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Abstract

This paper proposes a hybrid particle swarm approach called Simple Multi-Objective
Particle Swarm Optimizer (SMOPSO) which incorporates Pareto dominance, an elitist
policy, and two techniques to maintain diversity: a mutation operator and a grid which
is used as a geographical location over objective function space.
In order to validate our approach we use three well-known test functions proposed in the
specialized literature.
Preliminary simulations results are presented and compared with those obtained with the
Pareto Archived Evolution Strategy (PAES) and the Multi-Objective Genetic Algorithm 2
(MOGA2). These results also show that the SMOPSO algorithm is a promising alternative
to tackle multi-objective optimization problems.
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1 Introduction

Problems with multiple objectives are present in a great variety of real-life optimization prob-
lems. In these problems there are several conflicting objectives to be optimized and it is difficult
to identify what the best solution is.

Despite the considerable diversity of techniques developed in the Operations Research field
to tackle these problems, their intrinsic complexity calls for alternative approaches. Over the
last decades, heuristics that find approximate solutions have attracted great interest. From
these heuristics the Multi-Objective Evolutionary Algorithms (MOEAs) have been found to be
very successful to solve multi-objective optimization problems [1], [2], [3], [4], [5].

Another technique that has been adopted in the last years for dealing with multi-objective
optimization problems is Particle Swarm Optimization (PSO) [6], [7], which is precisely the
approach adopted in the work reported in this paper.

The PSO algorithm was first proposed by J. Kennedy and R. Eberhart in 1995 [8] and
it was successfully used in several single-objective optimization problems. PSO is based on
the behavior of communities that have both social and individual conducts, similar to birds
searching for food.

PSO is a population-based algorithm. Each individual (particle) represents a solution in
a n−dimensional space. Each particle also has knowledge of its previous best experience and
knows the global best experience (solution) found by the entire swarm.

Particles update their exploration directions (their flights) using the following equations:

vi,j = w × vi,j + c1 × r1 × (pi,j − xi,j) + c2 × r2 × (pg,j − xi,j) (1)

xi,j = xi,j + vi,j (2)

where w is the inertia factor influencing the local and global abilities of the algorithm, vi,j is the
velocity of the particle i in the j − th dimension, c1 and c2 are weights affecting the cognitive
and social factors, respectively. r1 and r2 ∼ U(0, 1); pi stands for the best value found by
particle i (pbest) and pg denotes the global best found by the entire swarm (gbest).

After the velocity is updated, the new position i in its j − th dimension is calculated. This
process is repeated for every dimension and for all the particles in the swarm.

In order to use PSO for multi-objective optimization problems, our SMOPSO algorithm
was hybridized with some concepts taken from de EAs field such as a mutation operator, and
with concepts commonly used in MOEAs, such as a selection based on Pareto dominance and
mechanisms to produce a good spread of solutions.

The remainder of the paper is organized as follows: Section 2 gives a brief description
of the most relevant previous work. Section 3 reviews the basic concepts of multi-objective
optimization. Section 4 describes our approach. Section 5 presents the test functions taken
from the specialized literature to validate our approach. Section 6 defines the metrics used to
evaluate the performance of the algorithms. Section 7 explains the experimental design and
gives a short description of PAES and MOGA2, the multi-objective evolutionary algorithms
selected for comparing our results. Section 8 shows and discusses the results obtained. Finally,
our conclusions and possible future research lines are presented in Section 9.

2 State of the Art in Multi-Objective PSO

In the last few years, several PSO algorithms have been proposed to trackle the multi-objective
optimization problem. Here we briefly review the most relevant of them.



In Coello Coello and Lechuga [9], the authors adopt a Pareto-based selection scheme com-
bined with an adaptive grid (similar to the one incorporated in PAES [10]). The adaptive grid
is adopted both to store the non-dominated solutions found during the search and to distribute
them uniformly along the Pareto frontier.

Hu and Russell [11] proposed their Dynamic Neighborhood PSO, where the neighborhood
of each particle is calculated at each iteration, after calculating distances to every other particle.
In each new neighborhood the local best particle is identified.

Ray and Lew [12] worked with Pareto dominance and a PSO hybridized with some concepts
of EAs. The non-dominated particles are ranked based on Pareto ranking and stored as a set of
leaders (SOL). Selection of a leader from the SOL is done with proportional selection to ensure
that SOL members with a larger crowding radius have a higher probability of being selected as
leaders. The process in turn results in a spread along the Pareto frontier.

Parsopoulos et al. [13] proposed a PSO algorithm using an enhanced elitist technique that
consists in maintaining the non-dominated solutions found during the run of the multi-objective
algorithm. These solutions are stored in an external archive. A new solution is stored in the
file only when it is non-dominated by all the other solutions already stored in archive and it is
deleted when it is dominated by some solution stored in the file.

Toscano and Coello Coello [14] proposed the use of clustering techniques to improve the
performance of a multi-objective PSO. They used Pareto dominance to guide the flight direction
of a particle and had a set of sub-swarms to focalize the search. A PSO algorithm is run in
each sub-swarm and at some point the sub-swarms exchange information.

On the other hand, our approach uses a PSO algorithm extended with the concept of
Pareto dominance, elitism, a mutation operator and a grid (similar to the one used by PAES)
to maintain diversity.

3 Basic Concepts

The general Multi-Objective Optimization Problem can be defined as follows [9]:
Def. 1: Find the vector ~x∗ = [x∗1, x

∗
2, . . . , x

∗
n]T which satisfies the m inequality constrains:

gi(~x) ≤ 0 i = 1, 2, . . . , m (3)

and the p equality constrains:

hi(~x) = 0 i = 1, 2, . . . , p (4)

and optimizes the vector function:

~f (~x) = [f1(~x), f2(~x), . . . , fk(~x)]T (5)

The constrains given by (3) and (4) define the feasible region Ω and any point in Ω defines a

feasible solution. The k components of the vector ~f(~x) are the criteria to be considered. The

constrains ~gi(~x) and ~hi(~x) represent the restrictions imposed on the decision variables. The
vector ~x∗ denotes the optimum solutions.
When there are several objective functions, the concept of optimum changes, because in multi-
objective optimization problems the purpose is to find “trade-off” solutions rather than a single
solution. The concept of optimum commonly adopted in multi-objective optimization is the
one proposed by Vilfredo Pareto in 1986 (and called Pareto optimality). It is defined as:



Def. 2 (Pareto Optimality): A point ~x∗ ∈ Ω is Pareto optimal if ∀~x ∈ Ω and I = {1, 2, . . . , k}
either:

∀i ∈ I (fi (~x
∗) ≤ fi (~x)) (6)

and, there is at least one i ∈ I such that

fi (~x
∗) < fi (~x) (7)

This definition says that ~x∗ is Pareto optimal if there exists no feasible vector ~x which would
decrease some criteria without causing a simultaneous increase in at least one other criterion.
Other important definitions associated with Pareto Optimality are the following:

Def. 3 Pareto Dominance: A vector ~x = (x1, x2, . . . , xk) is said to dominate ~y = (y1, y2, . . . , yk),
denoted by ~x � ~y, if and only if ~x is partially less than ~y, i.e., ∀i ∈ {1, 2, . . . , k} : xi ≤ yi and,
at least for one i, xi < yi.
Def. 4 Pareto Optimal Set: For a given multi-objective problem ~f(x), the Pareto optimal set,
denoted by P∗ or Ptrue, is defined as:

P∗ = {x ∈ Ω |6 ∃x′ ∈ Ω~f (x
′
) � ~f (x)}. (8)

Def. 5 Pareto front: For a given multi-objective problem ~f(x) and Pareto optimal set P∗, the
Pareto front, denoted by PF ∗ or PF true, is defined as:

PF∗ = {~y = ~f = (f1 (x) , f2 (x) , . . . , fk (x)) | x ∈ P∗} (9)

4 Our Approach

In order to provide a multi-objective approach to PSO we extend the “classical” model described
above including:
A Uniform Mutation Operator [15]. It selects one dimension of the particle with a certain
probability and changes its value. The new value must be in the range permitted for this
dimension.
An elitist policy with the objective of maintaining the best solutions (non-dominated) found in
the flight cycles (iterations). The non-dominated solutions are stored in an external archive.
This archive has a grid structure (similar to the PAES algorithm) [16] constructed as follows:
each objective is divided into 2d equal divisions. In this way the entire search space is divided

into 2d
k

unique equal size k−dimensional hypercubes (d is a user parameter and k is the number
of objective functions). The stored solutions are placed in one of these hypercubes according to
their locations in the objective space. The number of solutions in each hypercube is counted.
When the archive is full and there is a new non-dominated solution it cannot be included
automatically. First, the hypercube that has more non-dominated solutions is found. If the
new solution does not belong to that hypercube it is inserted in the archive and at random one
of the solutions from the highest covered hypercube is deleted. So, non-dominated solutions
are privileged and placed in an archive. When non-dominated solutions compete for a space
in the archive, they are evaluated based on how crowded they are in objective function space.
The one residing in the least crowded area gets preference. In this manner, we obtain diversity
in the non-dominated solutions.



1. SMOPSO{
2. Init Pop();

3. Init Velocity();

4. Evaluate Pop();

5. Update Fbest();

6. Update Pbest();

7. Insert nodom();

8. Gbestpos = rnd(0,nodomfileSize)

9. for(i=1 to MAXCYCLES){
10. for(j=0 to MAXPARTICLES){
11. Update Velocity();

12. Update Particle();

13. }
14. Keeping();

15. Evaluate Pop();

16. Update Fbest();

17. Update Pbest();

18. Insert nodom();

19. Gbestpos = rnd(0,nodomfileSize)

20 }
21. Print Statistics();

22. Generate Outfile();

23. }

Figure 1: Pseudo-code SMPSO

New mechanisms to select the pbest and gbest particles. A multi-objective PSO cannot use
equation (1) in a straightforward manner for pbest and gbest because all non-dominated solutions
are equally good. Our approach updates pbest, the best experience found for a particle, only
when the new particle is non-dominated and it dominates the previous pbest. In order to select
gbest, the global best particle, at each iteration we randomly select a non-dominated particle
of the external archive, because by definition all the Pareto optimal solutions are equally good.
All other variables in equations (1) and (2) have the meaning defined for the “classic” PSO.
The pseudo-code of our approach, SMOPSO is shown in Figure 1.

Once all the structures have been allocated (line 1), the particle swarm is initialized with random
values corresponding to the ranges of the decision variables, these values are dependent on the
test functions. The velocities are initialized with zero values (lines 2-3). Then the swarm is
evaluated using the corresponding objective functions (line 4). Next, the fitness vectors are
updated (line 5). As we are dealing with multi-objective optimization, these vectors store the
values of each decision variable, in which the particles obtained the best values in a Pareto
sense. At this stage of the algorithm these vectors are filled with the results of the initial
particle evaluations. Analogously, these values are copied in the pbest vectors (line 6). Then all
non-dominated particles are inserted in the grid, i.e. in the external file (line 7) and the global
gbest particle is randomly selected (line 8).
The flight cycle starts at line 9, the velocity of each particle is updated, using (1) and its position
is also updated using (2) (lines 11-12). The keeping operation is carried out to maintain the
particles into the allowable range values (line 13). Then the particles are mutated, evaluated
and the fitness and pbest vector are, if appropriate, updated (lines 14-17).
As the particles moved in the search space because they changed positions, the dominance of
each particle (line 18) is verified and, if appropriate, they are inserted in the grid. Then the new
gbest is randomly selected (line 19). The cycle is executed until the condition is false and at
this point we print the statistics and generate an output file, which contains the non-dominated
particles (line 22).



5 Test Functions

In order to validate our approach, we selected the following three well-known test functions
[17] :
MOP5: Proposed by Viennet, it is an (unconstrained) three objective function that has its
Ptrue disconnected and asymmetric, and its PF true is connected. It is defined as:

F = (f1(x, y), f2(x, y), f3(x, y)) with −30 ≤ x, y ≤ 30
f1(x, y) = 0.5 ∗ (x2 + y2) + sin(x2 + y2),

f2(x, y) = (3x− 2y + 4)2/8 + (x− y + 1)2/27 + 15,
f3(x, y) = 1/(x2 + y2 + 1)− 1.1e(−x2−y2)

MOP6: This is a test function constructed using Deb’s methodology. It is unconstrained and
has two objectives functions. Ptrue and PF true are disconnected and its PF true consists of four
Pareto curves. It is defined as:

F = (f1(x, y), f2(x, y)) with 0 ≤ x, y ≤ 1
f1(x, y) = x,

f2(x, y) = (1 + 10y) ∗ [1− (x/(1 + 10y))2 − x/(1 + 10y) ∗ sin(2π4x)]

MOPC1: This is a function with constraints and two objectives and it was proposed by Binh
and Korn. In this case Ptrue is an area and PF true is convex. It is defined as:

F = (f1(x, y), f2(x, y)) with 0 ≤ x ≤ 5, 0 ≤ y ≤ 3 and
f1(x, y) = 4x2 + 4y2,

f2(x, y) = (x− 5)2 + (y − 5)2

subject to:

0 ≥ (x− 5)2 + y2 − 25
0 ≥ −(x− 8)2 − (y + 3)2 + 7.7

6 Experimental Performance Metrics

Usually among the relevant aspects to measure in the performance of a multi-objective opti-
mization algorithm, there are two that are very important: 1) the spread across the Pareto
optimal front and 2) the ability to attain the final trade-off solutions.
In this direction, we select the following metrics to evaluate the performance of our approach:
Generational Distance (GD): proposed by [18] this metric returns a value representing the
average distance of the solutions in the Pareto front constructed by a multi-objective algorithm
(PFknown) from PF true and it is defined as:

GD =
1

n

√√√√
n∑

i=1

d2
i



Table 1: Parameter Settings

Parameters SMPSO PAES MOGA2

MOP5 MOP6 MOPC1 MOP5 MOP6 MOPC1 MOP5 MOP6 MOPC1

Iterations 7000 3000 2000 210000 60000 40000 7000 3000 2000
Extern file size 799 799 799 799 799 799 799 799 799
Crossover prob. - - - - - - 0.8 0.8 0.8
Mutation prob. 0.5 0.0335 0.3 0.03 0.05 0.05 0.025 0.025 0.025

Particles/Individuals 30 20 20 1 1 1 30 20 20
Divisions 5 5 5 5 6 5
C1=C2 1.5 1.6 1.5

W 0.5 0.6 0.5

where n is the number of solutions in PFknown and di is the Euclidean distance (in objective
space) between each vector in PF known and the nearest member of PF true. A zero result
indicates that both fronts are the same, any other value indicates PF known deviates from
PF true.
Spacing (S): [19] proposed a metric which allows to measure the distribution of vectors
throughout PFknown. It is defined as:

S =

√√√√ 1

(n− 1)

n∑

i=1

(d− di)2

where n is the number of solutions in PFknown, di = minj(| f i1(~x)− f j1 (~x) | + | f i2(~x)− f j2 (~x) |),
i, j = 1, . . . , n and d is the mean of all di.
A zero value for this metric means that all members of PF known are equidistantly spaced.

7 Experiments

The experiments were designed to evaluate the performance of SMOPSO to existing models on
the three test functions described in section 5.

The first comparative model is PAES algorithm [10], which is a (1+1)-ES evolution strategy
(i.e. it applies the mutation operator over one individual and generates only one child). It
also implements elitism using an external file to store the non-dominated individuals. This
algorithm was selected because it has the same grid technique that we implement in SMOPSO
for maintaining diversity.

The second model is MOGA2 [20], a genetic algorithm that uses a Pareto ranking technique,
in which the rank of an individual xi is calculated as xi = 1 + ni, where ni is a penalty and
indicates the number of individuals that dominate xi, so all the non-dominated individuals
have a rank 1. Also, to avoid premature convergence and to maintain diversity among the non-
dominated solutions, it implements a niching technique. The original MOGA was extended
with an elitist policy and this last version, MOGA2, is the one used in this work.

The initial parameter settings for all the algorithms are summarized in Table 1. The best
algorithm parameter values were empirically derived from a set of previous experiments. We ran
the algorithms up to a maximum number of evaluations (iterations× individuals) of the multi-
objective function, in order to compare them on the basis of the same amount of computational



Table 2: Values of the Performance Metrics

Metric GD S

SMOPSO PAES MOGA2 SMOPSO PAES MOGA2
MOP5 0.011083 0.167133 0.727717 0.39566 0.378168 0.200790
MOP6 0.000298 0.02204 0.000999 0.003402 0.011853 0.009080

MOPC1 0.002687 0.01986 2.441103 0.116149 0.32289 0.942198

effort. The entry Divisions, in Table 1, indicates the number of hypercubes in the grid used to
maintain diversity. Each algorithm was executed ten times on each test function.

8 Results and Discussion

The solutions obtained for the algorithms (PFknow) were compared with the true Pareto fronts
(PFtrue) for each function. These last were obtained using an enumerative method with the
following accuracy of the decision variables: 0.05 for MOP5, 0.003 for MOP6, and 0.01 for
MOPC1.

The values shown in Table 2 correspond to mean values calculated over the ten runs per-
formed in each experiment. The performance of SMOPSO across the benchmark functions is
comparable or overcomes the performance of PAES and MOGA2. SMOPSO obtained better
metric values that the other algorithms. This indicates that the solutions in PFknow are the
same or are very close to the PFtrue with a good distribution of points in all the cases.

However, in the graphics of PFknow and PFtrue shown in Figure 2, it can be observed that
even though MOGA2 obtained a better distribution of solutions (better value of S metric), for
the MOP5 function, it can not approximate the top portion of the Pareto front. The same
occurs with the solutions found by PAES. Only SMOPSO approximated solutions over both
curves of the front.

The function with disconnected front MOP6 (Figure 3) was not difficult for any algorithm,
because all of them obtained PFknow very close to PFtrue with a good distribution of solutions.

Regarding the function with constraints, MOPC1 (Figure 4), although the three algorithms
found good approximations to the true Pareto front we observe that the distance among solu-
tions generated by PAES, in the bottom of the front, are greater than the solutions generated
by SMOPSO. Furthermore MOGA2 produces solutions at the bottom which are away from the
true Pareto front.

PAES and MOGA2 showed weaknesses at finding some parts of the true Pareto fronts,
whereas SMOPSO does have not this problem. This fact is perhaps due to the strong explo-
ration of the search space provided by the mutation operator at every flight cycle.

9 Conclusions and Future Work

The performance of our approach over all the benchmark functions studied turned out to be
satisfactory in the sense that the aim was to determine if the new algorithm was able to obtain
results at least comparable to those obtained by two well-known MOEAs.

The results showed that, in spite of its simplicity, the SMOPSO is a promising approach
to multi-objective optimization because its performance was generally better that the models



used for comparison. As part of our ongoing work we are going to compare SMOPSO with
other more competitive MOGAs as NSGA-II [21], [22] and the Micro-Genetic Algorithm [23].

(a) MOP5 with PAES. (b) MOP5 with SMOPSO.

(c) MOP5 with MOGA2.

Figure 2: MOP5 with PAES, SMOPSO and MOGA2
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