
THE ROLE OF DIFFERENT CROSSOVER METHODS WHEN SOLVING THE OPEN SHOP

SCHEDULING PROBLEM VIA A SIMPLE EVOLUTIONARY APPROACH

Labarere I., Beraudo V., Salto C., Alfonso H.
Proyecto UNLPAM-09/F0151

Departamento de Informática - Facultad de Ingeniería
Universidad Nacional de La Pampa

Calle 110 esq. 9
(6360) General Pico – La Pampa – Rep. Argentina

e-mail: { saltoc, alfonsoh }@ing.unlpam.edu.ar
Phone: +54 2302 422780/422372, Ext. 6302

Gallard R.
Laboratorio de Investigación y Desarrollo en Inteligencia Computacional (LIDIC)2

Departamento de Informática
Universidad Nacional de San Luis

Ejército de los Andes 950 - Local 106
(5700) - San Luis -Argentina
e-mail: rgallard@unsl.edu.ar

Phone: +54 2652 420823
Fax : +54 2652 430224

ABSTRACT

The Open Shop Scheduling Problem (OSSP) is one of the most interesting, complexes and not
frequently approached scheduling problems. Due to its intractability with other techniques, in this
work we present an evolutionary approach to provide approximate solutions.

One of the most important points in an Evolutionary Algorithm is to determine how to represent
individuals of the evolving population and then to decide suitable genetic operators. In this work,
we use permutations as chromosomes. Dealing with permutations requires appropriate crossover
operators to ensure feasible offspring. Usual operators are partially-mapped, order, cycle and one-
cut-point crossover. The goal is to determine which is the most adequate for facing the OSSP with a
simple evolutionary algorithm. Several known instances have been considered for testing in order to
evaluate the algorithm behavior.

Keywords: Open Shop Scheduling, Evolutionary Computation, Crossover.

1 The Research Group is supported by the Universidad Nacional de La Pampa.
2 The LIDIC is supported by the Universidad Nacional de San Luis and the ANPCYT (National Agency to Promote
Science and Technology).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15779789?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction
Evolutionary algorithms (EAs) can be used as techniques to solve problems inspired in natural
evolution [4]. In an EA, a data structure, representing a feasible solution to a problem, is defined.
Each possible data set admissible for that structure would be a potential solution to the problem. An
EA behave as a search method, where the solutions to the problem are able to reproduce between
them, combining characteristics and generating new solutions.
EAs have proved their ability to solve difficult scheduling problems. One of the most frequent
models taken from real life is known as open shop. An Open Shop Scheduling Problem (OSSP)
involves a collection of m machines and a collection of n jobs. Jobs can follow routes, which are
open and arbitrarily decided by the scheduler. Each job consists of a set of operations, sometimes
called tasks [8, 6]. Each machine can process at most one operation at a time and each job can be
processed by at most one machine at any given time. The order in which the jobs are processed on
the machine, can be chosen arbitrarily; but two or more tasks from the same job cannot be
processed on the same machine. The objective in our OSSP is to determine a feasible combination
of the machine and job orders, a schedule, which minimizes the overall finishing time, also known
as the makespan. The makespan cannot be less than the maximum workload of each machine or
the total processing time needed of n jobs.
Consider an OSSP where there are two machines and n jobs, denoted as 02||Cmax [6]. The
makespan has to be minimized. Job j may be processed first on machine 1 and then on machine 2 or
vice versa; the decision maker may determine the routes. With only two jobs, it can be easily
verified that there are only two possible schedules and both have the same makespan. If n > 3 the
problem belongs to the class of NP-hard problems.
The OSSP has many applications, specially in the manufacturing world and in industry. The
common example is that of an automotive repair shop [10]. In such a shop, a typical job might
involve the operations “spray-paint”, and “change-tyres” to be performed on the same vehicle.
These operations cannot usually be performed concurrently (especially if the stations at which these
operations are performed are in different places, for instance), but can be performed in any order.
Also it is usually true that different stations (i.e. “machines”) can concurrently process operations
from different jobs (e.g. involving different vehicles). If the operations in a job must be performed
in some fixed order, then this becomes a Job Shop Scheduling Problem (JSSP).
In this work, we study the performance of evolutionary algorithms using different crossover
operators, which are suitable for permutation representation.
The work is organized as follows. Section 2 presents a detailed problem description. Sections 3 and
4 describe the adopted representation and the crossovers methods implemented. Section 5 gives
details on the experiments and section 6 discusses the results reached. Finally, conclusions and
future works are presented.

2. The Open Shop Scheduling Problem
The OSSP consists of m machines M1, M2,..., Mm and n jobs J1, J2,..., Jn. Each job Ji consists of m
operations Oij, The processing times are giving in an m x n matrix P where pij indicates the duration
of the operation Oij for the job j on the machine i, without preemption.
Operations for a job can be processed in any order, but only one at any giving time. We assume that
each machine can process at most one operation at a time and each job can be processed by at most
one machine at any given time. The order, in which the job is processed by the machines, can be
chosen arbitrarily. The objective function to be minimized is the maximum time that is necessary to
complete all jobs, or makespan.
An example follows. Table 1 describes a possible instance for the problem with 4 machines and 4
jobs. Table 2 shows a possible allocation of operations on the machines, and the corresponding
Gantt diagram is showed in figure 1.

Machine Job J0 Job J1 Job J2 Job J3
M0 34 15 38 95
M1 2 89 19 7
M2 54 70 28 34
M3 61 9 87 29

Table 1. A 4x4 benchmark problem for the OSSP.

Machine Job Operation Operation
Length

Start time End time

M3 J1 O31 9 0 9
M0 J1 O01 15 9 24
M2 J3 O23 34 0 34
M1 J3 O13 7 34 41
M1 J2 O12 19 0 19
M2 J1 O21 70 34 104
M3 J0 O30 61 9 70
M1 J0 O10 2 70 72
M0 J2 O02 38 24 62
M0 J3 O03 95 62 157
M2 J0 O20 54 104 158
M0 J0 O00 34 157 191
M1 J1 O11 89 104 193
M3 J2 O32 87 70 157
M3 J3 O33 29 157 186
M2 J2 O22 28 158 186

Table 2. A schedule for the benchmark problem in table 1 with the makespan value of 193

Figure 1. A schedule for the benchmark problem, OSSP 4x4, with minimum makespan.

3. Chromosome Representation
In this work we are using permutations for the chromosome representation: to each operation of a
job is given a unique number. We first enumerate the operations of job J1, then the operations of job
J2, and so on. Thus, for a problem with 4 jobs and 4 machines, the first operation of job J1 will be
given number 0, and the last operation of job J4 will be given number 15. For individual
chromosomes of the EA, we use strings of length p, where p is the total number of operations
involved. A scheduling of the operations is represented by using an integer string, y1, y2,..., yp,
where the value of yi represents the operation to be scheduled next. Thus, if we have 4 jobs and 4
machines, the following string (figure 2) represents a possible schedule of the sixteen operations.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
4 5 13 14 9 7 2 3 8 12 0 1 6 11 15 10

Figure 2. A chromosome representation for a 4x4 instance of OSSP.

Machine

M0

M1 O10

M2

M3
Time

1 25 50 75 100 125 150 175 193

Job J 0 Job J 2 Job J 3Job J 1

O01 O02

O21 O20

O12 O13 O11

O23

O31 O30

O22

O32 O33

O00O03

This representation is interpreted as follows. First, it schedules the operation that has number 4 (the
first operation of J1), then, the operation with number 5 (the second operation of J1), and so on.
The procedure for calculating makespan consists in scheduling the operations with the goal of
finishing an operation at the earliest possible time. This is not as obvious as it might seem. Consider
the following scenario (see Figure 3): we want to schedule operation Oc from job Jc of length t on
machine Mj. Our algorithm scans the operations that have been already scheduled on Mj. In case a
“gap” exists between two consecutive operations, Oa and Ob, such that y – x >= t (where x is the
completion time of Oa and y is the start time of Ob,) then the algorithm checks if the operation Oc

can be scheduled between x and y. This is done, only if no other operation from job Jc is currently
being processed on some other machine between times x and y.
If no such gap exists, then operation Oc is scheduled sometime after the last operation that was
processed on machine Mj.

Machine M j a b
 w x y z

Figure 3. Scheduling operation c between operations a and b on machine Mj.

4. Crossover Operators
For this work we select the permutation representation and then in order to obtain feasible schedules
after each recombination, adequate genetic operators are needed. They are:
• partial-mapped crossover (PMX). PMX was proposed by Goldberg and Lingle [2] and can be

viewed as an extension of two-point crossover for binary string to permutation representation.
It uses a special repairing procedure to resolve the illegitimacy caused by the simple two-point
crossover. Thus the essentials of PMX are a simple two-point crossover plus a repairing
procedure.

• order crossover (OX). OX was proposed by Davis [1]. It can be viewed as a variation of PMX
with a different repairing procedure.

• cycle crossover (CX). CX was proposed by Oliver, Smith and Holland [5]. Essentially it can be
viewed as a class of uniform crossover to permutation representation together with a repairing
procedure. It takes some alleles from one of the parents and selects others from the other parent.
Alleles of the first parent are selected in order to define a cycle according to the positions
between the parents.

• one-cut-point crossover (OCPX). OCPX was proposed by Reeves [7]. It is a kind of one-point
crossover for permutation representation. It defines a cut point, and then takes all the alleles
from the first parent until that position and completes the offspring with the alleles according to
their occurrence in the other parent.

5. Experiments
The algorithms were tested for a set of selected instances of the Open Shop Scheduling Problem
that are well known in the literature [9], Taillard gives the pseudocode to generate the individual
problem instances. We implemented, in Borland C, Taillard's algorithm and executed it to generate
40 benchmark problems. The generator takes as input: time seed, machine seed and the problem
size, which are specified in [9]. We have worked with all the instances for small size problems (4x4
and 5x5) and the medium size problems (7x7 and 10x10). For each instance, a series of fifty runs
were performed for each crossover operator (OCPX, OX, CX, PMX). The EA used proportional
selection for mating. For mutation, a simple interchange operator, which randomly exchanges
genes of the chromosome, was designed. The population size was fixed at 100 individuals for all
instances. The maximum number of generations was fixed at 1000 and probabilities for crossover

and mutation were set at 0.8 and 0.1, respectively. These values were determined as the best
combination of probabilities after many initial trials.
The following relevant performance variables were chosen:
Ø Ebest = (Abs(opt_val - best value)/opt_val)100

It is the percentile error of the best found individual when compared with the known, or estimated,
optimum value opt_val. It gives us a measure of how far the best individual is from that opt_val.

Ø Epop = (Abs(opt_val- pop mean fitness)/opt_val)100
It is the percentile error of the population mean fitness when compared with opt_val. It tell us
how far the mean fitness is from that opt_val.

Ø #Opt = It indicates the number of times that the known, or estimated, optimum value is obtained
during several experiments made.

Ø MEbest and MEpop indicate the mean values for Ebest and Epop, respectively.

6. Results
Tables 3 and 4 report the results of the algorithm using different crossover methods on the 4x4
instances. In all of them, the optimum value for each instance was reached, independently of the
crossover type; the exception was in the instance Mat43 under the CX, but the Ebest value (0.8) is
very close to the optimum. Analyzing #Opt, OX obtained the biggest number of occurrences in
most cases, followed by PMX, OCPX and finally CX. Now considering mean Ebest, best results are
obtained with OX, followed by PMX, OCPX and CX.

OCPX PMX OX CX
Instance

#opt ebest mebest #opt ebest mebest #opt ebest mebest #opt ebest mebest

Mat40 11 0.0000 1.7824 6 0.0000 1.0259 10 0.0000 0.9326 8 0.0000 1.8549

Mat41 2 0.0000 1.6186 9 0.0000 1.4915 12 0.0000 1.2373 6 0.0000 2.4746

Mat42 7 0.0000 0.3838 20 0.0000 0.2214 24 0.0000 0.1919 2 0.0000 0.8044

Mat43 3 0.0000 1.2320 6 0.0000 1.3760 3 0.0000 1.1440 0 0.8000 2.1200

Mat44 6 0.0000 2.0339 12 0.0000 1.6881 12 0.0000 1.6949 4 0.0000 3.0102

Mat45 27 0.0000 1.3439 20 0.0000 1.2275 19 0.0000 1.8624 6 0.0000 3.1534

Mat46 16 0.0000 0.9055 11 0.0000 1.0547 3 0.0000 1.1244 3 0.0000 1.8806

Mat47 18 0.0000 1.0783 5 0.0000 1.7880 26 0.0000 0.7650 4 0.0000 1.8525

Mat48 11 0.0000 2.2605 8 0.0000 2.2912 17 0.0000 1.6322 9 0.0000 3.0421

Mat49 9 0.0000 2.3963 36 0.0000 0.3779 36 0.0000 0.5714 6 0.0000 2.4516

Table 3. ebest results for 4x4 instances.

OCPX PMX OX CX Instance
epop mepop epop mepop epop mepop epop mepop

Mat40 23.4109 36.0747 47.9888 56.2099 40.7619 53.4364 5.9358 11.4604

Mat41 18.9086 36.8223 47.6049 53.3789 40.3621 50.6051 5.9629 12.6370

Mat42 18.1065 30.8318 43.5274 47.8076 38.6551 45.4717 13.8400 10.4499

Mat43 20.0173 37.6874 46.8763 53.5512 46.6567 51.7476 5.5634 11.5779

Mat44 20.8616 39.0704 49.8481 54.2613 43.9801 51.7308 4.5784 12.3258

Mat45 8.2756 37.8797 53.4804 61.3702 44.8413 59.3113 6.4487 13.9492

Mat46 9.4037 34.2632 45.6479 53.4267 32.9484 49.8518 3.6633 11.5271

Mat47 6.0330 30.6541 37.8355 62.3665 46.2057 61.2375 5.1697 10.8525

Mat48 13.5176 34.8459 53.4773 59.2208 51.4398 57.8281 5.8659 13.2079

Mat49 16.5270 33.1802 46.1708 50.5378 42.8912 50.2298 2.7374 12.0814

Table 4. epop results for 4x4 instances.

Table 4 details Epop results. Lower values were found with CX, varying between 2.7 and 13.8%;
this indicates that the population is fairly centred on the best-found value (as we saw previously, in

only one instance the optimum value was not reached). Then, it is followed by OCPX, which shows
an error ranging between 6 and 23%. Higher Epop values are observed with the application of OX
and PMX, whose values are almost twice as much those showed by other methods.
Although OX obtained the best Ebest results, the population behaves better with CX in average.
Table 5 exhibits results on the 5x5 instances. Here, only both Mat50 instance under CX and Mat51
under OX reached the optimum value. Best results were achieved by OCPX, CX and OX, but no
one brings out the other. Analyzing MEbest values, OCPX presents good results, followed for CX,
OX and PMX.
Epop values on the 5x5 instances are described in table 6. The lowest levels of Epop were found
with CX, whose values go from 6.2 to 11.21%; OCPX follows it with an error ranging between 32.4
and 44.3%. Remaining crossover methods exhibit Epop values all over 50%, but results reached for
PMX are the worst ones.
Evaluating results obtained on 7x7 instance (table 7), a crossover ranking can be established
considering Ebest results: CX, OCPX, OX and finally PMX. The latest two show remarkable higher
errors. The same ranking can be observed for mean Ebest values.
Analyzing Epop values (table 8) the same crossover ranking is preserved here. Moreover it matches
the same ranking presented on previous 4x4 and 5x5 instances
Tables 9 y 10 introduce results corresponding to 10x10 instances. Here, the same behaviour on both
Ebest and Epop values is observed: CX in the first place, then OCPX, OX and finally PMX.

OCPX PMX OX CX
Instance

#opt ebest mebest #opt ebest mebest #opt Ebest mebest #opt ebest mebest

Mat50 0 1.6667 5.7800 0 1.0000 7.9000 0 0.3333 6.8000 1 0.0000 6.5467

Mat51 0 1.5267 6.0229 0 3.4351 8.3282 1 0.0000 6.3740 0 1.5267 6.3130

Mat52 0 3.7152 8.3529 0 6.1920 11.3870 0 4.9536 11.1022 0 3.0960 8.3653

Mat53 0 2.5806 8.2839 0 3.8710 12.6000 0 1.9355 10.8516 0 5.4839 9.4323

Mat54 0 2.7607 7.8344 0 2.4540 11.2699 0 4.9080 10.5153 0 2.7607 8.1595

Mat55 0 2.5641 7.7436 0 2.8846 11.1154 0 3.8462 8.8846 0 2.5641 7.2756

Mat56 0 2.9703 7.9274 0 3.3003 10.5215 0 2.3102 9.3663 0 1.3201 7.7624

Mat57 0 1.3333 6.3267 0 3.6667 9.8133 0 2.6667 8.0067 0 1.6667 6.5533

Mat58 0 1.1331 7.0765 0 1.1331 9.9377 0 1.6997 8.7989 0 2.2663 7.5184

Mat59 0 1.8405 7.5706 0 3.0675 10.5583 0 4.6012 9.9755 0 3.0675 7.2822

Table 5. ebest results for 5x5 instancias.

OCPX PMX OX CX
Instance

Epop mepop epop mepop epop mepop epop mepop

Mat50 35.7890 48.0589 56.4269 62.2417 53.6392 59.5873 6.8393 18.4225

Mat51 34.8742 49.0347 56.7402 64.8935 54.7649 61.0515 6.2199 17.7527

Mat52 44.2850 52.2842 61.4160 66.6979 58.8878 64.2265 9.8863 19.6888

Mat53 39.3764 54.0097 65.5028 69.4677 58.1226 66.6563 11.2184 20.7248

Mat54 32.4003 50.7764 62.7619 66.6487 56.6426 65.0553 8.2019 19.7695

Mat55 42.1066 51.6408 62.2816 67.2295 59.4266 64.1871 11.2184 18.9530

Mat56 41.2108 52.6391 60.2320 66.1630 58.5800 65.0227 9.6134 19.4897

Mat57 35.6116 48.3666 58.5249 64.5336 53.8045 62.0988 8.4083 16.7813

Mat58 36.0607 50.0923 60.8160 64.5034 54.9705 62.6435 8.0242 18.7984

Mat59 39.2151 51.5956 62.2325 65.5376 56.3927 63.6676 10.1430 18.6864

Tabla 6 . epop values for 5x5 instances.

OCPX PMX OX CX
Instance

#opt ebest mebest #opt ebest mebest #opt ebest mebest #opt ebest mebest
Mat70 0 9.5890 14.8721 0 12.1005 18.5936 0 9.3607 16.6438 0 3.8813 10.3333

Mat71 0 7.1269 15.8396 0 12.9176 20.8018 0 13.1403 18.2539 0 4.6771 11.1581

Mat72 0 9.6033 18.0835 0 11.2735 22.6347 0 14.6138 20.7641 0 5.8455 13.0939

Mat73 0 7.4946 14.9422 0 11.9914 20.1456 0 12.4197 18.4154 0 5.5675 11.0707

Mat74 0 10.2625 16.6205 0 12.1718 20.6444 0 14.5585 19.7566 0 5.7279 11.7327

Mat75 0 9.5652 17.5783 0 13.9130 23.1957 0 11.5217 20.8217 0 4.5652 13.2391

Mat76 0 9.8851 17.2368 0 14.9425 22.9379 0 13.3333 21.0069 0 4.8276 13.3149

Mat77 0 9.6244 14.5728 0 11.2676 19.0141 0 11.0329 16.9812 0 5.1643 10.9624

Mat78 0 6.5217 15.5043 0 13.2609 20.1304 0 11.7391 17.0957 0 4.1304 11.1261

Mat79 0 10.7500 17.8300 0 13.2500 21.7050 0 13.7500 20.3650 0 6.5000 11.9200

Table 7. ebest values for 7x7 instances.

OCPX PMX OX CX
Instance

epop mepop epop mepop epop mepop epop mepop

Mat70 43.3194 54.8069 61.7965 67.1995 57.3683 63.8090 10.1774 22.7061

Mat71 46.3777 57.7936 67.0472 69.7787 61.1039 67.4021 14.9775 24.1770

Mat72 47.0279 58.9272 67.7334 70.8012 64.2437 68.2968 16.5996 26.8816

Mat73 38.9990 54.0460 63.5970 67.2085 58.7923 63.9556 13.5723 24.2843

Mat74 45.6723 57.6537 65.9494 69.7041 62.1950 66.9763 13.9652 24.6742

Mat75 49.7233 58.8904 68.0571 72.1303 63.1417 68.8114 16.2404 25.7376

Mat76 50.2511 59.4891 67.1649 71.9833 60.5037 69.3969 15.3238 26.7919

Mat77 43.9033 54.2849 63.0676 67.5670 59.2106 64.7806 13.4904 23.6322

Mat78 37.8769 55.0435 63.4307 67.3368 58.8338 63.8739 15.4853 25.2915

Mat79 47.8212 59.7214 69.2195 73.2935 63.0734 69.5887 16.8440 25.3123

Table 8. epop values for 7x7 instances.

OCPX PMX OX CX
Instance #opt ebest mebest #opt ebest mebest #opt ebest mebest #opt ebest mebest

Mat100 0 24.3411 29.1039 0 24.4961 33.4636 0 22.0155 31.0078 0 17.3643 22.8155

Mat101 0 17.8571 26.5816 0 26.3605 31.6565 0 20.5782 29.3639 0 13.9456 20.1122

Mat102 0 18.3306 26.3175 0 25.6956 31.8069 0 21.9313 28.4550 0 12.7660 20.5565

Mat103 0 21.4905 26.5858 0 26.6898 31.1612 0 19.0641 28.4125 0 14.3847 20.9324

Mat104 0 18.8768 26.8736 0 24.6490 32.1154 0 23.7129 29.7910 0 15.1326 21.7129

Mat105 0 22.3048 29.5093 0 28.6245 34.6357 0 21.1896 32.1636 0 16.9145 23.6022

Mat106 0 18.6196 26.0289 0 24.0770 30.7352 0 22.4719 28.4045 0 10.1124 19.1974

Mat107 0 20.1342 26.5973 0 23.1544 31.4228 0 17.2819 28.1275 0 13.2550 20.0839

Mat108 0 19.6639 27.9462 0 26.3866 33.3580 0 23.1933 30.8605 0 15.4622 22.8269

Mat109 0 17.9402 25.4120 0 21.7608 30.3887 0 22.0930 27.6346 0 12.2924 19.3621

Table 9. ebest results for 10x10 instances.

OCPX PMX OX CX
Instance

epop Mepop epop mepop epop mepop epop mepop
Mat100 55.7180 62.4777 71.5070 73.8312 67.4040 71.4458 27.5660 37.5863

Mat101 50.3510 60.5000 69.6992 72.8551 65.8009 70.5147 22.7332 34.0526

Mat102 50.4205 60.1335 68.2775 71.6965 62.1060 68.6121 20.8567 34.5906

Mat103 52.5470 60.7264 67.2913 71.8538 63.8804 69.3153 27.6176 35.7719

Mat104 51.7378 61.2430 69.2007 72.5177 66.5922 70.5284 27.3043 36.8116

Mat105 55.2660 63.9792 72.6298 76.9366 70.3335 74.1149 27.6176 38.6999

Mat106 52.5901 60.4353 67.6839 70.7704 62.7713 68.5515 21.1674 33.8335

Mat107 52.8072 60.7251 69.6044 72.9874 65.6795 70.1579 22.7785 34.3411

Mat108 54.2745 62.4257 70.7354 74.3941 67.3351 72.0496 28.3389 37.1650

Mat109 49.3047 58.6597 66.5349 70.8761 64.5970 68.8694 21.4699 33.8517

Table 10. epop results for 10x10 instances.

Graphics 1 to 4 show the evolution over the generations of both the best individual (lower curves)
and the mean population makespan (higher curves). X axis represents the number of generations
and the Y axis the makespan values. A representative matrix instance was selected for each problem
size according to the complexity level. The curves are obtained by averaging the results from the
fifty experiments made for each instance. Mat40 instance was the one selected from 4x4 set
(graphic 1). A superposition for all the crossover methods is observed among curves representing
the progress of the best value; in particular with CX, the mean value curve is very near to the best
value. In all instances, the mean population makespan remains constant and quite high through the
generations with PMX and OX. Using CX and arriving to generation 200, an approaching to the
best makespan found is observed, such a process of improvement continues in a notorious way as
soon as the complexity of the problems is increased. Now, with OCPX the biggest approach to the
best value found is detected between generations 100 and 150, from this point on the mean
population error does not vary so much.
In Mat40 instance (graphic 1), the evolution of the best individual is independent of the crossover
method. In Mat51 (graphic 2), changes produced in the best individual are similar in CX, OX and
OCPX, but in PMX the results are not so good as those showed by other crossover methods. In
Mat79 and Mat101 instances, graphics 3 and 4 respectively, the curve representing the evolution of
the best individual for CX is beneath others.

250

270

290

310

330

350

370

390

410

430

450

10 110 210 310 410 510 610 710 810 910

generation

m
a

k
e

s
p

a
n

180

200

220

240

260

280

300

320

1 0 110 210 310 410 510 610 710 810 910

generation

m
ak

es
p

an

Graphic 1: Mat40 instance Graphic 2: Mat51 instance

670

720

770

820

870

920

970

1020

1070

1 0 110 210 310 410 510 610 710 810 910

generation

m
ak

es
p

an

400

450

500

550

600

650

700

750

1 0 110 210 310 410 510 610 710 810 910

generation

m
ak

es
p

an

Graphic 3: Mat79 instance Graphic 4: Mat101instance

7. Conclusions
In this work we presented a simple evolutionary algorithm as an alternative technique to solve the
open shop scheduling problem. The representation of solutions selected is a permutation of

operations. For that it was necessary to consider well-designed crossover and mutation operators in
order to obtain feasible offspring after each mating action. Particularly, the crossover operators
selected and contrasted were those proposed for the traveling salesman problem (TSP): partial-
mapped, order, cycle and one-cut point crossover. Some problem instances with different
complexity level were used to evaluate the behaviour of our algorithm. Results from the application
of different crossover methods were contrasted. Some observations and suggestions about the use of
these algorithms were given.
Analyzing results obtained for instances with lesser complexity, we can remark that, regarding
quality of results, OX provides better results than other crossover methods. When the instance
complexity is increased, the algorithm using CX is the one that reaches solutions closer to the
optimum value.
Independently of the instance complexity, we concluded that using CX operator levels of error in
the population lower than employing the others crossover methods, were reached. However when
that complexity is increased higher errors were shown.
Next steps will be oriented to develop more refined algorithms considering other representations,
incorporating multiplicity characteristics that were applied to other scheduling problems.

8. Acknowledgements
We acknowledge the cooperation of the project group for providing new ideas and constructive
criticisms. Also to the Universidad Nacional de San Luis, the Universidad Nacional de La Pampa,
and the ANPCYT from which we receive continuous support.

9. References
 [1] Davis, L., Applying adaptive algorithms to domains, in Proceeding of the International Joint

Conference on Artificial Intelligence, pp. 162-164, 1985.
[2] Goldberg, D. and Lingle R., Alleles, loci and traveling salesman problem, in Proceedings of the

First International Conference on Genetic Algorithms, Lawrence Erlbaum Associates,
Hillsdale, Mj, 1985

[3] Fang, H., Ross, P. and Corne, D., A promising hybrid GA/Heuristic approach for open-shop
scheduling problems, in Proceedings of 11th European Conference on Artificial Intelligence
ECAI 94, pp. 590-594, 1994.

[4] Michalewicz, Z., Genetic Algorithm + Data Structure = Evolution Programs, 3ª ed., Springer-
Verlag, New York, 1996.

[5] Oliver I.M., Smith D.J. and Holland J.R.C. A study of permutation crossover operators on the
travelling salesman problem, in Proceedings of the 2nd International Conference on Genetic
Algorithms, pp. 224-230, 1987.

[6] Pinedo, M, Scheduling: Theory, Algorithms and Systems, Prentice Hall, 1995.
[7] Reeves C., A genetic algorithms for flow shop sequencing, in Computer and Operations

Research, Vol. 22, pp, 5-13, 1995.
[8] Khuri, S. and Miryala, S.R., Genetic algorithms for solving open shop scheduling problems, in

Proccedings of the 9th Portuguese Conference on Artificial Intelligence, EPIA1999, Springer,
pág. 357-368, 1999.

[9] Taillard E., Benchmarks for basic scheduling problems, in European Journal of Operational
Research, vol. 64, nro. 2, pág. 278-285, 1993.

[10] Gonzalez, T and Sahni, S., Open shop scheduling to minimize finish time, Journal of the
Association for Computing Machinery, 23(4), 665-679, 1976.

