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Abstract 
 
 
One current research goal of Artificial Intelligence and Machine Learning is to improve the 
problem-solving performance of systems with their own experience or from external teaching. 
The work presented in this paper concentrates on the learning of decomposition rules, also 
called d-rules, i.e., given some examples learn rules that guide the planning process, in new 
problems, by determining what operators are to be included in the solution plan.  
Also a planning algorithm is presented that uses the learned d-rules in order to obtain the 
desired plan. 
The learning algorithm includes a value function approximation, which gives each learned 
rule an associated function. If the planner finds more than one applicable d-rule, it 
discriminates among them using this feature. 
Decomposition rules have been learned in the blocks world domain, and those d-rules have 
been used by the planner to solve new problems. 
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1.- Introduction 
 
One of the many definitions of planning says that it is the process of computing several steps 
of a problem-solving procedure before executing any of them. For some problems the 
distinction between planning and doing is unimportant, but for others it may be critical.   
 
A traditional way to do planning is to develop a domain-independent planning algorithm that 
is complete; usually that kind of algorithm requires a great deal of search and backtracking. In 
contrast, we aim to design and implement a domain-independent speedup learning system that 
emulates a teacher in being efficient at planning. 
 
The blocks world domain in itself might be considered of little practical interest, but it can 
support systematic experimentation, and allows features relevant to many kinds of reasoning 
to be abstracted and studied [Slaney & Thiébaux, 2001]. 
 
In this work are presented and tested algorithms to improve performance in the planning 
process. This is done by means of learning decomposition rules or d-rules, from a set of given 
examples.  Then those d-rules are used in a proposed planning system, in order to solve new 
problems. 
 
The learning system needs examples and from them, mainly doing a generalization process 
and using a FOIL-like approach [Quinlan, 1990] coupled with linear regression; the desired d-
rules are learned. 
 
The MAXQ value function decomposition approach [Dietterich, 2000] helps in decomposing 
the value function of a state into sub-value functions that belong to subtasks. Extending 
hierarchical reinforcement learning to relational domains is an important problem [Tadepalli 
et al. 2004]. 
 
The current work is presented as domain independent, but the proposed algorithms have been 
tested in the blocks world, obtaining satisfactory results. Both, with the learned d-rules, and 
also, with the planning using the learned d-rules. 
 
The paper is organized as follows. Section 2 presents some generalities on the planning topic. 
Section 3 presents the learning of the basic d-rules and section 4 the planning with those d-
rules. Then section 5 covers the main aspects of the value function approximation, by means 
of learning q-values, and section 6 introduces a new form of d-rules. Section 7 presents the 
definitive form of the d-rules, and section 8 presents the planning algorithms with such 
learned rules. Finally section 9 presents the results, conclusions and future work. 
 
 
2.- Planning 
 
Planning is the task of establishing a sequence of actions that will achieve a goal [Russell & 
Norvig, 2003]. 
 



In general, for simplicity the domains and environments are considered fully observable, 
deterministic, finite, static (in the understanding that change happens only when an operator is 
applied), and discrete [Russell & Norvig, 2003]. These are called classical planning 
environments.  
 
A typical representation considers states, goals and actions. The researchers aim to make it 
possible for planning algorithms to take advantage of the logical structure of the problem. The 
key is to find a language that is expressive enough to describe a wide variety of problems, but 
restrictive enough to allow efficient algorithms to operate over it [Russell & Norvig, 2003]. 
STRIPS language is the basic representation language of classical planners. 
 
One of the most famous planning domains is known as the blocks world. This domain consists 
of a set of cube-shaped blocks sitting on a table. The blocks can be stacked, but only one 
block can fit directly on top of another. A robot arm can pick up a block and move it to 
another position, either on the table or on top of another block. The arm can pick up only one 
block at a time, so it cannot pick up a block that has another one on it. The goal will always be 
to build one or more stacks of blocks, specified in terms of what blocks are on top of what 
other blocks.  
 
Planners decompose the world into logical conditions and represent a state as a conjunction of 
positive literals. As literals can be used propositions, first-order predicates, as well as other 
alternatives.  
 
A goal is a partially specified state, represented as a conjunction of positive ground literals, 
such as on(a,b) ^ on(b,c) or at(plane2,jfk). A propositional state s satisfies a goal g if s 
contains all the atoms in g, and possibly others.  
 
An action or operator is specified in terms of the preconditions that must hold before it can be 
executed and the effects that are obtained when it is executed. For example, figure 1 shows an 
operator that moves a block to the table, and figure 2 shows the operator for flying a plane 
from one location to another. The condition is a conjunction of predicates that must be true in 
a state before the operator can be executed. The effect of applying an operator is separated in 
what becomes true after the operator is applied (add list) and also what is no longer valid in 
the new state (delete list). 
 

 
operator: put-down(x) 
condition: on(x,y)  ^  clear(x)  ^  table(tbl)  ^  block(x)  ^  block(y) 
add:  on(x,tbl)  ^  clear(y) 
delete:  on(x,y)  
 

     
Figure 1: Operator put-down 
 
 
 
 
 
 



 
operator: fly(p,from,to) 
condition: at (p,from)  ^  plane(p) ^  airport(from)  ^  airport(to) 
add:  at (p,to) 
delete:  at (p,from)  
 

 
Figure 2: Operator fly 

 
In planning the most straightforward approach is to use state-space search. Because the 
descriptions of actions in a planning problem specify both preconditions and effects, it is 
possible to search in either direction: either forward from the initial state or backward from 
the goal. Research over the years has shown that neither forward nor backward search is 
efficient without a good heuristic function.  
 
Research has shown as well that a special data structure called a planning graph can be used 
to give better heuristic estimates. These heuristics can be applied to different search 
techniques; also a solution can be extracted directly from the planning graph, using a 
specialized algorithm such as the one called GRAPHPLAN [Blum & Furst, 1997]. 
 
 
3.- Learning basic d-rules 
 
In the assumption that examples are available, an alternative way taken has been first to learn 
some domain specific control knowledge that allows the planner to search efficiently on new 
problems. 
 
In the beginning Explanation Based Learning (EBL) was a successful approach. The work on 
examples using prior knowledge in the form of domain theory to explain the obtained solution 
and the resulting explanations being generalized and reformulated as control rules or macro 
operators, allow the capability of solving new problems [Etzioni, 1993]. 

PRODIGY [Veloso et al., 1995; Fritz, 2004] learns control rules by reviewing the response 
rules of a plan, and noting how well or bad they worked. The central part of the PRODIGY 
system is a planner. One of the many characteristics of this system is that it forgets control 
rules that are less useful. 

In a prior line of work we explored algorithms to learn relational goal decomposition rules or 
d-rules by generalizing from multiple examples. ELDER obtained satisfactory results in 
obtaining d-rules for the blocks world [Roncagliolo, 1993]. In this same line ExEL also uses a 
simple form of explanation based learning to prune literals that are irrelevant to the solution 
and infers abstract high level terms in the state description [Reddy & Tadepalli, 1999]. At 
some point, to facilitate induction of simple d-rules, questions are asked to the teacher, 
formally these questions correspond to membership queries and help ensure that learning is 
efficient, but unfortunately while learning from examples is useful it is too demanding in that 
the learner requires the teacher to generate solutions to problems and also answer those 
membership queries [Reddy et al., 1996].  
 



LeXer considers learning from exercises, where examples are ordered in increasing order of 
difficulty, so that useful sub-problems are presented first [Reddy & Tadepalli, 1997]. 
Exercises are named after the natural way and pedagogic technique of presenting first simpler 
problems, and then others where it is useful, and many cases necessary, to use the knowledge 
gained from solving the previous simpler problems. 
 
D-rules have the following structure <g,c,sg,op> [Reddy et al., 1996]. The first argument g is 
the goal, the second argument c is the condition, the third argument sg is a sequence of 
subgoals, and the fourth and last argument op is an operator. The subgoals are also ordered by 
the corresponding algorithm. The interpretation is as follows: in order to achieve goal g, if 
condition c is satisfied in the initial state, then the subgoals sg must be satisfied and finally the 
operator op must be executed, guaranteeing that goal g will be achieved. The subgoals will 
ensure that in the current state the operator is applicable. Figure 3 presents a d-rule for the 
blocks world domain. 
 

 
goal:   on(a,b) 
condition:  block(b) 
subgoals:  < clear(a), clear(b) > 
operator:  (put-on,a,c,b) 
 
 
Figure 3: A d-rule for the blocks world  

 
Alternatively the structure of a d-rule can be <g,c,sg> [Reddy & Tadepalli, 2005] where the 
goal g and the condition c conserve their meaning, sg is a sequence of subgoals where its last 
element is the operator, that when executed after the subgoals will cause that the desired goal 
is achieved in the current state. Figure 4 presents a d-rule for the air traffic control (ATC) 
domain. 
 

 
goal:   land(pl) 
condition:  plane-at(pl, loc) ^ level(L3, loc) 
subgoals:  < move(pl, L2), move(pl,L1), land1(pl) > 
 

 
Figure 4: A d-rule for the ATC  

 
 
4.- Planning with d-rules 
 
The d-rule based planner takes as input a goal, a state from which the goal needs to be 
achieved, the domain theory and a set of d-rules. The planner finds the d-rules that correspond 
to the goal and picks a d-rule whose condition is satisfied in the current state. The chosen d-
rule establishes a subgoal sequence. These subgoals are achieved one after the other in the 
given order. Each subgoal in turn becomes a goal and the whole process is repeated, looking 
for an applicable d-rule. So the planner achieves goals based in a depth-first search 
recursively until in the base case when a d-rule indicates only immediately applicable 
operators as subgoals. 
 



The construction of the d-rules aims for an efficient planning, when using the learned d-rules. 
However in general there may be multiple d-rules for a goal and their conditions may not be 
disjoint, creating a scenario where the planner needs to make a choice among applicable d-
rules. 
 
  
5.- Learning q-values 
 
One way to go when multiple d-rules are applicable is to have, associated with each d-rule, a 
value function that indicates the goodness of applying the corresponding d-rule. In 
[Roncagliolo & Tadepalli, 2004] is presented an algorithm that extending the hierarchical 
reinforcement learning [Dietterich, 2000; Sutton et al., 1999; Parr & Russell, 1998; Kaelbling, 
1993] to relational setting, it considers the learning of  a relational function approximator in 
the form of Horn clauses with linear functions.  
 
The value function approximator that is embedded in the d-rule learning algorithm, learns q-
values, which are triplets Q (Task,SubTask,Val) consisting in piecewise linear functions. This 
is inspired in the Q-learning algorithm of the reinforcement learning approach [Džeroski et 
al., 2001]. Figure 5 presents two examples. In general what is said is that the current state is V 
steps from achieving Task, once the subtask is achieved. The reward for each step is assumed 
to be -1 and the reward for the goal state is 0. The first rule says that “if a block Y is on X, 
then the total reward for clearing X is the total reward for clearing Y minus 1”. The second 
rule says that “if a block X is clear, then the total reward for putting X on Y is the reward for 
clearing Y minus 1”. 
 

 
q(clear(X),clear(Y),V)  :- 
                  on(Y,X),  q(clear(Y),_,V1),  V  is  V1  -  1. 

 
q(on(X,Y),clear(Y),V) :-   
                  clear(X),  q(clear(Y),_,V1),  V  is  V1  -  1. 
 
 
Figure 5:  Q-values examples 

 
We use a greedy covering algorithm like FOIL [Quinlan, 1990] to learn the value functions as 
a set of rules. It separates the examples for each task-subtask pair [Roncagliolo & Tadepalli, 
2004]; and finds the best rule that minimizes the square error with respect to those examples. 
Thus a list of rules is learned for each task-subtask pair. Each rule has an applicability 
condition (if part) which binds some variables, and a linear function of these variables (the 
then part) which predicts the value function of the state. 
 
The best rule is found by trying all conditions, and deciding for the one that has associated the 
least error, shown in figure 6. The appropriate condition literals include all the predicates 
applicable in the state, and the variables are the ones found in the task, and at most one new 
variable for each literal in the condition. As features i.e., variables for doing the linear 
regression, are considered all the bound numeric variables, as well as the value functions for 
the subtasks of the given task. 
 



 
LearnBestRule(examples) 
    //  flag for no minError yet 
   for each possible condition 
          determine the possible features  
          exs := the examples that satisfy the condition 
          regressionError, linearFunction :=                  

              Regress(exs,features) 
          if regressionError < minError then  
              minError := regressionError  
              bestCondition := condition  
              bestFunction := linearFunction  
    end for 
    construct rule with bestCondition and bestFunction 
 
 

   Figure 6: The greedy regression algorithm 
 
 
6.- Learning new d-rules 
 
In [Roncagliolo & Tadepalli, 2004] the previous described algorithm is used in order to learn 
the desired d-rules.  Above the focus and explanation was on the value function 
approximation. From the d-rule point of view it can be seen as a 4-tuple <g,c,fa,vf>. Its 
interpretation is the following: if the goal is g, and if the condition c, which can be either one 
term or a conjunction of terms, is satisfied, then vf is the rule containing the value function or 
q-value associated to it, as explained above, and then fa is the first action that has to be taken 
care of.  Figure 7 shows an example, it reads as follows: for the goal on(x,y), if the condition 
is true, in this particular case clear(y), then the q-value is obtained as indicated and the 
corresponding first action to be done is clear(x) .  
 

 
goal:                  on(x,y) 
condition:  < clear(y) > 
first-action:  clear(x) 
q-value(V):  q(clear(X),_,Vl),  V  is  V1  -  1. 
 

 
Figure 7: example of new d-rule 

 
The learning algorithm has given the expected results in relation to the learned d-rules for the 
blocks world. This means that given a set of examples, that include the clear, on and below 
predicates the d-rules are learned as expected. 
 
 
7.- Definitive form of the d-rules 
 
Planning with these new d-rules can use the q-value in order to decide among two or more 
applicable d-rules, meaning that all of them are for the same goal and satisfy their respective 
conditions. Using these d-rules is also recursively in the sense that for a first action the 
process is repeated considering it the new goal. 



 
One important difference among the d-rules is that the previous ones in its subgoal component 
had a sequence of subgoals to achieve or perform, allowing to consider the operator as the last 
element of that sequence.  In contrast, in the new d-rules, first-action is only one term, thus 
the planning is lacking the operators itself. 
 
Thus the proposed final d-rules have the following form: <g,c,fa,op,vf>. Their meaning 
remain and now has been added op, to represent the corresponding operator. Figure 8 shows 
the top-level algorithm. The learning of each rule remains as before, the difference is in the 
partition of the examples, now for learning a rule the considered examples are those that share 
the goal or task, the first-action or subtask and, in third place, the operator. 
 

 
Learn (examples) 
   for each task-subtask-operator 
       let exs := examples for the current task-subtask-operator 
       repeat 
            Rule:= LearnBestRule(Exs) 
             exs := exs – { ex / ex matches Rule's condition } 
       until exs is { } 
 end_for 
 

 
Figure 8: The top-level greedy algorithm 

 
 
8.- Planning with d-rules 
 
The planner needs as input a state, a goal, and a set of d-rules.  The goal can be a conjunction 
of subgoals; the planners works with a stack of goals, and in cases with a conjunction of 
goals, all of them individually are placed in the stack of goals, as well as the given goal 
(conjunction), so at the end it is verified if it is satisfied, and in case it is not the process is 
repeated, until it is satisfied. Figure 9 presents the main algorithm for the planner system. The 
d-rules will guide the planner in what to do next at each point of the process.  The value 
function will be the key to decide among different applicable d-rules.  
 
 
9.- Results, Conclusions and Future Work 
 
Up to this moment, we only have done preliminary experiments in the blocks world domain, 
allowing only one condition for each d-rule. So far, for a random generated state all examples 
are considered when doing the learning process. It also must be noted that not only the clear 
and on predicates are used, but also the predicate below is needed in order to learn correct d-
rules. 
 
But despite what have been said, the d-rules, with their corresponding q-values are being 
learned as expected. Also primary results of the planner system are satisfactory. Of course 



these results depend directly on the learned d-rules. Which in turn depend directly on the 
given examples for the learning process. 
 
There is much that remains to be done. We need to do a bigger experimental study in the 
blocks world and other domains and evaluate the algorithms more thoroughly. It appears that 
the condition selection can be made more efficient by adding heuristics. We assume that 
predicates like below are already known to the system. Introducing such useful new predicates 
automatically is an important open problem. Finally, we need to incorporate this algorithm 
into a full reinforcement learner that generates its own examples rather than being supplied 
with solved examples.  
 

 
planif_rrf(mgoal,state) 
          goal_list  [ ]  
          check_mgoal (state) 
end_ planif_rrf       

 
check_mgoal (state) 
          repeat for each subgoal of mgoal 
                   if   { not ( satisfied in state ) & not ( in goal_ list ) } 
                        then add at the end of goal_ list 
                   end_if 
           end_repeat 
           if goal_ list < > [ ] 
                do_goal (state) 
                check_mgoal (state) 
          end_if 
end_check_mgoal 

 
do_goal (state) 
               g  pop (goal_list) 
               r  findrule(g, state) 
              fa  first_action(r) 
              if fa ∉ state 
                   op  operator(r) 
                   push(fa,goal_list) 
                   do_goal (state) 
                   if op is applicable in the current state 
                        then   apply op 
                        else    check_mgoal (state) 
                  end_if 
           end_if 
end_do_goal 
 

 
Figure 9: Planning algorithm 
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