

Parallelization of the N-queens problem. Load unbalance analysis.

Laura De Giusti1, Pablo Novarini2, Marcelo Naiouf 3 ,Armando De Giusti4

Research Institute on Computer Science LIDI (III-LIDI) 5
Faculty of Computer Science - National University of La Plata

Abstract
The paper presents an analysis of three parallelization structures of the N-queens
problem, taking into account N processors. The focus has been set on investigating the
adaptation of the architecture structure to the proposed algorithm type, so as to study the
load unbalance in each case, for which two different metrics have been established.
The experimental results and the efficient implementation of the algorithms are discussed
together with the related current research lines.

Key words: Parallel Systems. Parallel algorithms. Load Balance. Complexity.

Introduction
The increasing importance and interest in parallel processing within Computer Science is
clear for several reasons. Generally speaking, parallel machines allow to solve problems
of increasing complexity and obtain results faster, and in several cases, they represent the
only viable choice since sequential solutions involve unacceptable times. Besides
providing faster solutions, parallel applications are capable of solving larger, more complex
problems whose input data or intermediate results exceed a CPU memory capacity;
simulations can be run at finer resolution, and the physical phenomena can be modeled
more realistically [1] [2].

It is important to refer to a parallel algorithm not in an isolated manner but together with the
computing model for which it was designed. Unlike sequential computation, where
Random Access Machine (RAM) is practically accepted as a standard, in parallelism there
does not exist a unifying theoretical model (since each emphasizes certain aspects over
others) and there exists a broad diversity of platforms. On the other hand, for each
application, there could be an optimal machine, various implementation alternatives with
homogeneous or heterogeneous hardware, with tight and loose coupling of its
components. Thereby, parallel systems are referred to as the combination of algorithm and
architecture [3] [4].

1 UNLP Scholar. Part-time Teaching Assistant. Faculty of Computer Science. UNLP.
ldgiusti@lidi.info.unlp.edu.ar
2 Part-time Teaching Assistant. Faculty of Computer Science. UNLP. pnovarini@info.unlp.edu.ar
3 Chair Professor. Faculty of Computer Science. UNLP. mnaiouf@lidi.info.unlp.edu.ar
4 Principal Researcher of CONICET. Full-time Chair Professor. Faculty of Computer Science. UNLP.
degiusti@info.unlp.edu.ar
5 III-LIDI member of Research Institute on Computer Science and Technology (IICyTI)TE/Fax
+(54)(221)422-7707. http://lidi.info.unlp.edu.ar

CACIC 2003 - RedUNCI 397

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15779661?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A parallel application defines a set of intercommunicated components that should be
assigned in the physical resources of the target architecture. The last step in the
development of parallel algorithms is the process mapping over processors; the objectives
aim at optimizing the use of processors and obtaining the best response time of the
application, carrying out the work distribution to the processors so that the computational
load tends to be equal (balanced) in time [5] [6] [7].

This is one of the core aspects of parallel processing, since it has a direct impact on the
efficient use of resources (that imply costs) and on the achievable performance
improvement.

Within the types of problem, a distinction can be made between those whose nature allows
a parallelization so that the obtained load balance is near optimal (generally, those with a
regular execution pattern, such as some solutions to the matrix multiplication problem),
and those where the execution pattern is irregular or has a dynamic nature or is data-
dependant (where the load balance objective is harder to achieve) [8] [9] [10].

This paper aims at analyzing the load balance obtainable in the parallelization of a not
basically balanced problem. The N-queens problem belongs to this type, and it has thus
been chosen for the analysis.

N-queens Problem. Sequential Solution.

The N-queens problem is a generalization of the well-known 8-queens problem, which
consists in arranging 8 queens on a chessboard so that none can take another. A queen
attacks another if they are located on the same diagonal, row or column.

In the case of the N-queens, N queens are placed on a NxN board. There exists a known
number of solutions; for instance, there are 92 solutions for placing 8 queens on a 8x8
board [11] [12].

Other problems are derivable from this. Among them, it is worth mentioning the problem
which, given a NxN board, looks for the lesser quantity of queens that can be placed so
that all the board squares are attacked by some queen [13].

An initial solution to the N-queens problem, by way of a sequential algorithm, consists in
testing all the possible placement combinations of queens on the board and choosing the
valid ones.

The combination in which no queen of the board is attacked by another is considered as
valid. This solution can be upgraded by discarding, during the search, those ways by
which a solution to the problem cannot be found [14].

CACIC 2003 - RedUNCI 398

The pseudo-code of the sequential solution is as follows:

beginArray () //diagonals and columns marking them empty
call to addQueen proceeding

addQueen() //place a queen on the following row
 row++
 for each column do(i:1..N)
 test if a queen can be placed on column i.
 If true then
 mark the column and diagonals as filled.
 If is the last row then
 New solution found
 If not

 Call addQueen proceeding

 Unmark the column and diagonals for testing other combinations.

The solution presented above shows a non-linear growth in the complexity as the size of
the board increases.

Load Balance for the N-queens problem

This paper aims at analyzing the load balance in the parallelization of the N-queens
problem.
The metrics used for the load is function of the total quantity of analyzed squares to place
some queen (li).

In order to measure the load unbalance, two metrics were used:

1.- Unbalance between maximum and minimum load:
This metrics considers the relation between the maximum work load and the minimum
load of processors.

minmax1 / CCM = (1)

For instance, if Cmax = 100 and Cmin = 50, 1M = 2.
This means that the processor that works more does twice as much work as that which
works less.

2.- Unbalance related to the average work done:
This metrics takes into account the deviation percentage of the work done by the
processors in relation to the average of the work done.

NTTPwhereTPM N

i promiprom //)100*(
12 ∑ =

−== (2)
For instance:
 if M2 = 0 then the obtained balance is the optimal.
 if M2 = 50 it means that each processor deviates a 50 % of the work that it should carry
out if it had an optimal balance.

CACIC 2003 - RedUNCI 399

Parallelization of the N-queens problem

All the algorithms presented below perform N stages where, in each stage I, they try to
place queens on all the valid position of row i.

1- Solution with processor pipe:

Let P1..PN be processors and Ti the set of boards with queens placed on valid positions on
the first i rows. A processor Pi is in charge of placing the queens on row i.

The work begins with processor P1, which places a queen on each possible position of row
1, thus obtaining a set of initial boards (T1). Each of these obtained boards passes to
processor P2, which places a queen on all the valid positions of row 2 in each of them,
passing the obtained boards (T2) to the next processor.
The process is repeated until N processor is reached. This receives from processor PN-1
the boards with queens located accurately on the first N-1 rows (TN-1), and its task is to
place the queens on row N, in order to obtain the set of solutions to the problem (TN).

A graphical representation of the architecture is as follows:

TN

Set of valid solutions
... TN-1 T1 T2

P1 P2 PN

Workload

0
1000
2000
3000
4000
5000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Processor number

M
ill

io
ns

Processor nª Work Load (li)

1 16
2 256
3 3,360
4 35,776
5 315,008
6 2,268,992
7 13,421,056
8 63,975,296
9 245,195,328
10 741,742,016
11 1,735,663,456
12 3,102,285,760
13 4,164,854,528
14 4,062,362,112
15 2,738,528,288
16 1,152,033,408

The following graphic shows the quantity of work done
by each processor for a 16 (N=16) sized board. To the
right, there is a chart with the work load of each
processor.

CACIC 2003 - RedUNCI 400

Next, the two metrics defined in (1) and (2) are analyzed for different number of
processors:

N M1 M2
8 568 80.55
10 9,632 89.38
12 222,720 99.38
14 6,471,872 105.82
16 260,303,408 113.15

It is clear that the load unbalance is unacceptable for increasing N, and this is typical of the
characteristic of the problem (breadth first search).

2.-Loosely coupled processor N Solution:

Let P1..PN be processors and Ti,j the set of boards where i represents the column in which
the queen was placed on the first row, and j the row up to which the board has queens.

For instance: T2,4 is the set of all the boards with queens placed accurately on the first four
rows, being the queen of the first row placed on the second column.

A processor Pi is in charge of finding the set of boards (Ti,N) with all the possible solutions
having placed the queen on the first row column i. In this case there are no communication
between the processors during the search of the solutions. Each processor works
independently.

A graphical representation of the architecture is the following:

An equivalence with the previous notation is given by: 1
1

1, TT
N

j
j =

=
U

.

.
.
.

T2,1 T1,1

P1 P2 PN

Set of solutions

T1,2

T1,N T2,N

T2,2

TN,1

TN,N

TN,2

.

.

CACIC 2003 - RedUNCI 401

If the analysis of the two defined unbalance metrics is now repeated,

N M1 M2
8 1,15 4,58
10 1,16 4,03
12 1,22 5,41
14 1,31 7,01
16 1,41 9,08

a remarkable decrease in the load unbalance can be noticed. For instance, for 16
processors the �average� unbalance - though with metrics M1 it reaches the 41% between
the maximum load processor and that of minimal load - is only of 9%.

3.- Parallel pipe variant:

Noting the work unbalance carried out in the first solution (using a processors pipe), it can
be said that the work to be done by each processor varies according to the corresponding
row in which it places the queens.

The processors that place queens on the central rows of the board carry out a greater
work load, since they count with more possible combinations to test.

The algorithm represented below attempts to balance the work done by each of the
processors used in the solution of the problem.

Let P1..PN be processors and Ti,j the set of boards.
Each processor Pi begins a solution placing a queen on column i of row 1, Ti,j,

In each step of the algorithm, processor Pi receives from processor Pi-1 a set of boards Tk,j,
and places a queen on each valid position of the next row, thus obtaining the set of boards
Tk,j+1, which are in turn passed to processor Pi+1.

Processor nª Work Load (li)

1 887,143,505
2 992,762,433
3 1,089,991,889
4 1,133,623,105
5 1,182,782,369
6 1,216,458,385
7 1,249,758,561
8 1,258,822,081
9 1,258,822,081
10 1,249,758,561
11 1,216,458,385
12 1,182,782,369
13 1,133,623,105
14 1,089,991,889
15 992,762,433
16 887,143,505

The following graphic shows the quantity of work done
by each processor for a 16 (N=16) sized board. To the
right, there is a chart with the work load of each
processor.

Workload

800
900

1000
1100
1200
1300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Processor number

M
ill

io
ns

CACIC 2003 - RedUNCI 402

For instance, processor P1 starts its work placing a queen on row 1, column 1, and send its
board (T1,1) to processor P2. It then places a queen on each valid position of row 2 for the
solution started by PN, obtaining TN,2. Next, it receives from processor PN, boards with two
queens placed on the first two rows (generated by PN-1), and it places queens on each of
them on the valid positions of row 3, (obtaining TN,3), and so on.

Thus, each processor carries out in each stage j the work equivalent to that of processor j
of the pipe solution. Thereby each processor plays all the roles of the first solution
processors.

With this, an improvement on the load balance is achieved by way of balancing each
processors� work. All the processors place queens on all the rows.

Note that without changing the physical and logical architecture of the solution with the
processors pipe, and without essentially changing the algorithm, an important change is
achieved in the load balance.

A graphical representation:

Each processor Pi has the set of boards Ti+1,N that represents the solution initiated by
processor Pi+1, which placed the queen of the first row on column i+1.

.

.
.
.

T1,1

P1 P2 PN

TN,2

T2,N

T2,1

T3,N

B
oa

rd
s g

en
er

at
ed

 b
y

ea
ch

 p
ro

ce
ss

or

Set of solutions

T1,2

TN,1

T1,N

TN-1,2

.

.

Processor nª Work Load (li)

1 1,061,848,177
2 1,134,981,281
3 1,194,115,313
4 1,235,277,169
5 1,264,375,793
6 1,274,235,233
7 1,273,619,297
8 1,251,118,593
9 1,216,519,633
10 1,150,072,401
11 1,076,401,825
12 999,309,057
13 949,764,977
14 943,807,137
15 974,697,313
16 1,022,541,457

The following graphic shows the quantity of work done
by each processor for a 16 (N=16) sized board. To the
right, there is a chart with the work load of each
processor.

Workload

800
900

1000
1100
1200
1300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Processor number

M
ill

io
ns

CACIC 2003 - RedUNCI 403

N M1 M2
8 1.23 8.14
10 1.23 6.61
12 1.24 6.94
14 1.28 8.21
16 1.35 9.50

The unbalance metrics M1, compared to the previous parallel solution, tends to be better in
this solution for increasing N, while metrics M2 shows similar results (by definition, it
averages the sum of unbalances).

Conclusions and future work lines

The study of the load unbalance has been initiated for a type of parallel systems, focusing
on the adjustment of the algorithm to the supporting architecture.
An important result is the development of a new parallel algorithm over a processor pipe
for the N-queens problem, which tends to balance the load for increasing N.

There exist several open research lines with this respect:

▪ To analyze in depth the measurements for increasing N.
▪ To study the communications incidence in each case.
▪ To experiment on distributed shared memory architectures.
▪ To experiment on multiprocessor structures with M processors (M < N).
▪ To analyze the effect (and the compensation potential) of the processors

heterogeneity.

Bibliography

[1]Andrews G., �Concurrent Programming: Principles and Practice�, The Benjamin/Cummings
Publishing, Inc, Andrews G., �Foundations on Multithread and Distributed Programming�, Addison
Wesley, 1999.

[2]Coffin M., �Parallel programming- A new approach�, Prentice Hall, Englewood Cliffs, 1992.

[3]Hwang K., Xu Z., �Scalable Parallel Computing�, McGraw-Hill, 1998.

[4]Keller J., Kebler C., Traff J., �Practical PRAM Programming�. A Wiley � Interscience publication.
2001.

[5]Quinn M. �Parallel Computing Theory and Practice�. McGraw � Hill. 1994.

[6]Watts J., Taylor S., �A Practical Approach to Dynamic Load Balancing�, IEEE Transactions on
Parallel and Distributed Systems, 9(3), March 1998, pp. 235-248.

[7] Kumar V., Grama A., Gupta A., Karypis G., �Introduction to Parallel Computing. Design and
Analysis of Algorithms�, The Benjamin/Cummings Pub. Company, Inc., 1994.

[8]Bruen A., Dixon R., �The n-queens Problem. Discrete Mathematics�. 12:393-395, 1997.

CACIC 2003 - RedUNCI 404

[9]Hedetniemi S., Hedetniemi T., Reynolds R. �Combinatorial problems on chessboards: II�.
Chapter 6 in Domination in graphs: advanced topic, pp. 133-162, 1998.

[10]Bernhardsson B., �Explicit Solution to the n-queens Problems for all n�. ACM SIGART
Bulletin,2:7,1991.

[11]http://www.wi.leidenuniv.nl/~kosters/nqueens.html

[12]http://www.rain.org/~mkummel/stumpers/8queens.txt

[13]http://www.jsomers.com/nqueen_demo/nqueens.html

[14]http://www.funducode.com/freec/recursion/recursion3.htm

CACIC 2003 - RedUNCI 405

