1) 
{ 
   void* const ret = initPos + lastPos; 
   lastPos += size*sizeof(T); 
      if(ret > initPos+RAM_size) 
         throw bad_alloc(); 
   return ret; 

} 
 
//define the ‘At’ macro: 
#define At(instance, type, address) \ 
     type& instance = \ 
     *reinterpret_cast<type*>(address) 
 
At(element1, int, 
  PRECOMP<int*>(precomp_alloc<int>(4))); 
 
At(element2, char, 
  PRECOMP<char*>(precomp_alloc<char>(20))); 
 
At(element3, float,  
  PRECOMP<float*>(precomp_alloc<float>())); 
 
At(element4, Type,  
  PRECOMP<Type*>(precomp_alloc<Type>())); 

 

The ‘At’ macro is a tool to place a variable in a 

given address, and it’s defined here just to 

clarify the code. 

A better C++-like syntax could be reached by 

overloading the ‘new’ operator, but such case is 

not exposed here due to sizing reasons. 

 

E) others: FSMs, GUIs 

 

This last case study is just mentioned but not 

deeply analyzed here, in order to consider the 

precompilation phase to instantiate Finite States 

Machines (FSMs), and Graphic User Interfaces 

(GUIs) from external editors. 

An FSM can be described by the State 

Transition Table, which contains the 

information that given a stimulus, what 

transition function shall be invoked and the 

next state to transition to. 

This information could be described in an 

external data file (i.e. generated from a tool) 

and then it can be read and parsed during 

precompilation in order to generate 

instantiation information for state-classes (as 

described in Gamma [5]). 

Similarly, information regarding GUI controls 

can be provided in a separate file, which can be 

read during precompilation in order to 

instantiate GUI classes, instead of generating 

code with an external tool. 
 

5. Qualitative Comparison 
 



The TMP technique can be used to calculate 

values during compile-time; however, resources 

are limited to the capabilities of the compiler 

and only the Functional-programming paradigm 

is allowed. On the other hand, the preprocessor 

cannot use pointers, or dynamic memory or 

execute I/O stream operations. The 

preprocessor does not respect scope; therefore 

macros can accidentally and sometimes silently 

replace code. In practice, preprocessor 

metaprogramming is far simpler and more 

portable than template metaprogramming [2].  

It turns out that the current ways of 

implementing GP have some weaknesses. A 

comparative table summarizes some of the 

features that are or aren’t present in the other 

techniques mentioned before: 
 

 

             

           Tools 

 
 

 

 
Features P

re
p
ro
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o
r 

T
M

P
 

P
R
E
C
O
M
P
 

C
+
+
 

Allows Reflection NO NO NO(*) 

Allows Debugging  NO NO YES 

Allows Compile 

time assertions 
YES YES YES 

Readability of 

code? 
Sometimes 

Only in 

trivial cases 
YES 

Easy to use YES 
Only in 

trivial cases 
YES 

Is C++ syntactic 

compliant? 
YES YES YES 

Static / dynamic 

language 
symmetry 

NO NO YES 

Can emit friendly 
diagnostic 

messages  

YES NO YES 

Can use I/O 
streams 

NO NO YES 

Can use Pointers NO NO YES 

Can use Dynamic 

Memory 
NO NO YES 

Can compute  non 

integral 
expressions 

NO NO YES 

 

(*) planned for future evolutions. Refer to the Future Work section. 

 

In a two level language it is important to 

achieve symmetry between its static and 

dynamic aspects [9], that is, execute tasks at 

compile time or execution time without noting 

any difference. By taking Veldhuizen’s view of 

C++ as a two-level language, this work 

homogenizes the dynamic and static levels into 

a seamless syntactical and functional 

unification. Another important thing this work 

provides is the notion of compile time 

assertions, which are assertions that are 

evaluated during the compilation process. This 

kind of assertions is useful when it is necessary 

to perform static checking to prevent errors 

during the execution of the application [1]. 

Also, the use of non-integral types is conflicting 

in both preprocessor and TMP, but is simple in 

precomp-C++. For example, given 
      

#define PI 3.14 

 

the preprocessor statement, 
 

#if PI > 3 

 

becomes a preprocessor error. Similarly, given 

a template metaprogram to calculate the cosine, 

templates cannot accept floating points as non-

type template parameters; for example these 

statements are invalid:    
 

Cos<1.25>::value 
Cos<getValue()>::value 

 

because the instantiation of templates with non 

integral values or with unknown values at 

compile time (as in the case of te getValue 

function call) is not allowed. In contrast, these 

features are available in precomp-C++: non-

integral values and function calls can be used 

within each PRECOMP-TAGs and all of the 



functions invoked exist in standard libraries 

such as stdlib, whereas in TMP we need to 

create these functions (as templates) to use 

them in template instantiation.     

 

7. Future Work 
 

This paper currently presents a mechanism to 

generate constant data during compilation time. 

Two evolutions will be addressed: 

 

• types generation 

• statements and flow control generation 

 

A C++ template structure can be thought of a 

function that receives data types as parameters, 

and returns a data type. The ‘types generation’ 

evolution will address the ability of generating 

types as regular C++ templates do, as well as 

generating type in an object-oriented manner, 

that is, objects whose methods receive data 

types as parameters and return data types, to be 

evaluated in precompilation time. Some 

reflection features will be present, by both 

enhancing the typeid operator (imperative-like), 

and by pattern matching (functional-like). 

Similarly, the statements and flow control 

generation evolution will provide the ability to 

consider statements as precompilation-time 

objects, and the ability to define functions that 

accept statement-objects as parameters, and 

return (transformed) statement-objects, as well 

as objects whose methods accept statement-

objects as parameters and return statement-

objects. Reflection will be available for 

statement-objects as well, following the 

analogy of a statementid operator returning a 

statement_info class. 
 

8. Conclusions 
 

This work exposes the benefits of adding the 

precompilation phase, over the current 

compilation model. Comparison between 

current techniques (such as TMP) and the 

precompilation-enabled C++ is provided, 

including constants calculus, early checking 

and data importing during precompilation time. 

While TMP requires re-writing all the 

numeric libraries in a functional style (with 

limitations on precision and compiler abilities), 

PRECOMP C++ just invokes them as any 

regular C++ program does. 

Finally, an implementation is provided in 

order to show that current compilers have all 

they need to implement the precompilation 

phase, since no new syntax is required, but just 

the ability to execute a generated binary using 

the system.  

 

Both embedded systems and system 

programming can be benefited from the 

proposed enhanced compilation model. 

 

9. References 
 
[1] Alexandrescu, Andrei, “Modern C++ Design: Generic 

Programming and Design Patterns Applied”. Addison Wesley, 

Reading, Massachusetts, 2001. 

 

[2] Boost libraries, http://www.boost.org, Known Problems of 

the C/C++ Preprocessor. 

 

[3] Chiba, Shigeru, “A Metaobject Protocol for {C++}”,  

ACM Conference on Object-Oriented Programming Systems, 

Languages, and Applications (OOPSLA'95), SIGPLAN Notices 

30(10), Austin, Texas, USA, pp 285-299, 1995. 

 

[4] Czarnecki, Krzysztof, U. Eisenecker, R. Glück, D. 

Vandevoorde, and T. Veldhuizen, “Generative programming 

and active libraries (extended abstract)”. In Generic 

Programming. Proceedings (M. Jazayeri, D. Musser, and R. 

Loos, eds.), pp. 25-39. Volume 1766 of Lecture Notes in 

Computer Science. Springer-Verlag. 2000. 

 

[5] Gamma, Erich, R. Halm, R. Johnson, J.Vlissides, “Design 

Patterns: elements of reusable object-oriented software”, 

Addison Wesley, 1995. 

 

[6] GNU MP Bignum Library, http://www.swox.com/gmp/ 

  

[7] INCITS ISO IEC 14882-1998 International 

Standard, Programming Languages - C++, 8.3.4 § 1 
 

[8] Stroustrup, Bjarne, “The C++ programming language 

Special Edition”, Addison Wesley Publishing Co., Reading, 

Mass., 2000, pp. 160-161. 

 

 



[9] Vandevoorde, Daveed, “Reflective Metaprogramming in 

C++”, N1471/03-0054, JTC1.22.32 Programming Language 

C++ Evolution Working Group, ISO/IEC IS 14882:2003(E), 

2003. 

 

[10] Veldhuizen, Todd, “C++ templates as partial 

evaluation”, ACMSIGPLAN Workshop on Partial Evaluation 

and Semantics-Based Program Manipulation (PEPM'98), ACM 

Press, San Antonio, TX, USA, 1999. 

 

[11] Veldhuizen, Todd, “Five Compilation Models for C++ 

Templates”, First Workshop on {C++} Template Programming, 

Erfurt, Germany, 2000. 

 

[12] E. D. Willink, V. B. Muchnick. “An Object-Oriented 

Preprocessor Fit for C++”, IEEE Proc. on Software, 147(2), 

2000. 

 

 


