A First Approach to the Automatic GGeneration
of Service Graphs for Building Trust

Walter M. Grandinetti! Carlos I. Chesnevar?

wmg@cs.uns.edu.ar cic@eps.udl.es

Laboratorio de Investigacién y Desarrollo en Inteligencia Artificial (LIDIA)
Departamento de Ciencias e Ingenieria de la Computacion
Universidad Nacional del Sur — Alem 1253 — BS00O0OCPB Bahia Blanca (ARGENTINA)

2Grupo de Inteligencia Artificial — Departament d’Informatica i Enginyeria Industrial
Universitat de Lleida — C/Jaume II, 69 — 25001 Lleida, Catalunya (SPAIN)

Abstract

In recent years, web services have turned out to be an emerging feature that is trans-
forming how the web is conceptualized. Rather than considering the Web as a huge
collection of static pages, for many purposes the WWW can be better understood as a
collection of entities that provide and use services. In this setting, graph-based represen-
tations for modelling trustworthiness in a provider-consumer framework for agents have
proven to be an attractive approach. However, computing and mantaining the underlying
graph may be a considerably complex task. This paper presents a first approach towards
computing such service graphs automatically on the basis of so-called concept lattices.
Our proposal is intended to enhance existing service-graph representations for modelling
trust.

Key Words: Local and Social Trust, Concept Lattice, Referrals.

1 Introduction

In recent years, web services have turned out to be an emerging feature that is transforming how
the web is conceptualized. Rather than considering the Web as a huge collection of static pages,
for many purposes the WWW can be better understood as a collection of entities that provide
and use services [10]. Such entities are free to decide to whom they serve and from whom they
consume. Because of the freedom each entity has over the production of a particular service, the
quality of a given service could be different among several possible providers, meaning implicitly
that there are no guarantees about the quality of service provided by the participants. Clearly,
in such a setting finding a way to detect high quality providers is particularly important.

In the context of multiagent systems there have been several approaches to find trustworthy
agents [5, 6, 8]. Recent approaches take into account local as well as social evidence in order
to rate or provide a reputation for the agent. Local evidence is gathered from direct interaction
with the agent whereas social evidence is provided by third parties. Unlike other approaches,
graph-based representation [11] for modelling trustworthiness in a provider-consumer framework
focuses on two properties of trust which have not been adequately addressed before:

e Trust often builds up over interactions. That is, an agent might trust a “stranger agent”
for a low-value transaction, but would only trust a known party for a high-value transac-
tion.

e Trust often flows across service types. That is, an agent might assume that a party who
is trustworthy in one kind of dealings will also be trustworthy in similar dealings.

https://core.ac.uk/display/15779716?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Graph-based service representations outperform other approaches, such as vector repre-
sentations with or without referrals, for modelling the above situations [10, 11]. However,
graph-based service representations depend heavily on having an adequate dependency graph
otherwise the quality of the set of providers given as a result will be affected. Hence, maintain
the relations among services updated is an essential task. Although, it is not inherent of the
graph-based service representation, service graph presented in [11] is same for every agent and
is static meaning that once the graph is created (services, providers and relations) it remains as
it is. The only tuning variable is a weight value describing how much two services are related.

Nonetheless, open systems are intrinsically dynamic meaning that providers could change the
set of services they offer along time, and the set of available services would not necessarily remain
fixed. Therefore, the limitations imposed over the graph-based service representation approach
make it not adequate for dynamic environment. One of the difficulties of open environments is
to keep track of every change ocurring within it. Although, it is unfeasible to keep track of every
change of the providers and services, this accounting of changes is needless in order to maintain
the quality of the service graph. At the moment of looking for a trustworthy provider only the
services related with the service wanted need to be properly updated. Hence, two agents could
have, at the same time, a different set of providers for a service or a different set of services.
Also, it seems natural to think that the relation among services may be different for each agent,
though they have the same set of services and providers. For instance, an agent could consider
that for a provider to be trusted for a service such as web hosting, this provider should be a
trustworthy provider of email service, whereas other agent may consider that relation worthless
but a relation with a service such as virus protection really useful.

This paper outlines a first approach to extend a graph-based service representation setting
for modelling trustworthiness among agents by generating automatically a dependecy-service
graph and enabling agent to have their own tailored service graph. The computation of such a
graph will be based on gathering public information from the environment. In addition to help
in the generation of the initial service graph, we will show how the proposed approach can also
be used to keep track of changes on the provided services, reflecting such changes in the service
graph.

The rest of the paper is structured as follows. First, in Section 2 we will summarize the
fundamentals of graph-based service representation. Next, in Section 3 we will present our
proposal for automatic generation of service graphs on the basis of a concept lattice. Section 4
we will present the main conclusions obtained, and discuss some issues for our future research
work.

2 Graph-Based Representation

The graph-based service representation [11] aims to model the relation that could be present
among services and providers in a distributed environment. The main goal of this representation
is to establish a partial order among services in order to consider only trustworthy providers to
fulfill needs associated with high risk services. Should it be the case that there is no provider
for such service, a promotion of potential providers is performed on the basis of that provider
which has the highest probability to fulfill the expectations.

In graph-based service representation, every node represents a service and arrows are used
to denote a relationship between two of them. Each arrow is weighted with a probability repre-
senting the expectation that having a given performance in one service could be “reproduced”

in the other service. For instance, having two nodes S; and S5 connected as S 98 Sy denotes

that a provider performing S; well is likely to reproduce such performance in S5 half of the
time.

Example 1 Figure 1 shows a sample setting of services [11]. For the sake of simplicity, we
omit the weight values attached to the arrows. It can be seen that each node represents a
service denoting a different transaction value. The agents trusted for a node are a subset of the
agents trusted for the lower node. That is, if an agent trust someone for a $10 transaction, it
will trust him for a $1 transaction as well. Clearly there is a total ordering among services, as
for a high value transaction it is sound to consider only those those providers who have shown
their reliability or trustworthiness over time.

$1000 Transactions
$100 Transactions {P,,P,}
$10 Transactions(){P,,P,,P;}

$1 Transactions {P,.P,,P,,P,}

Figure 1: A totally-ordered service graph.

From the previous example, it is interesting to note that if a provider is trusted for a service
S;, the same provider is also trusted for “less risky” services related to this service, i.e., those
services S; such that S; = S;. Tt should also be noted that since the relation among services is
a form of dependency, we can restrict ourselves to consider only acyclic graphs.

Following the approach presented in [11], our graph-based representation includes also the
notion of promotion which allows to use historical information about the provider. A provider
will be promoted to a higher service if there is a query for such higher service and the provider
has performed well in an immediately lower related service. Service providers with low ratings
are thus replaced with the newly promoted providers because they have potentially more chances
to perform better. In this promotion process both the relation strength and the trustworthiness
of the provider are considered. The trustworthiness for a provider p at a service S;, denoted as
tpi, is calculated by its ratings at S; and the number of interactions at the service associated
with the service. The strength of the relation between S; and \S; is given by the edge weight
w;j. If the product of the edge weight and the trustworthiness is greater than a promotion
threshold 0 (i.e., w;; X t,; >), then the provider is considered for promotion. After promoting
and testing the performance of the provider at the higher service the edge weight is updated
accordingly. The rating of the provider is also updated after each interaction.

Following [11], in order to compare different representations there are two important notions:
effectiveness and efficiency.

Definition 1 (Effectiveness) A representation is effective if it allows agents to find the de-
sired service providers. The ratio of queries leading to useful service providers to all the gener-
ated queries is used in order to measure effectiveness. O

Definition 2 (Efficiency) A representation is efficient if it allows the service providers to be
found with as few messages as possible. 0

3 Computing Service Graphs: a first approach

Even though the graph-based representation is more expressive than the vector space model [11],
its effectiveness depends on the particular setting of the services nodes. In fact, the graph layout
establishes the relation between the possible services which could be distributed differently for
each agent. Services are arranged within the graph according to the agent’s current knowledge
and needs.

In order to start up with the interaction among agents, the graph-based representation needs
an initial setting of services along with the numbers that denote the relation between them and
the particular information of each provider for each service. As the interaction progresses, the
initial numbers need to be tailored in order to reflect the observations of the agent. However,
the setup of nodes is never changed, thus its effectiveness is affected by the initial knowledge
available. The main problem is that an agent developing such a graph could not have the
necessary knowledge concerning the relation among all pair of services, or may be unaware of
the existence of other services.

A possible solution could be requesting trustworthy agents (such as authoritative institutions
or the agent’s acquaintances) their own graph of services as an initial representation. However
it is possible that such authoritative institutions might not exist, or the agent’s acquaintances
may just have a graph representing a different set of services. On the other hand, the service
graph server needs to know every service and the relation among them, but these relations
may not be explicitly available, even though they could be inferred from the interaction among
agents. Therefore, if there is an authoritative institution which maintains the service graph, it
can not depend on a manual process to keep updated the service graph but there is a natural
need for an automatic process which can create and keep updated the service graph.

Moreover, in large-scale, decentralized information systems the set of available services is
continually changing, growing and shrinking. In those systems, providers may have been offering
a set of services for some time and afterwards they would change to a different set. For these
reasons, the graph-based representation should be able to adapt itself in a way that best fits
with the environment.

In order to address the problems of setting up an initial service graph and keeping it updated
(i.e., reflecting possible changes in the environment), we propose to use the notion of concept
lattices which can be generated and updated without supervision. As a guideline to generate
a real life service graph, it is expected that more service providers offer easier services than
harder ones [11]. Hence the more a service is offered (number of providers), the lower its level
in the service graph.

Next we will show how an initial service graph can be obtained on the basis of knowing
for each provider the services he or she is offering and those he or she is consuming. Later we
will discuss how the related issue of gathering this information can be solved. First, we will
introduce an example which shows how such a graph service could be intuitively generated.

Example 2 Consider an environment consisting of four providers (P, ..., P;) and six services
(S1,...,56) where each provider is offering any number of services. This information could be
placed in a cross table as it is shown in Table 1.

It can be noted that services S; and Sg are more offered than other services, and thus they
should be at the lower levels of the graph (as they are probably the easier services to provide).
Each of the other services are offered by a different provider, so that we can assume that there
is no relation among them or if such a relation exists, it is too weak to be considered. Without
any previous knowledge, it can be assumed that there is a relationship between each of the

P | Py | P3| Py
Sl X X
SQ X
53 X
Sy X
Sy | X
Se X | X | x

Table 1: Services-Providers Cross Table

services S, S3, S4 and the service Sg as well as between each of the services S; and S5 and
the service S;. This inference is based on the assumption that if the services are offered by the
same provider, they may be related. A graphical representation of this situation is shown in
figure 2.

Figure 2: Intuitive Service Graph

It could be noticed that, although S; and Sg are both offered by P, they are not related
according to figure 2 since the relationship established among nodes captures some kind of “if-
then implication” between services. For instance, Sy — Sg and S5 — S since every provider of
service Sy { P»} is present in the set of providers of service S¢ { P, P, Py} and the providers of
service S5 are a subset of the providers of service S;. But neither Sg — S; nor S; — Sg since

{PQ, P3, P4}Z{P1,P4} and {P17P4}§;{P2,P3,P4}.

3.1 Formal Context of Services-Providers

In this section we will introduce some basic notions of Formal Concept Analysis (FCA), which
will be used for our proposal. A more formal approach can be found in [1, 2, 9]. FCA has
been developed as a mathematical model for concepts and it has been successfully applied to
data analysis, information retrieval and knowledge discovery. The notion of concept consists of
two parts: a) An extension consisting of all objects belonging to the concept, b) An intension
consisting of all attributes common to all the objects belonging the same concept. FCA can be
understood as a conceptual clustering method, which clusters both objects and their descriptions.

Definition 3 (Formal Context, Wille 99) A formal context is a triple (G, M,I) where G
and M are sets and [is a binary relation between GG and M. The elements of G are called
objects, and the elements of M are called attributes. For any g € G and m € M, gI'm denotes
that there exists a relationship between g and m, also noted as (g,m) € I. 0

The central notion of FCA is a duality called a “Galois connection” [4]. This duality relating
two kind of items implies that if one makes the sets of one type larger, they correspond to smaller
sets of the other type, and viceversa.

Definition 4 (Wille 99) Let (G, M,) be a formal context with X C G and Y C M, the
following mappings can be established:

s:P(G)— P(M) s(X):={meM|(g,m)elforall ge X} (1)
t:P(M)— P(G) t(Y):={ge G| (g,m) el forallmeY} (2)

Definition 5 (Formal Concept, Wille 99) Given a formal context (G, M, I), a formal con-
cept in (G, M, 1) is a pair (X,Y) with X C Gand X C M, s(X) =Y, and t¢(Y) = X. X is
called the extension and Y is called the intension of the concept. o

Definition 6 (Concept Lattice, Wille 99) The concept lattice of a formal context (G, M, I)
is the set of all formal concepts of (G, M, I), together with the partial order

The concept lattice is denoted by B(G, M, I). O

It is interesting to note how the above ideas can be recast into the service-providers problem:
in Example 2 two sets can be identified (services and providers) as well as a relationship between
them. Moreover, the Galois connection is also verified between these sets, i.e., the larger a set
of one type, the smaller the related set of the other type. For instance, let us take the set
{Ss}, which is related with the set of providers which offers this service, i.e., { P, P5, P,}. Now,
suppose that the set of services grows by adding a new service S;. Consequently, the set {S7, S¢ }
is now related with the set {P,} as this is the only provider offering both services. On the other
hand, let us take the set {P;} involving one provider, related with the set of services which
he offers, namely, {51, S5}. Augmenting this set of providers (for instance to { Py, Py}) would
imply a shrinking in the set of services (in this case, {S;}).

{},{8..8,:5,,5..8: S}

{P1.P2, Py, PP, P} S {}

Figure 3: Concept Lattice for cross table 1.

From our previous remarks it follows that it is possible to establish a formal context based
on these sets and their relationship and visualize it using the concept lattice, in a so-called line
diagram. Figure 3 shows the concept lattice associated with the relation shown in table 1. The
similarity of the graph layout in figures 2 and 3 is clear. The main difference between the service
graph and the concept lattice is that each node in a service graph refers to a particular service
whereas each node in a concept lattice refers to a concept (i.e., a relationship between a set of
services and a set of providers). However, there is another way of labelling the nodes within
a concept lattice known as minimal labelling where every service (object) and every provider
(attribute) appears just once on the whole lattice. This labelling is depicted in figure 4. In this
particular case, it can be observed that both graphs match. This situation, however, will not
always be the case, as we will see in the following section.

Figure 4: Concept Lattice with Minimal Labelling.

3.2 Changes in the environment

As we have shown in the previous section, a service graph can be generated automatically
(without supervision) from a cross table. However, even though such a service graph could be
stored either by an authoritative entity or by each single agent, it would need to be updated
in order to reflect changes in the environment. As we pointed out at the beginning of this
section, the lower the service (node) is, the bigger the numbers of providers offering it. Thus,
if either new providers or services are added or some providers change the services they offer,
the service graph should reflect those changes in order to keep accurate the information about
the providers that offer each service. Let us consider again the previous example:

Example 3 Suppose that provider P; “shrinks” his or her business by diminishing the services
offered, just providing service S, whereas provider P; “expands” his business with a new service,
namely S5, and provider P; changes his business direction with an exchange of the services
offering S5 instead of Sg. So, service Sg suffers a diminishing on the number of providers while
the offer of service S is increased as it is shown on Table 2.

Although the initial service graph may still be useful, there are certain “inconsistencies” within

P1 Pg P3 P4
S| X X
SQ X
53 X
Sy X
S5 X | x
Se X X

Table 2: Changes on the Services-Providers Cross Table

it, such as:

e The relation between service S; and service Sy is no longer valid because none of the
services implies the other, i.e., neither S; implies S5 (since there is at least a provider
(Ps) that offers S5 without offering S;) nor S; implies Sy (since there is also at least a
provider (P;) that offers S; without offering S;).

e There is a new relation between service Sy and service S5 because every provider of Sy
also provides Sj.

e There is a change in the way the set of services is related toward service S3. This service
(S3) is only provided by P; and this provider changed the services offered, so that this
also changes the relations for service S3. In other words, there is no longer a relationship
between S3 and Sg and now there is a new relation between S3 and S5 (because every
provider of service S5 also offers services S5 according to the cross table).

Figure 5: Updated Service Graph based on Concept Lattices.

The new service graph is depicted in figure 5. Interestingly, if the service graph were not
properly updated, it could have happened that for future requests:

e Providers of service S5 should also offer service S;. Hence, the approach of relying on a
non-updatable service graph would fail for obtaining a high quality provider, just because
this provider is not offering another service which is so far unrelated.

e Providers for service S; were only considered from providers of services S; and Sg pre-
venting us from discovering new high quality providers that offer services Sy and Ss.

e Providers of service S3 were required to offer service Sg which is unrelated to service Sj.
Moreover, providers of service S5 would not be considered for promotion. o

3.3 Adapting the Concept Lattice

As we have previously discussed, concept lattices appear to be an appropiate structure to
automatically generate service graphs, even though they may not perfectly match with the
definition of a service graph which states that every node corresponds to a service and every
arrow linking two nodes corresponds to a relation or dependency between these nodes. There
are two issues that needs to be addressed before a concept lattice could be used as a service
graph: a) consider nodes within the concept lattice that match with no service, or b) consider
nodes within the concept lattice that match with more than a service. The former issue happens
when the lattice needs more nodes than services (objects) available to model the cross table as
it can be appreciated in the following example.

Example 4 Let us take our previous example and make some modifications to the original
cross table. The figure 6 shows the cross table along with its concept lattice.

From that figure, we can see that in addition to bottom and top concept lattice nodes there
is a special node which does not have a service label. The purpose of this node is to represent
a pseudo-service S3—Sg which involves providers of both services (P; and P;). Since the service
graph does not model these pseudo-services, there are two options:

PP P| Py
Sl X
SQ X
S3 | X X | X
Sy X
S5 | X X
Se X | X | X

Figure 6: Pseudo-Services Cross Table

1. Extend the service graph to consider such special nodes.

2. Get rid of these special nodes transforming the lattice into a graph keeping all the infor-
mation retrieved so far.

The first option requires to modify the algorithms proposed in [11] to propagate every
provider promoted to service either S; or Sg also to the pseudo-service just created. The
second option requires a transformation of the lattice according to the following pseudocode:

For every pseudo-node p
For every outgoing arrow j of p
For every incoming arrow ¢ to p
Create an arrow from ¢ to j
Eliminate arrows (i,p) and (p, j)

The resulting final service graph is depicted in figure 7.

Figure 7: Service Graph without pseudo-services.

The last issue that needs to be considered is what happens when a concept lattice node is
labelled with more than a service, as is the case shown in the following example.

Example 5 Let us consider again a modification of the original cross table as depicted in
figure 8 along with its concept lattice. It can be seen that there are two nodes which are
labelled with more than a service, namely, {51, S4} and {Ss, Sg}.

PP | PPy
Sy | X X
SQ X
S3 X | %
Sy | X X
S5 | X
S@ X

Figure 8: Multiple-Services Cross Table

In this case the solution is even simpler than the solution of the previous issue, as it suffices
to duplicate the node in as many nodes as the number of services labeled in that node. Note
that we also have to duplicate all the inward and outward arrows for every multi-service labeled
node. The transformed service graph is shown in figure 9. Similarly, it is also possible to extend
the service graph to handle those special nodes, keeping track of the proper service for every
provider of a multi-service labeled node.

Figure 9: Service Graph without merged services.

3.4 Building up the cross table

Finally, we will address the problem of setting and updating the cross table. It should be clear
by now that the service graph based on concept lattices depends on a cross table defining the
relationship between services (objects) and providers (attributes). Hence, the more accurate
the information filled in the cross table is, the better the service graph quality.

As we have mentioned before, a cross table is used to store the relation between services and
providers. Thus, it is important to distinguish this relationship between services and providers
from the relation either between services or between providers. This relation between services
and providers is established when a provider offers a particular service. Also, a relation could
be established when a provider needs or uses a particular service and it can not longer be able
to distiguish between services offered and services needed. This latter case will not be analyzed
in this paper.

Let us explain how the services offered by a provider could be obtained. This piece of
information should be readily available because every the provider is interested to have his

list of services offered as widespread as possible in order to catch the attention of potential
consumers. It is possible, though, that some providers do not fall in this category because the
service they offer needs to be kept secret. For instance, most of illegal services are secretly
offered thus we will fail to gather such information unless provided to us by some other agent.

Unlike services offered by each provider, consumed services are harder to discover because
this is sensible information about possible weaknesses of the provider. However, this is not
always the case, as we can identify two sources where this information could be collected from,
namely:

1. The provider itself: In certain domains the providers themselves post their needs to
put up for auction.

2. The providers of the provider: Usually, service providers are ranked according to
the number of successful transactions done by themselves and there is a public available
list of their customers along with the feedback provided by the customer, as well as the
information about the transaction itself (e.g. eBay). Then, providers transactions can
be searched in order to gather all the information about the consumed services for each
provider.

To sum up, the cross table could be filled with the services offered and consumed by each
provider. However, for sake of simplicity, we will restrict ourselves to the case when the relation
between service and provider corresponds to a service that the provider offers. The information
about services offered is extracted from the services explicitly offered by each provider. The
information about services consumed could be gathered from the provider itself and from other
providers whom the former have had a committed transaction.

4 Conclusions and Future Work

In this paper we have presented a first approach towards computing service graphs automatically
on the basis of so-called concept lattices. Our proposal is intended to enhance existing service-
graph representations for modelling trust. As we have discussed along this paper, the basic
approach of graph-based service representation has some limitations that could be problematic
in some large scale or open environments (such as fixing the offered services or the services
that each provider offers). Our proposal aims to provide a possible solution to such limitations
incorporating an automatic tool in order to generate the service graph. Our goal is twofold:

1. Helping to develop an initial graph without supervision. This feature is especially inter-
esting not only for those agents with scarce knowledge of the domain but also for those
experimented agents, because it provides some insights from the environment that may
be not known. It should also be taken into account that it is not feasible to manually
detect all the dependencies between services if there is a great number or services. Hence
an automatic tool that provides an initial graph could also be useful even for the more
experimented agents, though, they use a manual approach.

2. Keeping the service graph automatically updated. Since in dynamic environments providers
come and go, new services are created and old services are no longer available, providers
change the services they offer, etc., it is mandatory to keep up the track of those changes
accordingly in the service graph as well. Otherwise, the efficiency and effectiveness of the
approach would be diminished.

We think that graph-based service representation provides many opportunities for further
research. For instance, the promotion process in our analysis is based on a single related ser-
vice. However, sometimes a service could be composed of several smaller services. Then, the
trustworthiness of providers considered for promotion should consist of the composed trust-
worthiness at such smaller services. This problem was first detected by Pinar and Singh [11]
and by Sabater and Sierra [7]. Sometimes, it would also be helpful to model strict dependency
among several services in order to require that the promotion process only consider providers
performing well at every dependant service.

Currently our work is focused on integrating external knowledge about relations among ser-
vices in order to enrich the service graph automatically generated. This information could be
requested to the external agent in form of dependency rules and integrated into the cross table
before generating the service graph. It should be interesting to integrate into the service graph
information about services needed by an agent in addition to the set of offered services. This
could provide some new insights about dependencies among providers and it could also help to
relieve some problems such as biased referrals, that is referrals that provide a misleading advise
according to their own benefit. Research in this direction is also being pursued.

Acknowledgments

We wish to thanks the reviewers for their comments. This research was funded by Agencia Nacional de Pro-
mocién Cientifica y Tecnoldgica (PICT 13096, PICT 15043, PAV 076), by CONICET (Argentina), by projects
T1C2003-00950 and TIN2004-07933-C03-03 (MCyT, Spain) and by Ramén y Cajal Program (MCyT, Spain).

References

[1] B. Ganter and Rudolf Wille, Formal concept analysis: Mathematical foundations., Heidelberg, Springer,
1999.

[2] Joachim Hereth, Gerd Stumme, Rudolf Wille, and Uta Wille, Conceptual knowledge discovery and data
analysis, International Conference on Conceptual Structures, 2000, pp. 421-437.

[3] Robert Meersman and Zahir Tari (eds.), On the move to meaningful internet systems 2004: Coopis, doa,
and odbase, otm confederated international conferences, agia napa, cyprus, october 25-29, 2004, proceedings,
part i, Lecture Notes in Computer Science, vol. 3290, Springer, 2004.

[4] Uta Priss, Introduction to and overview of formal concept analysis, to appear in Annual Review of Infor-
mation Science and Technology, Vol. 40, 2004.

[5] I. Rahwan, S. Ramchurn, N. Jennings, P. McBurney, S. Parsons, and L. Sonenberg, Argumentation-based
negotiation, Knowl. Eng. Rev. 18 (2003), no. 4, 343-375.

[6] Jordi Sabater, Evaluating the regret system., Applied Artificial Intelligence 18 (2004), no. 9-10, 797-813.

[7] Jordi Sabater and Carles Sierra, REGRET: reputation in gregarious societies, Proceedings of the Fifth
International Conference on Autonomous Agents (Montreal, Canada) (Jorg P. Miiller, Elisabeth Andre,
Sandip Sen, and Claude Frasson, eds.), ACM Press, 2001, pp. 194-195.

[8] Carles Sierra and Jordi Sabater, Reputation and social network analysis in multi-agent systems., Intl. First
AAMAS Conference 2002, 2002, pp. 475-482.

[9] Gerd Stumme, Formal concept analysis on its way from mathematics to computer science, Conceptual
Structures: Integration and Interfaces (U. Priss, D. Corbett, and G. Angelova, eds.), Springer, 2002, Proc.
ICCS 2002, LNAI 2393, Springer, Heidelberg 2002, pp. 2-19.

[10] Pinar Yolum and Munindar Singh, Engineering self-organizing referral networks for trustworthy service
selection, IEEE Transactions on Systems, Man, and Cybernetics (2004), 195-211.

[11] Pinar Yolum and Munindar P. Singh, Service graphs for building trust., in Meersman and Tari [3], pp. 509
525.

