
Simulators for Teaching

Formal Languages and Automata Theory:

A comparative Survey

Carlos Iv¶an Ches~nevar Mar¶³a Laura Cobo

Departamento de Ciencias e Ingenier¶³a de la Computaci¶on
Universidad Nacional del Sur

Av.Alem 1253 { B8000CPB Bah¶³a Blanca { Rep¶ublica Argentina
Tel/Fax: (+54) (291) 459 5135/5136

Email: fcic,lcg@cs.uns.edu.ar { Web: http://cs.uns.edu.ar/»cic
Key words: Educational Software, Automata Theory, Formal Languages

Abstract

Formal languages and automata theory (FL&AT) are central subjects in the CS
curricula which are usually di±cult both to teach and to learn. This situation has
motivated the development of a number of computer simulators as educational tools
which allow the student to implement and `bring to life' many topics which tradi-
tionally were studied and analyzed mathematically rather than algorithmically.

This paper discusses the main features of several educational software tools cur-
rently available for teaching FL&AT. Advantages and weaknesses of di®erent tools
are analyzed and contrasted. Based in our experience, some rationales and practical
considerations for the development of this kind of educational tools are proposed.

1 Introduction and motivations

Formal languages and automata theory are central subjects in the CS curricula which are
usually di±cult both to teach and to learn. On the one hand, the professor faces the
challenge of presenting motivating lectures on topics such as formal languages, pushdown
automata or Turing machines, which are very abstract compared to any programming
language taught in a previous CS1 course. On the other hand, many students ¯nd di±cult
to grasp the importance of these new concepts or even their intuitive underlying ideas as
they are overwhelmed by the abstract formal notation being used.

This situation has motivated the development of a number of computer simulators as
educational tools which allow the student to implement and `bring to life' many topics
which traditionally were studied and analyzed mathematically rather than algorithmically.
In other areas of Computer Science (such as in computer architecture [YYP01]), software
simulators provide an excellent alternative for combining di®erent complex issues into a
single simulation environment (e.g. simulating both micro instructions at chip level and
assembly instructions at processor level). In that respect, FL&AT can be seen as a spe-
cialized area of simulating computer architectures, 1 where theoretical computer simulators
are considered.

Theoretical computer simulators have some advantages with respect to their real-world
counterparts. On the one hand, they rely on just a few (and rigorously related) theoretical

1See [YYP01, YG02] for excellent surveys about the state of the art of computer simulators for computer
architectures.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15779713?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


models, whereas a plethora of di®erent architectures for actual computers can be envisioned.
On the other hand, these theoretical models are conceptually simple, making easier to
strengthen pedagogical issues when designing a simulation software.

There exist many software tools for helping to teach formal languages and their related
automata. We can distinguish two signi¯cant categories, namely:

1. Generic, multi-purpose software packages for teaching and integrating several related
concepts of FL& AT.

2. Software tools oriented towards simulating a speci¯c class of automata with educa-
tional purposes.

In this paper we will review the main features of several software tools available for
teaching FL&AT . Most of these tools have been experimented during the undergraduate
course \Fundamentos de Ciencias de la Computaci¶on" at the Departamento de Ciencias
e Ingenier¶³a de la Computaci¶on (Universidad Nacional del Sur, Bah¶³a Blanca, Argentina).
Advantages and weaknesses of introducing such software tools are discussed.

The paper is structured as follows. First, in section 2 generic, multi-purpose software
tools for modeling formal languages and their related automata are discussed. Then, in sec-
tion 3 we discuss di®erent software simulators for speci¯c kinds of automata, such as Turing
Machines, Moore transducer automata and Petri Nets. In Section 4 we brie°y describe our
experience in incorporating simulators as a teaching aid during an undergraduate course
in FL&AT. We also mention some basic design rationales which in our opinion are useful
for guiding the development of such software teaching tools. Finally, section 5 concludes.

2 Multi-purpose software tools for FL&AT

Multi-purpose software tools for FL&AT aim at integrating di®erent computer simulators
into a single, uni¯ed package. Two major software tools of this kind have been identi¯ed:
Deus Ex Machina and JFLAP. Next we will describe their main features.

² Deus Ex Machina is a software tool developed by Nicolae O. Savoiu and comprises
simulations of seven models of computation covered in the textbook \Formal Models
of Computation" [Tay98]. It provides a generic multi-purpose platform for designing
and running di®erent kinds of automata, such as ¯nite state automata (FSAs), push-
down automata (PDAs), Turing Machines (TMs), register machines (RMs), vector
machines (VM), linear-bounded automata (LBAs) and Markov algorithms (MAs).

Each of these automata can be de¯ned using a natural icon-based interface. Students
can de¯ne an automaton by drawing it using nodes and arcs. Automata can then
be run in a step-by-step fashion, showing how a given input string is processed as
the execution of the automaton proceeds. Deus Ex Machina includes facilities
for students to save, load and print their own automata. The software is freely
distributed, and it can be found at http://www.ici.uci.edu/»savoiu/dem.

² JFLAP is a package of graphical tools can be used as an aid in learning the basic
concepts of Formal Languages and Automata Theory [GR99]. The original version



(FLAP) was written in C/C++ for X-window based systems; JFLAP is the cor-
responding Java version. JFLAP was designed by Susan Rodger2 and her research
group at Duke University, and it allows to design and simulate several variations of
¯nite automata (FA), pushdown automata (PDA), one-tape Turing machines (TM)
and two-tape Turing machines (TTM).

Additionally, JFLAP allows to input grammars(GRM) and regular expressions(REX)
and convert them between each other. Features of JFLAP include several conver-
sions from one representation to another. The conversions are nondeterministic ¯nite
automaton (NFA) to deterministic ¯nite automaton (DFA), DFA to minimum state
DFA, NFA to regular expression, NFA to regular grammar, regular grammar to NFA,
nondeterministic pushdown automaton (NPDA) to context-free grammar (CFG), and
three algorithms for CFG to NPDA.

The software is freely distributed, and it can be found at http://www.cs.duke.edu
/»rodger/tools/.

2.1 Contrasting Deus Ex Machina and JFLAP

As in most FL&AT courses, students have ¯rst to deal with ¯nite state automata (FSA),
and then with pushdown automata (PDA). During the undergraduate course \Fundamen-
tos de Ciencias de la Computaci¶on" we have encouraged students to use di®erent computer
simulators for designing and running their automata. Deus Ex Machina and JFLAP
were two packages that were shown and used in lectures for complementing theoretical
concepts and `running' FSAs and PDAs.

According to our experiences, Deus Ex Machina was a good choice to start introduc-
ing the use of a software package as a tool for solving typical automata exercises. Deus
Ex Machina encourages students to understand the importance of a formalism as they
necessary have to provide the alphabet to be used, the corresponding input and tape lan-
guage, etc. before they can run a given automaton. In contrast, JFLAP is more intuitive,
not enforcing so many formal features. We combined the use of both packages to get `the
best of both worlds'. First we introduced Deus Ex Machina, in order to emphasize the
importance of notions such as input language, tape language, etc. (which seem a nuisance
for many students when designing automata). Later, when students were more familiarized
with notation issues, we switched into JFLAP.

It must be noted that both Deus Ex Machina and JFLAP provide an interactive
design screen, in which students can `draw' an automata by using appropriate tools (such
as `make new state', `make new arc', etc.) from a toolbar. In Deus Ex Machina nodes
and arcs can be enriched by additional comments. However, drawings are not fully resizable
(nodes and fonts are always the same size), which may be a bit problematic. On the other
hand, Deus Ex Machina lends itself easier for installation than JFLAP for students not
familiarized with Java-based applications.

Although Deus Ex Machina provides more di®erent computation models than JFLAP
(including linear-bounded automata and register machines), JFLAP provides facilities for
integrating automata theory with their corresponding grammars. This demonstrated to be
very motivating and helpful for our students.

2See http://www.cs.duke.edu/»rodger for details



Finally, JFLAP makes use of di®erent colors to highlight nodes, arcs, input tape,
among other features. In contrast, Deus Ex Machina has a much more `pale' outlook,
as colors are basically used for highlighting nodes as step-by-step execution is performed.

3 Single-purpose software tools for FL&AT

In addition to the major software packages discussed in the previous section, there exist
a number of di®erent simulation programs intended as a teaching aid for speci¯c topics in
FL&AT . Next we will brie°y describe some of them as well as their main features.

3.1 Formal Languages

Besides JFLAP (which provides a natural connection between automata theory and their
associated grammars), other speci¯c tools for dealing with speci¯c topics of formal lan-
guages have been developed.

Pât¶e is a visual and interactive tool for parsing and transforming grammars. Pât¶e can
show the textual or graphical visualization of a derivation for a given grammar (restricted
or unrestricted). With the textual visualization, a step-by-step derivation is displayed
including the rules used at each step. In the graphical visualization, a parse tree for the
derivation is shown with each node representing a symbol or a variable. Pât¶e can also
deal with grammar transformations of context-free grammars, by successively performing
removal of ¸ productions, removal of unit productions, removal of useless productions and
conversion to CNF. In these transformations, a graphical representation is used to help the
user determine new productions in the removal of unit and useless productions.

Pât¶e is complemented by PumpLemma, a visual tool for applying the pumping lemma
for regular languages. The typical analysis of cases which leads to determine that a language
L is not regular via the pumping lemma can be performed using this software.

It must be remarked that both Pât¶e and PumpLemma were also developed by Susan
Rodger and her group at Duke University.

3.2 Finite State Automata

Many simulation programs for FSA have been developed, ranging from Java applets exe-
cutable from a Web browser to standalone application programs. We will brie°y describe
some of those we found particularly interesting for FL&AT courses:

² CAVE (Constructive Algorithm Visualization Environment) was designed to illus-
trate the operation of several useful constructive algorithms. It is intended to serve
as a teaching tool for computer theory instructors and students. More speci¯cally,
CAVE implements constructive algorithms for building union and product (con-
catenation) machines for DFAs (deterministic ¯nite-state automata). CAVE can
also produce the complement of a source DFA, and build an intersection machine
for two source DFAs. CAVE was developed by Michael S. Tashbook, and it is
freely available as a Java-based application from http://www.cif.rochester.edu

/»samurai/cave.html.

² The Finite State Machine Explorer (FSME) is an interactive graphical system which
supports the construction of FSAs. Animation is used to dynamically illustrate their



behavior on given inputs. Furthermore, manipulation facilities are developed to sup-
port the study and exploration of automata, including the conversion between equiv-
alent classes of machine, and the automatic generation of layouts. Finally, input and
output capabilities are provided to enable the continued development and reuse of
constructed machines. The FSME was developed by Matt Chapman from the Dept.
of Computer Science at the University of Warwick (UK), and it is freely available at
http://www.belgarath.demon.co.uk/java/fsme.html.

² Ate is a software tool designed to de¯ne and run a Moore transducer automaton
(MTA). It is a standalone program which can be run on a PC, allowing the user
to de¯ne and execute an MTA. The de¯ned MTA transforms a given input string
into an output string according to the automaton de¯nition. Ate was developed by
Agust¶³n Esmoris from the Department of Computer Science and Engineering at the
Universidad Nacional del Sur (Bah¶³a Blanca, Argentina). The executable version of
Ate is freely available from http://cs.uns.edu.ar/»cic/fcc.htm.

3.3 Pushdown Automata

There are not many speci¯c teaching aids for simulating pushdown automata. Some simu-
lators for PDAs are included in larger software packages (such as Deus Ex Machina or
JFLAP).

A very interesting teaching tool is IPAA (Interactive Pushdown Automata Anima-
tion) [McD01], which provides a Java-based program for designing and running PDAs.
IPAA was developed by Jennifer McDonald (Northeastern University, USA), and it in-
cludes several useful views for a given PDA. Students can specify a PDA by using an
icon-based interface, drawing the PDA as a graph. The PDA can be then run at di®erent
speeds. The input tape and the stack are shown as the computation proceeds.

The executable version of IPAA as well as its source code is freely available from
http://www.jenimac.com/JPT/Automata/details.htm.

3.4 Turing Machines

There are many computer simulators for Turing machines available on the web, most of
them available as Java applications that can be run from a browser. In our experience,
the Applet Turing Machine Simulator written by Suzanne Skinner3 has proven specially
successful. This applet has several sample Turing machines which can be run at di®erent
speeds for arbitrary input strings. The applet allows the student to modify the behavior of
a given Turing Machine by providing new tuples or changing existing ones. Turing machine
programs (set of tuples) can be loaded from / saved onto disk. Turing machines can also
be run in a step-by-step fashion.

Some of the attractive samples included in this simulator are a palindrome detector
and `busy beaver' functions (for 5 and 6 states). Busy beavers are Turing machines with a
¯xed number of states which are thought to be write as many symbols as possible on the
input tape and stop after a given number of steps. These `busy beavers' are quite puzzling
for students as they are rather simple Turing machines which run for a considerable time

3This applet is available from many websites around the world. We made it available for our students
at http://cs.uns.edu.ar/»cic/fcc.htm.



before stopping. (e.g. a 5-state busy beaver can write 4098 symbols before coming to a
halt). Finding new busy beaver functions which outperform existing ones has proven to be
an attractive challenge for some students.

A more sophisticated tool is provided by Visual Turing, a graphical IDE that can
be used to edit, de¯ne and `play' with Turing machines. It features an advanced graphical
editor (including cut copy& paste facilities, multiple undo, etc.). Machines can be run at
full speed or step by step, and debugged using breakpoints and watches for variables. The
binary executables of this software are freeware and available from www.cheransoft.com

/vturing/download.html.

3.5 Petri Nets

In contrast with other kinds of automata which are only studied from a theoretical point
of view, the design and use of Petri Nets is an active research area with several industrial
applications. Many simulators for Petri nets can be found on the Web, most of them in-
tended to illustrate only the basic aspects of Petri nets. An interesting basic Petri Net
simulator was developed by Patrice Torguet. It provides the basic facilities for specify-
ing and executing a Petri Net in a step-by-step fashion. This simulator is available at
http://cs.uns.edu.ar/»cic/fcc.htm.

For teaching purposes we found the SimPRES simulator developed by L.A. Cort¶es
as the best alternative for our students. It is a model intended to represent embedded
systems, which extends Petri nets adding data and real-time information to tokens, and
associating functions and delays to transitions. SimPRES is a simulator for a subset of
this particular computational model. The class of systems that may be validated using
SimPRES corresponds to time Petri nets. The SimPRES simulator is freely available at
http://www.ida.liu.se/»luico/.

4 Some Design Rationales for software tools in FL&AT

From our experiences using simulators as teaching aids to complement the di®erent topics
presented in a FL&AT course, we have identi¯ed a number of features which, in our
opinion, are of interest for developing this kind of tools:

² Provide facilties for full interactivity: As emphasized in [McD01], students
should be able to design, modify and test their own automata at their own pace.
They should also be able to modify sample automata provided by the teacher. Such
change-and-test process proved to be very useful and motivating (e.g. in the case
of sample Turing machines or sample Petri nets). Starting from an initial set of
sample automata helps students to get comfortable with the tool before they begin
a self-guided exploration with other problems.

² Visualize algorithms whenever possible: According to our experiences, anima-
tion and visualization of algorithms is another important issue when assessing the
impact of a simulator as a teaching tool. Earlier versions of computer simulators
(e.g. for ¯nite state automata or Turing Machines) were only text-based, forcing the
user to de¯ne his/her automata using a script-like language. Most current versions
we have tested make a strong use of visual elements which lend themselves natural



for simulating algorithmic processes. These computer simulators can be often run as
Java applications which are platform-independent requiring only a web browser.

² Illustrate theoretical properties with built-in features:

It must be stressed that several concepts introduced in a FL&AT course are con-
structive proof procedures, so that the same steps can be recast and shown on the
screen in a step-by-step fashion (e.g. Kleene's theorem, FSA minimization, etc.) In
this respect the JFLAP framework proved to be an excellent example of how to
relate di®erent kinds of automata in terms of such theoretical properties.

² Allow di®erent views for the same problem: As already discussed in section 3.3,
having di®erent views for simulating a given automaton has a strong pedagogical im-
pact. In the IPAA simulator for pushdown automata [McD01] four di®erent views
are proposed: tape view (showing the current input tape), stack view (showing the
current stack), path view (verbose mode) and automata image view (PDA visualiza-
tion as a graph).

In our opinion, these four views can be generalized to consider di®erent classes of
automata presented in a FL&AT course. Next we discuss some guidelines for con-
sidering these elements in a more general setting:

{ Input/Output View: In the case of FSA, PDA or Turing Machines, the
basic input view is provided by visualizing the tape. onto which the input
string is written. In the case of Turing machines, the same tape is used as an
input/output device.

Tapes are easy structures to model as they behave like sequential ¯les. Most
students taking a FL&AT course have already worked with sequential ¯les in
a Pascal-like language, so they should be able to think about a tape as such a
¯le. Hence it is important to borrow the same visual conventions for representing
sequential ¯les in order to represent tapes (e.g. the representation of the current
cell/record to be processed, etc.).

Other automata (such as Petri nets) are not tape-based. In such cases a clear
representation of input and output values is also needed. In the case of Petri
nets, most computer simulators represent tokens in places as circles or numerical
values (corresponding to the numbers of tokens in a given place). Petri nets can
also be used as language recognizers by labeling transitions with symbols in a
given alphabet. In that case, transitions being ¯red provides an output for the
Petri net similar to a production rule. No computer simulator was found to
depict transitions in this way.

{ Storage (or auxiliary data) View: Some automata (such as pushdown au-
tomata) rely on particular storage structures when solving problems (e.g. a
stack). In other cases (such as Turing machines) it may be useful to have
`snapshots' of every instance of the tape after each single step executed by
the automaton when it was run. Such snapshots can help understand the way
computation proceeds in complex settings (e.g. Turing machines with multiple
tapes). Auxiliary structures as the ones described above should be visible and
properly updated as the automaton is being simulated.



{ Path view: In this view the student should be able to read a natural language
description of every action performed by the automaton with a given input
string. Two possibilities should be taken into account:

1. Basic path view : every action is shown as an item in a list. The item consists
of a term explaining the basic meaning of the action. E.g: State s0, read
'a'. State s1, read `b', etc.

2. Full path view : actions are described in a full-°edged text. The student
would get a detailed explanation of every step performed during the execu-
tion (as if he were being told about this explanation by a human assistant).
E.g:
First the input string is aabbcc.
Current symbol is "a"
Current state is s0.
After processing symbol "a", next state is s1,
and current input string is "abbcc".
Now current state is s1.
...

{ Image view: This view should provide a graph-like representation of the au-
tomaton the same way the student would see it on a blackboard. After building
the automaton the student should be able to run it by providing an arbitrary
input string. As the automaton is being run, the current states and arcs should
be easily recognizable (e.g. by highlighting them). States and paths already
visited should be distinguished from those that were not yet reached (e.g. as
done in [McD01]). Such conventions are intuitively helpful for identifying loops
and unreachable states.

{ Zoom in/out view: Features for zooming in and out all relevant information
for a given automaton should be provided. Some simulators (e.g. Deus Ex
Machina or Visual Turing) provide ways of invoking `sub-machines' (sub-
automata) for solving a problem. This favors a modular approach (playing the
role of subprograms in a Pascal-like programming language), making easier for
the student to cope with complex problems.

5 Conclusions

Most topics in the FL&AT curricula rely on very simple but abstract theoretical concepts.
Theoretical computer simulators as the ones analyzed in this paper can provide an inter-
esting link between theory and practice. In our opinion, FL&AT simulation environments
should reinforce the signi¯cance of theoretical issues when solving practical exercises (as
done in Deus Ex Machina when requiring a full formal de¯nition of the input language
before starting to de¯ne an automaton). Otherwise many students tend to skip the formal
side of the problem, focusing only on its algorithmic aspects.

According to our teaching experience, most topics in the FL&AT curricula can be
illustrated using such simulators, resulting in a very motivating approach for the students.
Nevertheless, students should always be warned that the focus of the course is not on
mastering the simulators themselves, but rather on using them as a visual tool to aid
during the learning process.



It must be remarked that getting familiar with any simulation environment is time
consuming for all students. In this respect multi-purpose simulator programs (such as Deus
Ex Machina and JFLAP) are a good choice as they provide a uni¯ed view of di®erent
kinds of automata. However, we found that many students were quite enthusiastic to try
di®erent simulation programs rather than concentrating in a single one. In our experience,
the existence of a bunch of di®erent computer simulators for the same automaton proved
to be an additional motivation.

Acknowledgments

The authors want to thank William Yurcik (Illinois Wesleyan University, USA) for provid-
ing valuable information about di®erent computer architecture simulators.4 His excellent
work on web-based resources for this topic was the inspiration for this paper. We also want
to thank JÄurgen Dix (University of Manchester, UK) for his comments on the use of busy
beaver functions as additional motivation when teaching Turing machines.

References

[Aug95] Juan Carlos Augusto. Fundamentos de Ciencias de la Computaci¶on - Notas de Curso. Univer-
sidad Nacional del Sur, Bah¶³a Blanca, Argentina, 1995.

[GR99] Eric Gramond and Susan Rodger. Using j°ap to interact with theorems in automata theory.
SIGCSE Bulletin, pages 336{340, 1999.

[LP98] Harry Lewis and Christos Papadimitriou. Elements of the Theory of Computation (2nd. Edition).
Prentice Hall, 1998.

[McD01] Jennifer McDonald. Interactive pushdown automata animation. SIGCSE Bulletin, (1):376{380,
2001.

[Tay98] Gregory Taylor. Models of Computation and Formal Languages. Oxford University Press, 1998.

[YG02] William Yurcik and Edward Gehringer. A Survey of Web Resources for Teaching Computer
Architecture. In Proc. of the Workshop on Computer Architecture Education (WCAE 2002),
Anchorage AK, USA, 2002.

[Yur01] William Yurcik. The Simulation Education Homepage. Simulation: Journal of the Society for
Modeling and Simulation Intl., pages 202{206, April 2001.

[YYP01] Cecile Yehezkel, William Yurcik, and Murray Pearson. Teaching Computer Architecture with
a Computer-Aided learning Environment: State-of-the-Art Simulators. In Proc. of the Inter-
national Conference on Simulation and Multimedia in Engineering Education (ICSEE 2001)
Phoenix, Arizona, 2001.

4See http://www.sosresearch.org/caale/caalesimulators.html for details.


