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Abstract

Given a population of classifiers, we consider the problem of designing highly compact and
error adaptive decision making systems. A selection approach based on misclassification diversity
and potential cooperation among classifiers is proposed. The compactness constraint allows us the
efficient implementation of fuzzy integral combination rules regarding both the interpretability of
fuzzy measures and low complexity of fuzzy integral operator. Experimental results show the
feasibility of our approach.
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1 Introduction

Current decision making systems are mainly designed in a sequential approach. Usually, two stages
are involved [26]. The first one, which is typically highly problem specific, is concerned with the
design of a population of base classifiers. Assuming that diversity is a useful property in the design
of decision making systems [14, 15, 25], a highly diverse population of base classifiers is constructed
in this stage. In addition, the second stage is concerned with the design of combination rules over
individual classification results, which is generally application independent. At this stage, combining
rules enforcing complementarity are implemented. It should be noted, however, that a rich population
of classifiers in terms of diversity might not be entirely errors complementary, i.e., there is no explicit
measure of diversity involved in the sequential design [14].

Intuitively, when the number of diverse classifiers is increased, the quantity of joint misclassifi-
cations should diminish. However, many combinational methods might yield to inconsistent results
or increase greatly their computational complexity. Inconsistencies might be due to the lack of ful-
filment of combination rules hypotheses (i.e., independence assumption in simple rules). In trained



combination rules [7] complexity problems arise due to the estimation of a huge number of parame-
ters, and estimation simplifications might also imply inconsistent results. Therefore, with a growing
population of classifiers an alternative design strategy should be considered.

In this paper, a proposal for the design of highly scalable multiclassifier systems is presented.
The proposal is based on the selection of a reduced subset of potentially cooperating classifiers. The
target subset is constructed in a greedy fashion using a heuristic method, which takes into account both
the performance and errors distribution of selected classifiers according to the intended combination
rule. At a first glance, our proposal might be considered as an instance of previous solutions of large
multiclassifier systems, likechoose the best[18] or test and select[22] methods. We recall that the
choose the bestmethod considers only the individual accuracy of classifiers under the assumption of
a uniform distributed diversity. In our work, the uniform distributed assumption is not mandatory.
In addition, test and selectmethods are basically brute force approaches because a target subset is
searched in the set of all available subsets of classifiers. In the present work, a target subset is selected
using a single scanning over the set of error patterns of classifiers. At this scanning process, classifiers
selection is performed taking into account the accuracy and complementarities of misclassifications
per class. Computational complexity of this selection processscales linearlyw.r.t. the number of
available classifiers.

In this paper, we focus on Fuzzy Integral (FI) combination rules. Due to the selection process,
FI parameters can be easily computed. As a fact, the estimation of FI parameters might be computa-
tionally unaffordable if the whole population of classifiers were used. Furthermore, even in the case
those FI parameters were simplified by the use of decomposable measures, likeλ-measures, preci-
sion problems might arise instead. For the sake of simplicity, we constrain ourselves to minimalist FI
rules, i.e., target subsets of three classifiers. The proposed subset size is tightly linked to our recent
work about the design of scalable decision making systems based on the selection of multiple, not
necessarily disjoint but still small, subsets of classifiers [3]. We expect the present work enlightens
the computational cost vs. robustness of joint decision. This paper is organized as follows. In sec-
tion 2, we present the problem. In section 3, we propose the design cycle of scalable multiclassifiers
systems. We also give a briefly review of FI combination rules before going into details about the
core selection process. In Section 4, we present experimental results. In Section 5, we present the
conclusions and further work.

2 Problem Statement

Multiclassifier systems are effective if individual misclassifications can be overcame by a cooperative
work among classifiers. The joint decision is achieved by combining individual results. The use of
trained combination rules, like fuzzy integrals, allows us to overcome hard classification scenarios,
where few classifiers in the given population are strongly fitted to the target classification problem
[21] and consequently, simple combination rules, like majority voting, might fail. In addition, com-
binations of a growing population of classifiers might yield to inconsistent results or increase their
computational complexity. Therefore, a proper selection of a small subset of complete classifiers,
complete enough to cover the problem, joint with the use of a powerful combination rule may provide
a framework for solving a general scalability problem.

The aim of this work is to propose a systematic process to make possible scalable joint decision
makings when a general combination rule is used. To do that, we propose a simple selection of the
most error complementary and task redundant subset of classifiers (figure 1) regarding FI combination
rules.

Fuzzy integrals combine individual decisions taking into account their reliability. This approach
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Figure 1: Scalable decision making system

has sense if there is redundancy in the analysis and if classifiers are different. Previous studies on
joint decision making agree with the need of diversity in base classifiers [6, 14, 21].

Let us assume that a population ofnclassifiers,{X1, ..., Xn}, non specialized on the set of possible
alternatives,W = {w1, ..., wc}, is given. The selection process computes the individual accuracy and
error distribution of classifier.

We assume that available data comes into train and test data sets. In addition, we presume that
enough training data is available, so that, two training data sets can be generated: one for training the
base classifiers and the other for training the combination rule, e.g., for fuzzy measures estimations.
Hereafter, we will refer to training data sets asclassifiers training data setor T1, andcombination
rule training data setor T2; and thetesting data setis calledT3.

The distributions of errors related to classifiers are estimated during the training of the combi-
nation rule. To do that, each classifier will analyse the samples ofT2. When individual classifiers
disagree their decisions are piled up in one matrix calledmatrix of error patternor E. Assuming that
classifiers disagree ink samples,E will be a k × n binary matrix with each column composed of a
classifier performance, where 0 implies error and 1 implies non error in the current sample.

The selection of a suitable subset, hereafter namedO and v its cardinality, takes into account
the constraint related to the estimation of FI parameters, and the individual and joint behaviour of
classifiers related to misclassifications.

3 Adaptive Design Cycle of Decision Making Systems

Concerning the adaptability issues in the design of scalable decision making systems, we will consider
the selection of a subset of classifiers based on both their accuracy and their distribution of errors. The
overall proposed design involves the following stages:

• Base Classifiers Generation:Aiming the generation of a highly diverse population of classi-
fiers, different artificial intelligent techniques are implemented and different parameters in the
generation of knowledge bases are used.

• Combination Rule Formulation:Aiming the induction of highly descriptive combination rules,
FI rules involving a numberv << n are trained. For the sake of simplicityv=3 is adopted.

• Joint and Individual Behaviour Characterization:Two kind of measures are considered for the
performance description: errors density and distribution. In addition, the behaviour character-



ization process also takes into account the selected combination rule constraints, e.g., scalable
fuzzy densities and measures computation.

• Target Subset Selection:This stage simultaneously takes into account the two previous stages.

The above mentioned design steps are summarized in the diagram2.

Base classifiers generation


Target subset selection
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individual and joint


classifiers behaviour


Design of combination
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Figure 2: Multiclassifiers design cycle based on misclassifications complementariness

We will concentrate in the last three points, the first one is a huge line of research [2], which
involves methods of manipulation of training parameters such astraining data sampling[1, 8, 12],
data preprocessing[20], andmodification of feature space[10, 17].

In what follows, we briefly revise FI combination rules regarding their use in the error adaptive
design of decision making systems. After that, we will describe the subset selection procedure.

3.1 Decision Integration with FI

Fuzzy integrals have been shown to be a useful method for combining results of multiple sources
of information. Its definition with respect to afuzzy measure[23] or capacity[5] provides a good
framework to represent the imprecise knowledge associated with classifiers. In the literature, prac-
tical implementations [4, 13] only combine 2 or 3 classifiers due to the constraint of the parameter
estimation with a large number of classifiers.

We will consider the discrete Choquet and Sugeno FIs. See [9, 16] for theoretical details.
Assuming a multiclassifier system composed ofn classifiers, andC possible alternatives for input

samples (s), that belong to ap-dimension feature space,s∈ <p, we callf(Xi(s)) or fi : <p → [0, 1]C ,
the classification function that supplies the individual decision through a vector ofC components.
Each component of this vector represents the degree of support given by the classifierXi to the
hypothesis thats comes fromwj, with j = 1, ..., C. The joint decision is obtained by aggregating all
partial classifiers evidences weighed by ability degrees (g).

Let g be a fuzzy measure onX, whose elements are denotedX1, ..., Xn. The Sugeno integral [23]
of a functionf :X → [0, 1] w.r.t. g is defined by

Sg(f) :=
n

max
i=1

{min(f(X(i)), g(A(i)))} (3.1.0)

The (discrete) Choquet integral [5] of a functionf : X → [0, 1] w.r.t. g is defined by

Cg(f) :=
n∑

i=1

(f(X(i))− f(X(i−1)))g(A(i)) (3.1.0)



Where·(i) indicates the permutation of indices 0≤ f(X(1)) ≤ . . . ≤ f(X(n)) ≤1, f(X(0)):=0, and
A(i):={X(i), . . . , X(n)}.

A fuzzy measure or capacityg onX is a functiong : 2X → [0, 1] if

1. g(∅) = 0,

2. g(X)= 1,

3. A ⊂ B ⊂ X ⇒ g(A) ≤ g(B).

In our case,g(A(i)) quantifies the ability ofA(i) to classify the input on theW space. In particular,
wheng is related to a single element,Xi with i ∈ {1, ..., n}, is calledfuzzy densityof the ith source
or gi.

The estimation of fuzzy measures can be done in different ways, e.g., using probabilities of mis-
classification [9, 19], through iterative algorithms to diminish the quadratic error [9, 11] or using
genetic algorithms [24]. In general, fuzzy measures cannot be evaluated from fuzzy densities.

Though FI operators provide a useful framework for the design of fuzzy adaptive decision making
systems, they require the estimation of2n − 1 parameters forn classifiers, which even for smalln
values might be computationally unaffordable.

In an attempt to overcome the complexity estimation of fuzzy measures, Sugeno introducedλ-
fuzzy measures, which are decomposable measures related to fuzzy densities, that fulfil the further
property:

gA,B
λ = gλ(A

⋃
B) = gλ(A) + gλ(B) + λgλ(A)gλ(B)

for every disjoint subsets A, B ofX and for someλ ∈ (-1,∞). λ can be uniquely determined for a
finite set by means of the second property of fuzzy measure (g(X) = 1), which leads to solving a
polynomial of (n − 1)th degree. Consequently, dealing with large groups of classifiers would imply
a difficulty in the polynomial root determination, but we use small coalitions to attend the precision
constraint:λ value propagates the estimation errors of all fuzzy densities.

The use ofλ-measure simplification reduces ton − 1 the number of parameters to be estimated,
but also limits the flexibility in fuzzy measures relationship.

3.2 Systematic Selection of Complementary Classifiers

In this section, we describe the core selection process. Main inputs to the process are fuzzy
densities and joint distribution of errors over the training data of combination rules.

In the first step, we seek the classifier exhibiting the lowest amount of misclassifications (seek X∗
1

method of algorithm 1). In this way, an initialO subset is defined and its greedy augmentation
starts. We compute the performance value, in each class, related to the current subset of classifiers
(O = {X∗

1}).
Regarding this purpose, the rows of theE matrix are separated inC sub-matrices depending on

the class associated with samples (split w). In addition, a new vector of pattern of error associated



with O is generated per class (Eo[wj]) and its density of 1s is evaluated. At first,Eo is initialised with
the error pattern related toX∗

1 .

3.2.1 Example:

In order to illustrate the selection methodology, we shall see a toy example. Let us consider the following matrix of the
error pattern of 12 samples, table 3.2.1, associated with 4 classifiers and 3 classes. The first five samples are related tow1,
the next three are related tow2, and the last fourth are fromw3.

E=

X1

1
0
0
0
1
1
0
0
1
1
0
0

X2

0
0
0
1
1
0
1
0
0
1
0
1

X3

0
1
0
1
1
0
0
1
0
0
1
0

X4

0
1
1
0
0
1
1
0
1
0
1
0

Table 1: Matrix of the error pattern

The first selected classifier isX4 (X∗
1 ) due to its coverage (density of 1s) on the 12 samples. Next,E is divided into

E[w1], E[w2], andE[w3] associated withw1, w2 andw3 respectively.

E[w1]=

X1

1
0
0
0
1

X2

0
0
0
1
1

X3

0
1
0
1
1

X4

0
1
1
0
0

E[w2]=

X1

1
0
0

X2

0
1
0

X3

0
0
1

X4

1
1
0

E[w3]=

X1

1
1
0
0

X2

0
1
0
1

X3

0
0
1
0

X4

1
0
1
0

So, the coverage of classifiers ofO = {X4} (first time onlyX∗
1 ) on the subset of samples computed in each class

(comput perf) is: WPerf [1] = 2
5 , WPerf [2] = 2

3 , WPerf [3] = 2
4 . Therefore, the next classifier to be included is in

order to improvew1 (the lowest performance class).

The class yielding the lowest performance,w(−), is used in order to guide the addition of the next
classifier (X∗). As a fact, we seek the best classifier in terms of complementarity and quantity of
errors w.r.t. to the poorest class using its error pattern,E[w(−)]. Regarding this purpose, a new matrix
of errors (E‖) is computed by a simpleor operation (denoted by‖) between the current vector of the
subset error pattern (Eo[w(−)]) and each column ofE[w(−)]. Non zero entries in this new matrix points
out that the sample might be correctly classified when adding the column classifier to the current
subset. Hence, we should look for columns (the error pattern of each classifier) with highest density
of ones (max 1X). Tie breaking is handled by choosing the classifier with less misclassifications
w.r.t. the current subset (max XRedundance).



3.2.2 Example:

Following the previous example, the computation of the error pattern of the current subset w.r.t. the worst class (w(−) =
w1) and the evaluation of complementarity of remaining classifiers is shown bellow.

E[w1]=

X1

1
0
0
0
1

X2

0
0
0
1
1

X3

0
1
0
1
1

‖

Eo[w1]
0
1
1
0
0

−→ E‖[w1]

X1

1
1
1
0
1

X2

0
1
1
1
1

X3

0
1
1
1
1

As a result,X∗ = X3 is included toO. BothX2 or X3, working jointly with the classifiers ofO, could achieve an
equal coverage on samples associated withw1, butX3 has less individual misclassifications (or higher coverage onw1).

When a new classifier is included toO, theEo[wj] vector is upgraded computingor operation
between the currentEo[wj] and thei-th column ofE[wj] matrix. The selection process continues
until the target size of the preselected subset is achieved (Q = v).

3.2.3 Example:

Hence, the new coverage withO = {X4, X3} is:

Eo[w1]
0
1
1
1
1

WPerf [1] = 4
5

Eo[w2]
1
1
1

WPerf [2] = 3
3

Eo[w3]
1
0
1
0

WPerf [3] = 2
4

In the same way,X2 is the next classifier to be included in order to improve the classification ofw3.

It should be noted that theor operation among the error pattern of classifiers allow us to estimate
the classifiers ability (computing the coverage) for analysing the set of validating samples.

Next, the whole selection process is presented in an algorithmic form (algorithm 1).

4 Illustrative Example

We will illustrate an application of scalable multiclassifiers architecture withwine1 data sets.
A. Data Processing
The wine data set contains 178 samples, 13 continuous inputs variables, and 3 output classes. The
protocol applied to data set does samplings to generate 10 random sets of 75% samples to train (half
for classifiers and half to estimate FI parameters), and 25% for system testing.
B. FI parameters
Columns: n= 10, given classifiers with 20% of mean errors. Their diversity is achieved implementing
different inference methods (5 classifiers are neural networks2, and 5 classifiers implement fuzzy
inference3).

1http://www.ics.uci.edu/˜mlearn/MLRepository.html
2http://fuzzy.cs.uni-magdeburg.de/˜borgelt/software.html
3http://www.inra.fr/bia/M/fispro/



Algorithm 1 Error adaptive classifier selection
1: Input: The error pattern ofn classifiers onT2 = {z1, ..., zk} samples,Ek×n

v: Upper bound of classifiers subset size
2: Output: Subset ofv classifiers,O, with the highest misclassification complementarity
3: O ← seek X∗

1 (E)
4: Q ← 1
5: for 1 ≤ j ≤ C do
6: E[wj] ← split w(E)
7: end for
8: for 1 ≤ j ≤ C do
9: Eo[wj] ← E[wj][X

∗
1 ]

10: end for
11: while Q ≤ v do
12: for 1 ≤ j ≤ C do
13: WPerf [j] ← comput perf(Eo[wj])
14: end for
15: w(−) ← min(WPerf [j])
16: for 1 ≤ i ≤ n do
17: E‖[i][w(−)] ← Eo[w(−)]‖E[i][w(−)]
18: X∗ ← max 1X(E‖[i][wj])
19: if tie = true then
20: X∗ ← max XRedundance(E‖[wj])
21: end for

O ← include(X∗)
22: Q ← Q + 1
23: end while



The dimension of O subset: v=3.
The results are summarized in the table 2.

n=10 and v=3 Sugeno Choquet
Median Error % 0 0
Mean Error % 2.7 2.5

n=10 and v=10 Mean Error ∼13 ∼12

Table 2: Scalable multiclassification performance

We noted that combining the whole set of classifiers the mean error was more than 12%. With the
selection proposed the mean error using Sugeno FI was 2.7% and 2.5% with Choquet FI, better than
the best classifier and better than the combination of the complete ensemble.

5 Conclusions

We have presented a method to design compact multiclassifier systems when a large base of classifiers
is given. As we could note, the improvement of overall accuracy can be done when more information
is taken from classifiers. The joint decision making using fuzzy integral combination rules can be
done under an appropriate selection of classifiers. In fact, an adaptive classifiers selection, to their
error pattern, may provide a framework for solving a general scalability problem.

We have utilized a fixed size of classifiers subset. In further works, this value (v) could be opti-
mised by means of cross-validation to each data set. Intuitively, we expect that highly compact and
monolithic decision making systems, like the ones we are proposing, might exhibit less adaptation
capabilities than those based on a completely distributed design. However, computational costs might
be also higher.

Experimental results show that a given group of diverse classifiers can improve their individual
performance and the global performance with a cautious splitting and selection.
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