
A 3D Visualization Approach to Validate Requirements

Alfredo Raúl Teyseyre

ISISTAN Research Institute, Facultad de Ciencias Exactas,
Universidad Nacional del Centro de la Pcia. de Bs. As,

Campus Universitario Paraje Arroyo Seco - (7000) Tandil - Bs. As., Argentine.

email: teyseyre@exa.unicen.edu.ar

Abstract

The importance of correctly determining the requirements of a system at the very beginning
of the development process it is a well known fact. Experience shows that the incorrect defini-
tion of the requirements leads to the development of deficient systems, increases the cost of its
development or even causes projects to fail. Therefore it is crucial for the clients to verify that the
planned system satisfies their needs. In this context, visualization techniques appear as a useful
tool to help the users in the process of requirements understanding and validation.

This paper describes an approach to validate system requirements with the user using 3D vi-
sualization techniques. The use of these techniques could reduce the communication gap between
the clients and the developers resulting in a much more effective process of requirements vali-
dation. The approach tries to take advantage of the benefits of 3D visualization, complementing
this with the advantages of formal specifications. As well as a research prototype tool, called
ReqViZ3D, that materializes the proposal was developed. The merits of applying ReqViZ3D for
the validation of requirements are illustrated using several case studies.

Keywords: Requirements Visualization, 3D Graphics, Requirements, Visualization, Formal Specifi-
cations.

1 Introduction

Meeting user requirements of a software system is a major challenge to software developers. Expe-
rience in a number of large projects reveals that a very large percentage of errors were consequence
of the imprecision in the earlier stages of the development process [Potter et al., 1991]. Therefore, it
is a well-accepted fact that it is crucial to express user requirements as completely, correctly and un-
ambiguously as possible. Moreover, it is vital for the customers to be able to confirm that the planned
system meets their needs, and this means that the system must be described in a way that they can
understand it [Potts, 1991].

Many conventional approaches have been applied to validate requirements, but, most of them, fail
in detecting errors [Kelly et al., 1992]. On the other hand, formal approaches, give clarity and preci-
sion at specification time. In that sense, formal specifications, enable us to denote unambiguously the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15779774?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

meaning of a requirements specification document due to their formal syntax and semantics. However,
except in safety-critical work, the cost of full verification is prohibitive [Jackson and Wing, 1996].
Moreover, formal specifications often fail in the user validation process since they are based on for-
mal notations not always comprehensible by users and hence they fit better to software developers
than customers. Therefore, in order to overcome these difficulties visualization techniques appear as
an interesting alternative to explore.

Visualization is a method to comprehend information by the use of diagrams to represent it. Data
are transformed into geometric representations that help users in the understanding process. In gen-
eral, graphical representations provide a closer match to the mental model of the users than textual
representations and take advantage of their perception capabilities.

In spite of their success in numerous computing areas, little research has been reported in the area
of requirements visualization. The previous approaches enable developers to validate visually the
specification of a system with the user, but their poor expressive graphics make difficult understand-
ing. Moreover, neither of the works make use of current 3D graphics capabilities in order to present
more real animations. However, 3D visualization techniques can be a powerful tool to facilitate the
analysis and understanding of requirements. The use of visualization techniques could reduce the
communication gap between the customer and developer resulting in a more effective requirements
validation process [Parry et al., 1998]. In this context, the main objective of this work is using 3D
visualization and animation techniques to validate requirements with the user.

This paper is organized as follows. Section 2 surveys current efforts towards requirement valida-
tion. Section 3 presents an overview of visualization and 3D graphics. Section 4 describes the ap-
proach and presents a case study. Two other examples are discussed in Section 5. Section 6 presents
a brief description of the prototype tool ReqViZ3D. Finally section 7 outlines some preliminary con-
clusions and future work.

2 Related Work

Intuitively, the simple choice to capture the requirements of a software system is natural language.
However natural languages specifications have been one of the main sources of ambiguity due its
rich vocabulary and its expressiveness [Meyer, 1995]. As an alternative formal specification lan-
guages have been proposed. Formal specification languages have a formal syntax and semantics
which makes it possible to unambiguously denote the meaning of the requirements. The best known
formal specifications languages are Z [Spivey, 1988], B [Lano, 1996] and VDM [Jones, 1990] among
others.

Although formal specification languages are precise, concise and unambiguous, which make them
an excellent medium for communication between system designers, analysts and testers, they fail in
the validation process with the customer: it is difficult for a customer to understand formal specifica-
tions because they are based on mathematical foundations and notations. However having formalized
a system, automated support is available for validating the model by execution.

Many have proposed the use of executable formal specifications for the construction of prototypes
to validate software requirements with the users at an early stage through feedback [Fuchs, 1992].
Techniques like execution have been introduced to overcome the difficulty of using a non executable
specification language, allowing the specifier to either test or rapidly implement his specification
document. Several researchers have reported success in executing subsets of Z translating them to
languages such as PROLOG or LISP [Ozcan et al., 1998, Hazel et al., 1997].

Although specification execution can provide immediate feedback during the process of writing
a specification and reduce the errors made at the early stages of the development process, seems yet

to be more useful to developers rather than to users. This is due to the fact that the execution is still
based on the underlying specification notations and the system is still described in a way that users
can not understand.

Visualization techniques have been used in many computing areas. However, in spite of their
success, little research has been reported in the area of requirements visualization. Most of the re-
ported works are oriented towards the validation of requirements on specific domains, as for example
real-time systems (IPTES [Pulli et al., 1991] and ENVISAGER [Gonzalez and Urban, 1991]), and
do not address a wide range of problems as formal specification methods do. Moreover there is only
one fixed graphic representation of requirements, for example nets, limiting in consequence the ex-
pressive power of the visual presentations. This could lead to poor expressive presentations that make
difficult understanding.

Among the few works reported two of them can be remarked: VIZ [Ozcan et al., 1998] and POS-
SUM [Hazel et al., 1997]. Both systems enable the developer to validate visually specifications in Z.
Technology provided by VIZ allows software developers to choose an appropriate representation of
objects used in an executable formal specification and create animations of these objects in an in-
teractive fashion. However, the system only supports the construction of simple presentations. On
the other side, POSSUM facilitates the construction of complex presentation using Tcl/Tk, but it does
not provide assistance in the construction of the presentations. Moreover, both systems only supports
2D presentations and does not take advantage of current 3D graphics technologies. In contrast, we
attempt to fully exploit visualization techniques and also assist the developer in building the presen-
tation.

3 Visualization

Lets first state the notion of

DataData

VisualizationsVisualizations

InteractionInteraction

MentalMental
ModelModel

Figure 1: Visualization Process

visualization, which is defined by
Card [Card et al., 1998] as follows:
“the use of computer-supported, inter-
active, visual representations of data
to amplify cognition”, where cogni-
tion is the acquisition or use of knowl-
edge (see figure 1). So, the purpose
of visualization is insight, not pictures.
The main goals of this insight are dis-
covery, decision making and explana-
tion. That is the user may perform distinct types of visualization processes: exploratory (when the
user does not know what is looking for), analytical (the user knows what is looking for in the data, try-
ing to determine if it is there) or descriptive (when the phenomenon represented in the data is known,
but the user needs to present a clear visual verification of it). Information visualization is useful to the
extent that it increases our ability to perform these and other cognitive activities.
3.1 3D Graphics

At the beginning most of the visualization systems display 2D graphics, but nowadays, more and more
applications use 3D graphics in their visual presentations. Using this kind of presentations provides
several advantages. The first and, perhaps the most clear one, is a greater information density than
two-dimensional presentations as a consequence of a bigger physical space [Robertson et al., 1993].
Also, they help to have a clear perception of the relations between objects by integration of local
with global views [Mackinlay et al., 1991] and by composition of multiples 2D views in a single 3D

view [Koike, 1993]. Moreover their similitude with the real world enables us to represent it in a more
natural way than 2D. This means that the representation of the objects can be done according to its
associated real concept, the interactions can be more powerful and the animations can be even more
real.

On the other hand, several problems arise, as intensive computation and more complex implemen-
tation than two-dimensional interfaces. These problems can be lighten using powerful and specialized
hardware and several tools like 3D toolkits as JAVA3D [Sowizral et al., 1998] or 3D modeling lan-
guages such as VRML [ISO, 1997].

In general, 3D presentations should not be used in all visualizations, they should be used only
when it is possible to take advantage of their benefits and avoid their weakness [Mullet et al., 1995].
3D presentations are not essential, however a good utilization could be very helpful.

4 ReqViZ3D Approach

Our main objective is the visualiza-
Requirements

Lift movements between floors
Openings and closings doors
Ilumination of indicator lights

User's requests for travel

SpecificationSpecification

VisualVisual
ValidationValidation

Z Specification

Figure 2: Requirements Validation Process

tion and animation of requirements to
achieve a more effective requirements
validation process. The approach pro-
poses the use of visualization as well
as formal specifications. Before de-
scribing the approach lets state what a
validation means [Lano, 1996]: “Val-
idation of a description D against a
description C means checking that D
satisfies the properties specified in C,
where C is the informal or semi-formal
description.”

In the context of requirements val-
idation, the check consist in ensuring
that the specified system (D) is the system that the clients wants, where C is an informal set of the
clients expectations. Figure 2 resumes the key ideas behind this project. First, we express require-
ments formally in Z. A formal specification makes it possible to unambiguously denote the meaning
of the system requirements. After that, we define suitable graphic representations of the specification
concepts and validate visually the specification with the user. Therefore, knowing that the require-
ments specification conforms to the user needs, it is a much more reliable base for developing the
system.

The formal approach adopted can be classified as a light one, in the sense that no formal
reasoning (theorem proving) is carried out to check if the properties of the specified system re-
spond to the informal requirements and the emphasis is focused on the execution of the specifica-
tion [Jones, 1996, Hörl and Aichernig, 2000]. Using formal methods in a lighter way is both a key
to using them on large-scale applications and a way of penetrating fields outside the safety-critical
area, where formal methods are mainly used and a detailed application can be justified because of the
danger of loss of life [Jones, 1996].

We have decided to formalize requirements in Z. This is mainly because the experience gained
in the past years from case studies has proven that a large variety of specifications problems may be
successfully addressed in Z and set theory forms an adequate basis for building the more complex
data structures which are needed in specifications [Potter et al., 1991]. However, it should be noted

that also other formal specification languages could have been used.
In order to present an animated presentation, to validate requirements, the formal specification

is executed. The execution of the specification allows the user to walk through a specification using
different scenarios that are shown by visual presentations. The animation displays the behavior of the
specified system and provides a means of dynamic testing. As a result of the approach:

� Misunderstandings between clients and developers are detected.

� New services arise and obscure ones are clarified.

� Inconsistencies in the specification are detected.

� The developed system is much closer to the needed system.

� The development effort is reduced.

In the next subsections each part of the approach is discussed in more detail: from system specification
in Z, execution of specifications and visualization using a simple example.

4.1 Formal Specifications in Z

Z is a formal specification language that uses mathematical notation to describe in a precise way the
properties which an information system must have, without unduly constraining the way in which
these properties are achieved.

The main construction in Z is the schema. A schema enables us to decompose a specification into
small pieces. In Z, schemas are used to describe both static and dynamic aspects of the systems. The
static aspects include the states it can occupy and the invariant relationships that are maintained as the
system moves from state to state. On the other hand, the dynamic aspects include the operations that
are possible, the relationship between their inputs and outputs and the changes of state that happen.
In order to clarify this ideas a simple and widely discussed LIFT SYSTEM [Evans, 1994] example is
presented:
“A lift controller system has to service requests coming from the buttons placed on the floors of a building. The
lift is moved by the controller in a direction satisfying the pending requests until no more requests are found;
in this case the lift changes direction to service other new or pending requests. “

First, we introduce a schema to describe the system state which corresponds to the static part of
the system:

MaxLevel == 5
DIRECTION ::= up | down

STATE ::= moving | stopped
DOOR ::= open | closed

Lift
position :

�

direction : DIRECTION
state : STATE
door : DOOR
requests : � �

0 � position � MaxLevel
state � moving � door � closed

InitLift
Lift �

position � � 0
direction � � up
state ��� stopped
door � � open
requests ���	�

The lift can be defined by its position, direction, state and door state. The direction of the lift can
be up or down, while the state indicates if the lift is moving or stopped. The lift door opens when
the lift arrives at a floor and it is closed while the lift is moving. Possible requests are up or down
requests. The invariant states that the movement of the lift is restricted to an interval of valid floors
and asserts that while the lift is moving the door must be closed.

We can now start defining the system operations, that is the dynamic aspects of the system. Mak-
eRequests schema adds a new request to the requests set. Operation schema MoveUpUp defines the
operation of moving the lift up if up requests are present above the lift (also similar operations are
defined for the other directions, not reported for conciseness):

MakeRequests
∆Lift
f ? :

�

requests � � requests
���

f ? �

OpenDoor
∆Lift

door � closed���
f :
���

f 	 requests
 f � position �
state � � stopped
door � � open
requests ��� requests � � F �

MoveUpUp
∆Lift

door � close���
f :
��

f 	 requests
�

f � position �
direction � up
position � � position � 1
direction � � up
state � � moving
door � � closed

In an operation schema we can identify a declaration part and a predicate part. The declaration
part defines the inputs and the outputs of the operation as well as the system state schemas over which
its operates. The declaration ∆Lift tells us that the schema is describing a state change in Lift schema.
The declaration names ended in a question mark define the inputs of the schema. The part of the
schema below the line, that is the predicate part, defines conditions that constrain the values declared
in the declaration part.

4.2 Execution of formal specifications

Formal specification languages such as Z have been developed to precisely and concisely define the
characteristics and specifications of a software system. However, formal specification languages fail
in establishing a very important property for an immediate reflection of the consequences of the
specifications and for an early validation: the executability of a specification [Fuchs, 1992].

Z was not conceived for execution, since its aim is to define abstract properties of the system being
built and not the design decisions or the implementation details used in the system. Z specifications
are declarative and the developer can declare non-computationally entities, such as infinite sets or
non-computable functions and specify properties and operations on them.

Therefore, in order to execute a formal specification of Z, the notation of Z must be restricted
to a subset almost directly executable. This means that Z is restricted forbidding the declaration of
non-computationally entities and adapting it to the capacities of executables languages that, on the
other side, are less expressive that non-executables ones, because their functions must be computable
and their domains must be finite.

At this time several problems arise that must be faced according to the chosen method of transla-
tion and the target language. In general, most problems derive from trying to match different levels of
abstraction. Any acceptable solution has to balance declarativeness versus efficiency in the sense that
we want not only an executable form of a very high-level specification, but also a reasonable efficient
execution to test the specification [Breuer and Bowen, 1994].

Due to the mathematical and logical foundations of the formal languages the declarative or func-
tional languages seem to be the most suitable ones. For example, a straightforward way to animate
Z documents seems to be the mapping of Z specifications into PROLOG as practice shows that most
predicates found in Z documents have an easy implementation in terms of PROLOG clauses. A logic
programming language is a very interesting choice for translating a specification language as Z which
is based on first order logic. The conceptual gap between a logic programming language (which is a
subset of a first order logic) and an specification based on logic is significatively less than a specifica-
tion based on logic and an imperative language.

In fact, it is possible to take a subset of Z for generating PROLOG code. This point
of view is compatible with the assertion that a considerable part of Z has executable seman-
tics [Breuer and Bowen, 1994]. In particular, the approach we adopted is similar to the approach
proposed by Sterling [Sterling et al., 1996]:

� The semantics of a subset of Z on which the transformation is based, is clear.

� The transformation of the subset is almost direct.

� The expressivity of the subset is powerfull enough for many applications.

Each of these assertions demands a deeper discussion. However, as the focus is the applications of
logic programming in software engineering, these assertions will not be discussed, showing instead,
which one is the subset and how the transformation can be carried out by using an example. In the
next sections the process for translating Z schemas to PROLOG is explained.

4.2.1 State schemas

A state schema consist of declarations of variables and predicates that constraint their values. In order
to translate a state schema, a PROLOG clause will be created whose name is the same of the schema,
the arguments of the clause will be the state variables and the invariant of the schema as the body of
the clause. An additional argument is also added for storing global declarations of the specification:

Schema(GlobalDec,StateVar1,...,StateVarN):-invariant.

For example, figure 3 shows the translation of the Lift schema. The clause getContain, which
is used to access the values of global declarations, enable us to obtain the value of the constant
Max Level.

4.2.2 Operation Schemas

An operation schema models a state transition relating the values of the variables before the execution
of the operation with the values after the execution. Also, it defines inputs and outputs for the opera-
tion. For translating an operation schema a PROLOG clause is created whose name is the same of the
schema and the inputs and outputs of the operations as the arguments of the clause. Also, two addi-
tional parameters are needed (PROLOG structures) for holding the state of the system before and after

Lift
position :

�

direction : DIRECTION
state : STATE
door : DOOR
requests : � �

0 � position � MaxLevel
state � moving � door � closed

�

Prolog

z Lift(Z GState,Z position,Z direction,Z state,Z door,Z requests):-
0<=Z position,
getContain(Z StateG,’Root’,’Z MaxLevel’,Z MaxLevel),
Z position<=Z MaxLevel,

implies(state = moving, door = closed).

Figure 3: Translation of a State Schema

the execution of the operation. Other two parameters are included for maintaining global declarations
and logging and tracing the execution of the operations (information used to animate visualizations).
Finally the body of the clause will be the assertions of the Z schema, that is, pre and post conditions
of the schema operations. Also, after the execution of an operation schema the invariant must still
remain true, so in order to verify that fact a call to the clause of the state schema is needed.

The translation procedure for operation schemas is the following:

Schema(globalState(GlobalDec,GlobalDec’),state(before),state(after),Arg1,...,ArgN):-
predicates,

call to invariant.

MakeRequests
∆Lift
f ? :

�

requests ��� requests
���

f ? �

�

Prolog

z MakeRequests(globalState(Z GState,Z GNewState),
z Lift(Z position,Z direction,Z state,Z door,Z requests),
z Lift(Z position,Z direction,Z state,Z door,Z requests’),Z f):-

uni(Z requests,[Z f],Z requests’),
z Lift(Z GState,Z position,Z direction,Z state,Z door,Z requests’),

addChangeOp(Z GState,z MakeRequests,Z GNewState).

Figure 4: Translation of an Operation Schema

Figure 4 illustrates this translation procedure using the schema MakeRequests of the previous
example. The operation addChangeOp registers in the global state that the operation was executed.

4.3 Visualization

Once the system is specified in Z the developer defines the graphical representation of the require-
ments for visualizing and animating the specification concepts in a 3D world, as figure 5 shows, and
so validated by the users. In this example the user can press the buttons of each floor an see how the
lift services user requests to go up or down. When the button is pressed is lighted on and when the
lift services the request is lighted off. For building the visualization REQVIZ3D provides a graphical
specification language to define the geometry and behavior of the 3D graphics objects. An object
specification is composed by three main parts: geometry definition, actions and recognized events.
For example, the next script defines the lift graphic object.

%—————-geometry————————

geometry([def(open,file(’models/DBLDOORO.3DS’)),def(closed,file(’models/DBLDOORC.3DS’))]).

This section defines the different

FloorFloor

ButtonButton

LiftLift

PressedPressed
ButtonButton

ReqViz3D

Figure 5: Lift System Visualization

shapes that can be used to present a
graphic object. In particular in this ex-
ample, defines all the alternative ge-
ometries of the lift, that is one when
the lift is closed and another when it
is opened. Also each geometry can be
named in order to be identified and ac-
cessed.

The next section defines the behav-
ior of the lift (open, close and goto).
These actions are defined in terms of
a set of predefined actions (translate,
move,..). For example the action open
call the switch action in order to show
a graphic of the lift opened.

%—————–actions—————————-
action(open, [switch(open)]).
action(close,[switch(closed)]).
action(goto(Floor,From),[call(Time is abs((From-Floor)*1000.0)), moveTo(time(0,Time),[point3d(0.0,Floor,0.0)])]).

Finally the events section defines the reactions of
the lift in response to changes in the execution of
a Z specification using a change-propagation mech-
anism that ensures consistency between the specifi-
cations and visualizations based on implicit invoca-
tion [Krasner and Pope, 1988]. The mechanism main-
tains a registry of the dependent components within the
specification. Changes in the state of the model trig-
ger events that are propagated to the visualizations. Us-
ing this mechanism the Z animator announces different
events (as table shows) about the state of the execution
of a specification.

Event Description

StartOperation Begin of the execution
of an operation

EndOperation End of the execution of
an operation.

FailOperation The execution of an op-
eration failed.

StateChanged The state of the system
changed.

The first event that is propagated when an operation is executed is the start operation event. It
may be possible that the execution of the operation fails, so the fail operation event is announced. In
contrast, if the operation is successfully executed, an end operation event is propagated. At last, if the
operation changed the state of the system an state changed event is triggered. For example, when the
lift is closed the presentation must be updated (switch to closed geometry).
%———————-events——————————-
event(stateChanged,goto(X),[value(’position’,Pos),oldValue(’position’,OPos),goto(Pos,OPos)]).
event(stateChanged,openDoor,[open]).
event(stateChanged,closeDoor,[close]).

5 Examples

This section presents a brief description of other two examples developed with REQVIZ3D as
figure 6 shows. The examples developed were a vending machine and an automatic teller machine.
The first example is about a vending machine that sells cans. A client inserts coins in the coin slot.

After that, if the required amount of money was inserted, the client obtains a can by pressing the eject
button. The machine can expend a limited number of cans.

The second example is an auto- Vending MachineVending Machine

CanCan EjectEject
ButtonButton

Coin slotCoin slot

Card slotCard slot
MonitorMonitor

ATMATM KeyboardKeyboardTicketTicketMoneyMoney

Figure 6: Examples

matic teller machine which provides
these basic services: deposit, withdraw,
transfer, balance and user authentica-
tion. In order to use the ATM ma-
chine the user inserts its card and is
prompted for a password. The pass-
word is validated and if it is correct
the client can make different transac-
tions selecting operations by touching
the screen buttons and entering values
using the keyboard. The user receives
a ticket for each operation and, in the
case of extracting money, takes it.

6 ReqViZ3D Tool

In essence, this tool takes a

ZparserZ Specification Prolog
Z Executor

View + ControllerModel

Java

JavaLog Java3D

Figure 7: Global System View

specification as input and gen-
erates a visualization as output,
through which users can vali-
date requirements. REQVIZ3D
was developed in JAVA. In
order to animate a Z specifi-
cation it is translated to PRO-
LOG and executed. As we de-
veloped REQVIZ3D in JAVA, a
way to integrate JAVA and PROLOG was needed. This integration was done using JAVA-
LOG [Amandi et al., 1999]. JAVALOG is a PROLOG interpreter written in JAVA designed to allow
easy integration between JAVA and PROLOG mixing Logic/OO paradigms. Also, trying to take ad-
vantage of 3D visualizations we developed the View subsystem on the top of JAVA3D. Figure 7
presents a global system view of REQVIZ3D that defines a blueprint of the overall structure of the
application and corresponds to the architectural model Model-View-Controller. This model prescribes
the division of an interactive application in three parts, the Model that represents the application func-
tionality, the View responsible for the output interface and the Controller responsible for the input
handling.

7 Conclusions and Future Extensions

The main contribution of this work is the utilization of visualization techniques to reduce the com-
munication gap between the costumer and the developer: the system is described in a way that users
can understand. As a consequence of validating requirements in the earlier stages of the development
process the total effort to develop a system is reduced.

Also a prototype tool to visualize requirements was developed. This tool assist the developer in
several stages in the development process: from requirements specification in Z and definition of
graphical objects, to animation and execution of requirements in a 3D world.

Three dimensional graphics were used in the construction of the visualizations. Their similitude
with the real world enables us to represent it in a more natural way than 2D. This means that the

representation of the objects can be done according to its associated real concept. However, the
construction of 3D graphics presentations is a difficult and time consuming task, besides it requires
specific knowledge and even artistic skills. Therefore a future extension is the automatization of the
presentation extending the ideas presented in several works about the automatic generation of presen-
tations [Mackinlay, 1986, Zhou, 1998]. Several systems were presented, as an example, showing that
the use of visualization techniques were very useful in analyzing the dynamics of them.

At last, the work combines an informal approach (visualization) with a formal light one, result-
ing in a more effective technique. In that sense, a light application of formal methods can be an
economical way to improve the quality of specifications without using formal proofs.

Others future extensions include supporting also OBJECTZ as specification language, provide a
basic library of 3D graphics components and develop new examples about software architectures.

References

[Amandi et al., 1999] Amandi, A., Zunino, A., and Iturregui, R. (1999). Multi-paradigm languages
supporting multi-agent development. In MAAMAW’99, pages 128–139.

[Breuer and Bowen, 1994] Breuer, P. and Bowen, J. (1994). Towards Correct Executable Semantics
for Z. In Proc. 8th Z Users Workshop (ZUM), pages 185–212. Springer-Verlag.

[Card et al., 1998] Card, S., MacKinlay, J., and Shneiderman, B., editors (1998). Readings in Infor-
mation Visualization: Using Vision to Think. Morgan Kaufmann Publishers.

[Evans, 1994] Evans, A. S. (1994). Specifying and verifying concurrent systems using Z. Lecture
Notes in Computer Science, 873.

[Fuchs, 1992] Fuchs, N. (1992). Specifications are (preferably) executable. IEEE Software Engi-
neering Journal, 7(5):323–334.

[Gonzalez and Urban, 1991] Gonzalez, J. P. D. and Urban, J. E. (1991). Language aspects of EN-
VISAGER. an object-oriented environment for the specification of real-time systems. Computer
Languages, 16(1):19–37.

[Hazel et al., 1997] Hazel, D., Strooper, P., and Traynor, O. (1997). Possum: An animator for the
SUM specification language. In Proceedings: 4th Asia-Pacific Software Engineering and Interna-
tional Computer Science Conference, pages 42–51. IEEE Computer Society Press.

[Hörl and Aichernig, 2000] Hörl, J. and Aichernig, B. K. (2000). Validating voice communication
requirements using lightweight formal methods. IEEE Software, 17(3):21–27.

[ISO, 1997] ISO (1997). Vrml97, international specification. Technical report, ISO.

[Jackson and Wing, 1996] Jackson, D. and Wing, J. (1996). Lightweight Formal Methods. IEEE
Computer, 29(4):22–23.

[Jones, 1990] Jones, C. B. (1990). Systematic Software Development Using VDM. Prentice-Hall
International, Englewood Cliffs, New Jersey, second edition. ISBN 0-13-880733-7.

[Jones, 1996] Jones, C. B. (1996). Formal methods light: A rigorous approach to formal methods.
Computer, 29(4):20–21.

[Kelly et al., 1992] Kelly, J. C., Sherif, J. S., and Hops, J. (1992). An analysis of defect densities
found during software inspections. The Journal of Systems and Software, 17(2):111–117.

[Koike, 1993] Koike, H. (1993). The role of another spatial dimension in software visualization.
ACM Transactions on Information Systems, 11(3):266–286.

[Krasner and Pope, 1988] Krasner, G. E. and Pope, S. T. (1988). A cookbook for using the model-
view-controller user interface paradigm in Smalltalk-80. Journal of OOP, 1(3).

[Lano, 1996] Lano, K. (1996). The B Language and Method: A guide to Practical Formal Develop-
ment. Springer Verlag London Ltd.

[Mackinlay, 1986] Mackinlay, J. (1986). Automating the design of graphical presentations of rela-
tional information. ACM Transactions on Graphics, 5(2):110–141.

[Mackinlay et al., 1991] Mackinlay, J. D., Robertson, G. G., and Card, S. (1991). The perspective
wall: Detail and context smoothly integrated. In Proceedings of ACM CHI’91, pages 173–179.

[Meyer, 1995] Meyer, B. (1995). On formalism in specifications. IEEE Software, 2(1):6–26.

[Mullet et al., 1995] Mullet, K., Schiano, D. L., Robertson, G., Tesler, J., Tversky, B., Mullet, K., and
Schiano, D. J. (1995). 3d or not 3d: More is better or less is more? In Proceedings of ACM CHI’95
Conference on Human Factors in Computing Systems, volume 2 of Panels, pages 174–175.

[Ozcan et al., 1998] Ozcan, M. B., Parry, P. W., Morrey, I. C., and Siddiqi, J. I. (1998). Visualisation
of executable formal specifications for user validation. Lecture Notes in Computer Science, 1385.

[Parry et al., 1998] Parry, P., Ozcan, M., and Siddiqi, J. (1998). The application of visualization to
requirements eng. Technical report, Computing Research Centre, Sheffield Hallam University.

[Potter et al., 1991] Potter, B., Sinclair, J., and Till, D. (1991). An Introduction to Formal Specifica-
tion and Z. Prentice Hall, New York.

[Potts, 1991] Potts, C. (1991). Expediency and appropriate technology: An agenda for requirements
engineering research in the 1990s. Lecture Notes in Computer Science, 550.

[Pulli et al., 1991] Pulli, P., Elmstrom, R., Leon, G., and de la Puente (1991). IPTES - incremental
prototyping technology for embedded real-time systems. Technical report, ESPRIT.

[Robertson et al., 1993] Robertson, G., Card, S. K., and Mackinlay, J. D. (1993). Information visu-
alization using 3D interactive animation. Communications of the ACM, 36(4):57–71.

[Sowizral et al., 1998] Sowizral, H., Rushforth, K., and Deering, M. (1998). The Java 3D API Spec-
ification. Addison-Wesley.

[Spivey, 1988] Spivey, J. M. (1988). Understanding Z. Cambridge Tracts in Theoretical Computer
Science 3. Cambridge University Press. ISBN 0-521-33429-2.

[Sterling et al., 1996] Sterling, L., Ciancarini, P., and Turnidge, T. (1996). On the Animation of Not
Executable Specifications by Prolog. Int. Journal on SE and KE, 6(1):63–88.

[Zhou, 1998] Zhou, M. X. (1998). Automated visual discourse synthesis: Coherence, versatility, and
interactivity. In Proceedings of ACM CHI 98 Conference on Human Factors in Computing Systems
(Summary), volume 2 of Doctoral Consortium, pages 76–77.

