
Fully Dynamic and Memory-Adaptative Spatial
Approximation Trees�

Diego Arroyuelo1 Gonzalo Navarro2 Nora Reyes1

1Depto. de Informática 2 Center for Web Research
Universidad Nacional de San Luis Dept. of Computer Science

Ejército de los Andes 950 University of Chile
San Luis, Argentina Blanco Encalada 2120, Santiago, Chile

fdarroy,nreyesg@unsl.edu.ar gnavarro@dcc.uchile.cl

Abstract

Hybrid dynamic spatial approximation trees are recently proposed data structures for search-
ing in metric spaces, based on combining the concepts of spatial approximation and pivot based
algorithms. These data structures are hybrid schemes, with the full features of dynamic spatial
approximation trees and able of using the available memory to improve the query time. It has
been shown that they compare favorably against alternative data structures in spaces of medium
difficulty.

In this paper we complete and improve hybrid dynamic spatial approximation trees, by pre-
senting a new search alternative, an algorithm to remove objects from the tree, and an improved
way of managing the available memory. The result is a fully dynamic and optimized data structure
for similarity searching in metric spaces.

Key Words: databases, data structures, algorithms, metric spaces.

�This work was partially supported by CYTED VII.19 RIBIDI Project (all authors) and Millenium Nucleus Center for
Web Research, Grant P01-029-F, Mideplan, Chile (second author).

CACIC 2003 - RedUNCI 1502

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15779625?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

“Proximity” or “similarity” searching is the problem of looking for objects in a set close enough to
a query. This has applications in a vast number of fields. The problem can be formalized with the
metric space model [2]: There is a universe U of objects, and a positive real-valued distance function
d : U� U �! R

+ defined among them, which satisfies the metric properties: strict positiveness
(d(x; y) = 0 , x = y), symmetry (d(x; y) = d(y; x)), and triangle inequality (d(x; z) 6 d(x; y) +
d(y; z)). The smaller the distance between two objects, the more “similar” they are. We have a finite
database S � U that can be preprocessed to build an index. Later, given a query q 2 U, we must
retrieve all similar elements in the database. We are mainly interested in the range query: Retrieve all
elements in S within distance r to q, that is, fx 2 S; d(x; q) 6 rg.

Generally, the distance is expensive to compute, so one usually defines the search complexity as
the number of distance evaluations performed. Proximity search algorithms build an index of the
database to speed up queries, avoiding the exhaustive search. Many of these indexes are based on
pivots (Section 2).

In this paper we complete and improve a hybrid index for metric space searching built on the
dsa–tree [3], an index supporting insertions and deletions that is competitive in spaces of medium
difficulty, but unable of taking advantage of the available memory. This was enriched with a pivoting
scheme in [1]. Pivots use the available memory to improve query time, and in this way they can beat
any other structure, but too many pivots are needed in difficult spaces. Our new structure was still
dynamic and made better use of memory, beating both dsa-trees and basic pivots. Now we present a
new search alternative, a deletion algorithm, and a way of managing the available memory for hybrid
dynamic spatial approximation trees. In this way we complete and improve our previous work [1].

2 Pivoting Algorithms

Essentially, pivoting algorithms choose some elements p i from the database S, and precompute and
store all distances d(a; pi) for all a 2 S. At query time, they compute distances d(q; pi) against the
pivots. Then the distance by pivots between a 2 S and q gets defined as D(a; q) = maxpi jd(a; pi)�
d(q; pi)j.

It can be seen that D(a; q) 6 d(a; q) for all a 2 S; q 2 U. This is used to avoid distance
evaluations. Each a such that D(a; q) > r can be discarded because we deduce d(a; q) > r without
actually computing d(a; q). All the elements that cannot be discarded this way are directly compared
against q.

Usually pivoting schemes perform better as more pivots are used, this way beating any other index.
They are, however, better suited to “easy” metric spaces [2]. In hard spaces they need too many pivots
to beat other algorithms.

3 Dynamic Spatial Approximation Trees

In this section we briefly describe dynamic sa–trees (dsa-trees for short), in particular the version
called timestamp with bounded arity [3], on top of which we build.

CACIC 2003 - RedUNCI 1503

3.1 Insertion Algorithm

The dsa–tree is built incrementally, via insertions. The tree has a maximum arity. Each tree node a
stores a timestamp of its insertion time, time(a), and its covering radius, R(a), which is the maximum
distance to any element in its subtree. Its set of children is called N(a), the neighbors of a. To insert
a new element x, its point of insertion is sought starting at the tree root and moving to the neighbor
closest to x, updating R(a) in the way. We finally insert x as a new (leaf) child of a if (1) x is closer
to a than to any b 2 N(a), and (2) the arity of a, jN(a)j, is not already maximal. Neighbors are stored
left to right in increasing timestamp order. Note that the parent is always older than its children.

3.2 Range Search Algorithm

The idea is to replicate the insertion process of elements to retrieve. That is, we act as if we wanted to
insert q but keep in mind that relevant elements may be at distance up to r from q, so in each decision
for simulating the insertion of q we permit a tolerance of�r. So it may be that relevant elements were
inserted in different children of the current node, and backtracking is necessary.

Note that, at the time an element x was inserted, a node a may not have been chosen as its
parent because its arity was already maximal. So, at query time, we must choose the minimum
distance to x only among N(a). Note also that, when x was inserted, elements with higher times-
tamp were not yet present in the tree, so x could choose its closest neighbor only among older
elements. Hence, we consider the neighbors fb1; : : : ; bkg of a from oldest to newest, disregard-
ing a, and perform the minimization as we traverse the list. That is, we enter into subtree bi if
d(q; bi) 6 min (d(q; b1); : : : ; d(q; bi�1)) + 2r.

We use timestamps to reduce the work inside older neighbors. Say that d(q; bi) > d(q; bi+j) + 2r.
We have to enter subtree bi anyway because bi is older. However, only the elements with timestamp
smaller than time(bi+j) should be considered when searching inside bi; younger elements have seen
bi+j and they cannot be interesting for the search if they are inside bi. As parent nodes are older than
their descendants, as soon as we find a node inside subtree bi with timestamp larger than time(bi+j)
we can stop the search in that branch.

Algorithm 1 performs range searching. Note that, except in the first invocation, d(a; q) is already
known from the invoking process.

3.3 Deletion Algorithm

To delete an element x, the first step is to find it in the tree. In which follows, we do not consider the
location of the object as part of the deletion problem, although in [3] we have shown how to proceed
if necessary. It should be clear that a tree leaf can always be removed without any complication, so
we focus on how to remove internal tree nodes.

The deletion of elements by rebuilding subtrees ensures that the resulting tree is exactly as if the
deleted element had never been inserted. Thus, no degradation can occur due to repeated deletions.
In such algorithm, when node x 2 N(a) is deleted, we disconnect x from the main tree. Hence all its
descendants must be reinserted. Moreover, elements in the subtree of a that are younger than x have
been compared against x to decide their insertion point. Therefore, these elements, in absence of x,
could choose another path if we reinsert them into the tree. Then, we retrieve all the elements younger

CACIC 2003 - RedUNCI 1504

RANGE SEARCH (Node a; Query q; Radius r; Timestamp t)

1. if time(a) < t ^ d(a; q) 6 R(a) + r then
2. if d(a; q) 6 r then report a
3. dmin 1
4. for bi 2 N(a) in increasing timestamp order do
5. if d(bi; q) 6 dmin + 2r then
6. k min fj > i; d(bi; q) > d(bj ; q) + 2rg
7. RANGE SEARCH(bi; q; r; time(bk))

8. dmin minfdmin; d(bi; q)g

Algorithm 1: Range query algorithm on a dsa–tree with root a.

than x that descend from a (i.e. those whose timestamp is greater, which includes its descendants)
and reinsert them into the tree, leaving the tree as if x had never been inserted.

If we reinsert the elements younger than x like completely new elements, that is if they get fresh
timestamps, we must search the appropriate point of reinsertion beginning at tree root. On the other
hand, if we maintain their timestamp we can start the reinsertion process from a, so we can save
many comparisons. In order to leave the resulting tree exactly as if x never had been inserted, we
must reinsert the elements in the original order, that is, the elements must be reinserted in increasing
order of timestamp.

Therefore, when node x 2 N(a) is deleted we retrieve all the elements younger than x from the
subtree rooted a, then disconnect them from the main tree, sort them in increasing order of timestamp
and reinsert them one by one, searching their reinsertion point from a.

Note that in this method the covering radii can become overestimated, because they are never
reduced due to a deleted element. If we delete an element x, every a 2 A(x) such that x was the
farthest element in its subtree will possibly have its R(a) overestimated. In spite of it, this problem
does not seem to affect much search performance since it does not significantly degrade over time
(see [4] for more details).

4 Fully Dynamic Sa–trees with Pivots

Hybrid dynamic sa–trees were defined in [1], although without handling deletions. We review some
of their main features and then present a deletion algorithm.

Pivoting techniques can trade memory space for query time, but they perform well on easy spaces
only. A dsa–tree, on the other hand, is suitable for searching spaces of medium difficulty. However,
it uses a fixed amount of memory, being unable of taking advantage of additional memory to improve
query time. The idea is to obtain a hybrid data structure that gets the best of both worlds, by enriching
dsa–trees with pivots. The result is better than both building blocks.

We choose different pivots for each tree node, such that we do not need any extra distance evalu-
ations against pivots, either at insertion or search time. Recall that, after we find the insertion point
of a new element x, say x 2 N(a), x has been compared against all its ancestors in the tree, all the

CACIC 2003 - RedUNCI 1505

siblings of its ancestors, and its own siblings in N(a). At query time, when we reach node x, some
distances between q and the aforementioned elements have also been computed. So, we can use (some
of) these elements as pivots to obtain better search performance, without introducing extra distance
computations. Next we present different ways to choose the pivots of each node.

4.1 H–DSAT1: Using Ancestors as Pivots

A natural alternative is to regard the ancestors of each node as its pivots. Let A(x) be the set of
ancestors of x 2 S. We define P (x) = f(pi; d(x; pi)); pi 2 A(x)g. This set is computed during
insertion of x, by storing some of the distance evaluations computed in this process. We store P (x)
at each node x and use it to prune the search.

4.1.1 Insertion Algorithm

To insert an element x, we set P (x) = ; and begin searching for the insertion point of x. For each
node a we choose in our path, we add (a; d(x; a)) to P (x). When the insertion point of x is found,
P (x) contains the distances to the ancestors of x. Note that we do not perform any extra distance
evaluations to build P (x). Thus, the construction cost of a H–DSAT1 is the same of a dsa–tree.

4.1.2 Range Search Algorithm

For range searching, we modify the dsa-tree algorithm to use the set P (x) stored at each tree node x.
We recall that, given a set of pivots, the distance by pivotsD(a; q) is a lower bound for d(a; q).

Consider again Algorithm 1. If at step 1 it holds that D(a; q) > R(a) + r, then surely d(a; q) >
R(a)+ r, and hence we can stop the search at node a without actually evaluating d(a; q). An element
a in S is said to be feasible for query q if D(a; q) 6 R(a) + r. That is, is feasible that a or some
element in its subtree lies within the search radius of q.

At search time, D(a; q) can be computed without additional evaluations of d. Suppose that we
reach node pk of the structure and want to decide if the search must follow into the subtree of x 2
N(pk). At this point, we have computed all distances d(q; pi); pi 2 A(x). If A(x) = fp1; : : : ; pkg,
then these distances are d(q; p1); : : : ; d(q; pk). As the set P (x) = f(p1; d(x; p1)); : : : ; (pk; d(x; pk))g
is stored in the node of x, then the distances d(x; pi) and d(q; pi) needed to compute D(x; q) are
present, at no extra costs.

The distances d(q; pi) are stored in a stack as the search goes up and down the tree. The sets P (x)
are also stored in root-to-x order, for example in a linear array, so that references to the pivots in P (x)
(first component of pairs) are unnecessary to correctly computeD, and we save space.

The covering radius feasible neighbors of node a (feasible neighbors), denoted F (a), are the
neighbors b 2 N(a) such thatD(b; q) 6 R(b) + r. The other neighbors are said to be infeasibles.

At search time, if we reach node a, only the feasible neighbors of a could be taken into account, as
other subtrees can be discarded completely. Observe that these subtrees have been discarded usingD
and not d and, as we have explained,D is computed for free. However, it does not immediately follow
that we obtain for sure an improvement in search performance. The reason is that infeasible nodes
still serve to reduce dmin in Algorithm 1, which in turn may save us entering into younger siblings.
Hence, by saving computations against infeasible nodes, we may have to enter into new siblings later.
This is an intrinsic price of our method.

CACIC 2003 - RedUNCI 1506

RANGE SEARCH H–DSAT1 (Node a; Query q; Radius r;Timestamp t)

1. if time(a) < t ^ d(a; q) 6 R(a) + r then
2. if d(a; q) 6 r then report a
3. dmin 1
4. F (a) fb 2 N(a); D(b; q) 6 R(b) + rg
5. for bi 2 N(a) in increasing timestamp order do
6. if bi 2 F (a) ^ D(bi; q) 6 dmin + 2r then
7. if d(bi; q) 6 dmin + 2r then
8. k min fj > i; d(bi; q) > d(bj ; q) + 2rg
9. RANGE SEARCH H–DSAT1(bi ; q; r; time(bk))

10. if d(bi; q) has already been computed then dmin min fdmin; d(bi; q)g

Algorithm 2: Range searching for query q with radius r in a H–DSAT1 with root a.

Now we present a new search alternative not devised in [1]. The idea is to use D along with the
hyperplane criterion to save distance computations at search time. For any feasible element bi such
that D(bi; q) > dmin + 2r, it holds that d(bi; q) > dmin + 2r. Hence, we can stop the search in the
feasible node bi without evaluating d(bi; q).

In which follows we present different alternatives of the search algorithm. The Algorithm 2 shows
the first alternative.

However, in step 8 we run into the risk of comparing infeasible elements against q. This is done
in order to use timestamp information as much as possible, but it introduces the undesired effect of
reducing the benefits of pivots in our data structure. We present some improvements to this weakness.

Optimizing using D. We make use of D at search time not only to determine the feasibility of
a node and prune the search space saving distance evaluations, but also to decrease the number of
infeasible elements that are compared directly against q in step 8 of the algorithm. We search inside
bi using the timestamp t of a younger sibling bk of bi. Fortunately, some of the necessary comparisons
can be saved by making use of D. The key observation is that d(bi; q) 6 D(bj; q) + 2r implies
d(bi; q) 6 d(bj; q) + 2r, so if d(bi; q) 6 D(bj; q) + 2r we can conclude that bj is not of interest in
step 8, hence saving the computation of d(bj; q). Although we save some distance computations and
obtain the same result, still there will be infeasible elements compared against q. We call H–DSAT1D
this search method.

Using Timestamps of Feasible Neighbors. The use of timestamps is not essential for the correct-
ness of the algorithms. Any larger value would do, although the optimal choice is to use the smallest
correct timestamp. Another alternative is to compute a safe approximation to the correct timestamp,
but ensuring that no infeasible elements are ever compared against q. Note that every feasible neighbor
of a node will be compared against q inevitably. If for bi 2 F (a) it holds that d(bi; q) 6 dmin+2r, then
we compute the oldest timestamp t among the reduced set fbi+j 2 F (a); d(bi; q) > d(bi+j; q)+ 2rg,
and stop the search inside bi at nodes whose timestamp is newer than t. This ensures that only feasible

CACIC 2003 - RedUNCI 1507

elements are compared against q, and under that condition it uses as much timestamping information
as possible. We call H–DSAT1F this alternative.

4.1.3 Deletion Algorithm

We adapt the algorithm of rebuilding subtrees [4] to delete an element x 2 N(a) from the tree, such
that it takes into account the existence of pivots. The reinsertion process involve distance evaluations,
some of which are already precomputed as pivot information. We show how to take advantage of this.

Note that a is a pivot of every element in its subtree. In other words, the distance d(b; a) has been
stored in P (b), for every b in the subtree of a. As a result, we can save at least one distance evaluation
for each element to be reinserted. Furthermore, if y is an older sibling of x, and y is a pivot (ancestor)
of b then we can save the distance evaluation d(b; y) when reinserting b.

As P (b) is stored using a linear array, the position of d(b; a) in P (b) can be easily computed. If a
lies at level i of the tree, then d(b; a) is at position i of the array.

It is important to note that, after reinserting b, the node a and the ancestors of a will be ancestors
of b. Then, we must keep in P (b) the distances between b and the ancestors of a. The other distances
in P (b) are discarded before reinserting b. Finally, the new set P (b) is completed using some of the
distance evaluations produced at reinsertion time.

The deletion process of x 2 N(a) can be resumed as follows. We retrieve all the elements younger
than x from the subtree rooted a, then disconnect them from the main tree, discard the distances to the
pivots that are not of interest after reinserting the node, sort the nodes in increasing order of timestamp
and reinsert them one by one (reusing some distances in P), searching their reinsertion point from a.

The result is very important: we do not introduce extra distance evaluations in the deletion process,
and even more, the deletion cost can be reduced by using pivots.

4.2 H–DSAT2: Using Ancestors and their Older Siblings as Pivots

We aim at using even more pivots than H–DSAT1, to improve even more the search performance. At
search time, when we reach a node a, q has been compared against all the ancestors and some of the
older siblings of ancestors of a. Hence, we use this extended set of pivots for each node a.

4.2.1 Insertion Algorithm

The only difference in a H–DSAT2 is in the P (x) sets we compute. Let x 2 S and A(x) =
fp1; : : : ; pkg be the set of its ancestors, where pi is the ancestor at tree level i. Note that pi+1 2 N(pi).
Hence, (b; d(x; b)) 2 P (x) if and only if (1) b 2 A(x), or (2) pi; pi+1 2 A(x)^b 2 N(pi)^time(b) <
time(pi+1).

4.2.2 Range Search Algorithm

For range searching, to compute D(x; q) we need the distances between q and the pivots of x stored
in a stack. But it is possible that some of the pivots of x have not been compared against q because
they were infeasible. In order to retain the same pivot order of P (x), we push invalid elements into
the stack when infeasible neighbors are found. D is then computed having this in mind. We define
the same variants of the search algorithm for H–DSAT2, which only differ from H–DSAT1 in the way
of computingD.

CACIC 2003 - RedUNCI 1508

4.2.3 Deletion Algorithm

Now suppose we want to delete an element x 2 N(a) in H–DSAT2. Again, a is a pivot of each
element b in the subtree rooted a. Thus, we can avoid at least one distance evaluation for element to
be reinserted. But we can do more. The comparison d(b; y) can be avoided, for all y 2 N(a) older
than x, since those distances have been stored in P (b). The process of computing the position of the
distances in P (b) is not so direct as before: these must be computed as we retrieve the nodes to be
reinserted. Because of the features of H–DSAT2, it is possible that the deletion cost can be reduced
even more.

5 Limiting the Use of Storage

In practice, available memory is bounded. Our data structures, as have been defined, use memory in
a non-controlled way (each node uses as much pivots as the definition requires). This fact rules out
our solutions for many real-life situations. We show how to adapt the structures to fit the available
memory. The idea is to restrict the number of pivots stored in each node to a value k, by holding a
subset of the original set of pivots. As a result, the data structures lose some performance at search
time. A way of minimizing such degradation is to choose a “good” set of pivots for each node.

5.1 Choosing Good Pivots

We study empirically the features of the pivots that discard elements at search time. In our experiment,
each time a pivot discards an element, we mark that pivot (for more details see Section 6).

Because of the insertion process of H–DSAT1, the latest pivots of a node should be good since
they are close, and hence good representatives, of the node. We verify experimentally that most
discards using pivots were due to the latter ones. Figure 1 (left) shows that a small number of latter
pivots per node suffices. In dimension 5, about 10 pivots per node discard all the elements that can
be discarded using pivots. In higher dimensions, even less pivots are needed. We call H–DSAT1 k

Latest to this alternative.

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18 20

P
er

ce
nt

ag
e

di
sc

ar
de

d
by

 p
iv

ot
s

Number of pivots

Percentage of elements discarded by differents choices of
 pivots in H-Dsat1 for n=100,000 vectors, dim. 5, arity 4

Retrieve 0.01%
Retrieve 0.1%

Retrieve 1%
0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

ag
e

di
sc

ar
de

d
by

 p
iv

ot
s

Number of pivots

Percentage of elements discarded by differents choices of
 pivots in H-Dsat2 for n=100,000 vectors, dim. 15, arity 32

Latest
Nearest

Random

Figure 1: Percentage of elements discarded using the latest pivots in H–DSAT1 (left), and using the
latest and nearest pivots in H–DSAT2 (right).

CACIC 2003 - RedUNCI 1509

The ancestors of a node are close to it, but the siblings of the ancestors are not necessarily close.
So we expect that using the k latest pivots in H–DSAT2 (H–DSAT2 k Latest) does not perform as
well as before. An obvious alternative is H–DSAT2 k Nearest, which uses the k nearest pivots, not
the k latest. Figure 1 (right) confirms that less nearest pivots are needed to discard the same number
of nodes as latest pivots. However, note that for H–DSAT2 k Nearest we need to store the references
to the pivots in order to compute D. Hence, given a fixed amount of memory, this alternative must
use less pivots per node than the others.

We have introduced a parameter k in our data structures, which can be easily tuned since it depends
on the available memory. When k = 0 the data structure becomes the original dsa–tree, and when
k =1 it becomes our unrestricted data structures of Section 4.

5.2 Choosing Good Nodes

The dual question is whether some tree nodes profit more from pivots than others. We experimentally
study the features of the elements that are discarded using pivots. The result is that, for all the
metric spaces used, the discarded elements are located near the leaves in the tree. In the vector space
of dimension 5, the percentage varies from 40% to 60% (depending of the query radius), while in
the space of dimension 15, almost the 100% of the elements discarded by pivots are leaves. In the
dictionary this percentage varies from 80% to 90%.

The reason is that the covering radii of the nodes decrease as we go down in the tree, being zero
in the leaves. As the covering radius infeasibility condition for a node a is D(a; q) > R(a) + r, the
probability of discarding a increases when R(a) decreases.

Suppose that we restrict the number of pivots per node to a value k. As leaves are discarded
more frequently than internal nodes, we consider an alternative that profits from this fact when using
limited memory. The idea is to move the storage of pivots to the leaves smoothly and dynamically.

We have a parameter �, which is 0 6 � 6 1. rho allows us to determine the number of pivots per
node such that: (1) internal nodes have �k pivots (unless they do not have so many to choose), and (2)
external nodes have all the pivots that the scheme permits (unless there is not enough available space).
The way to implement this is as follows: When an external node becomes internal it retains �k of its
pivots, and it yields the others to the public repository, and when a new external node appears it takes
from the repository all the pivots that it needs (whenever the repository has that many, in other case it
takes all the available ones).

In this way, each new element attempts to take a number of pivots as close as possible to its original
number of pivots, and memory usage tends to move dynamically to the leaves. The parameter � allows
us to control the degree of movement of storage to the leaves. Note that when � = 0, all the pivots
move to the leaves, and when � = 1 the memory management has no effect.

Figure 2 shows the experimental query cost for H–DSAT2 k Nearest, in the vector space of di-
mension 15, using k = 5 and k = 35 pivots, and values 0, 0:1, 0:5, and 1 for �. In this metric space,
we get the best performance with � = 0.

6 Experimental Results

In this section we present a series of experiments performed on our data structures. We have evaluated
our structures in three metric spaces. First, a dictionary of 69,069 English words under edit distance

CACIC 2003 - RedUNCI 1510

40

45

50

55

60

65

70

75

80

85

0.01 0.1 1

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Percentage of database retrieved

Query cost for H-Dsat2 and memory management,
 for k = 5 pivots, n = 100,000 vectors, dim. 15, arity 32

rho = 0.0
rho = 0.1
rho = 0.5
rho = 1.0

35

40

45

50

55

60

65

70

75

80

85

0.01 0.1 1

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Percentage of database retrieved

Query cost for H-Dsat2 and memory management,
 for k = 35 pivots, n = 100,000 vectors, dim. 15, arity 32

rho = 0.0
rho = 0.1
rho = 0.5
rho = 1.0

Figure 2: Performance of H–DSAT2 k Nearest with memory management, and various values of �.
We selected values of k = 5 pivots (left) and k = 35 pivots (right).

(minimum number of character insertions, deletions and substitutions to make the strings equal), of
interest in spelling applications. The other spaces are real unitary cubes in dimensions 5 and 15 under
Euclidean distance, using 100,000 uniformly distributed random points. We treat these just as metric
spaces, disregarding coordinate information.

In all cases, we left apart 100 random elements to act as queries. The data structures were built 20
times varying the order of insertions. We tested arities 4, 8, 16, and 32. Each tree built was queried
100 times, using radii 1 to 4 in the dictionary, and radii retrieving 0.01%, 0.1%, and 1% of the set in
vector spaces.

In [1] we show that H–DSAT1F outperformed H–DSAT1D, clearly in the dictionary and slightly
in vector spaces. The results are similar on H–DSAT2. Also we show experimentally that our struc-
tures are competitive, as our best versions of H–DSAT1 and H–DSAT2 largely improve upon dsa–
trees. This shows that our structures make good use of extra memory. H–DSAT2 can use more
memory than H–DSAT1, and hence its query cost is better.

However, there is a price in memory usage, e.g., H–DSAT1 needs 1.3 to 4.0 times the memory of
dsa–tree, while H–DSAT2 requires 5.2 to 17.5 times. Hence the interest in comparing how well our
structures use limited memory compared to others. Figure 3 and Figure 4 compare against a generic
pivot data structure, using the same amount of memory in all cases. We also show a dsa–tree as a
reference point, as it uses a fixed amount of memory. In easy spaces (dimension 5 or dictionary) we
do better when there is little available memory, but in dimension 15 H–DSAT2 is always the best.
More pivots are needed to beat H–DSAT in harder problems.

7 Conclusions

In this paper we have completed a hybrid scheme for similarity searching in metric spaces. Such
scheme is basically a dsa–tree, except that a set of pivots is associated with each node. The set
of pivots of each node is chosen in such a way that no extra distance evaluations are introduced at
insertion time: we only save some of the distance computations that occur when inserting a new
element. At search time, when we reach a node, we use pivots to prune the search space for free.

CACIC 2003 - RedUNCI 1511

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25 30 35 40 45 50

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Number of pivots in H-Dsat2 latest

Query cost for radius retrieving 0.01% of database
 n=100,000 vectors, dim. 5

H-Dsat2 latest
H-Dsat2 nearest

H-Dsat1 latest
Pivots

Dsat

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Number of pivots in H-Dsat2 latest

Query cost for radius retrieving 0.01% of database
 n=100,000 vectors, dim. 15

H-Dsat2 latest
H-Dsat2 nearest

H-Dsat1 latest
Pivots

Dsat

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45 50

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Number of pivots in H-Dsat2 latest

Query cost for radius retrieving 0.1% of database
 n=100,000 vectors, dim. 5

H-Dsat2 latest
H-Dsat2 nearest

H-Dsat1 latest
Pivots

Dsat

55

60

65

70

75

80

85

90

95

100

0 5 10 15 20 25 30 35 40 45 50

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Number of pivots in H-Dsat2 latest

Query cost for radius retrieving 0.1% of database
 n=100,000 vectors, dim. 15

H-Dsat2 latest
H-Dsat2 nearest

H-Dsat1 latest
Pivots

Dsat

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45 50

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Number of pivots in H-Dsat2 latest

Query cost for radius retrieving 1% of database
 n=100,000 vectors, dim. 5

H-Dsat2 latest
H-Dsat2 nearest

H-Dsat1 latest
Pivots

Dsat

80

82

84

86

88

90

92

94

96

98

100

0 5 10 15 20 25 30 35 40 45 50

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Number of pivots in H-Dsat2 latest

Query cost for radius retrieving 1% of database
 n=100,000 vectors, dim. 15

H-Dsat2 latest
H-Dsat2 nearest

H-Dsat1 latest
Pivots

Dsat

Figure 3: Query cost of H–DSAT1F and H–DSAT2F versus a pivoting algorithm, in vector spaces.

We study the way to choose good pivots when the amount of memory is limited. Several alterna-
tives are explored and evaluated.

In this paper we have also presented a method to delete elements from a hybrid dynamic spatial
approximation tree. This method has shown to be better than that of the original method over a
dsa–tree.

The outcome is a fully dynamic data structure that can be managed through insertions and dele-

CACIC 2003 - RedUNCI 1512

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40 45 50

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Number of pivots in H-Dsat2 latest

Query cost for radius 2, n=69,069 words

H-Dsat2 latest
H-Dsat2 nearest

H-Dsat1 latest
Pivots

Dsat

25

30

35

40

45

50

55

60

65

0 5 10 15 20 25 30 35 40 45 50

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Number of pivots in H-Dsat2 latest

Query cost for radius 3, n=69,069 words

H-Dsat2 latest
H-Dsat2 nearest

H-Dsat1 latest
Pivots

Dsat

50

55

60

65

70

75

80

0 5 10 15 20 25 30 35 40 45 50

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Number of pivots in H-Dsat2 latest

Query cost for radius 4, n=69,069 words

H-Dsat2 latest
H-Dsat2 nearest

H-Dsat1 latest
Pivots

Dsat

Figure 4: Query cost of H–DSAT1F and H–DSAT2F versus a pivoting algorithm, in the dictionary.

tions over arbitrarily long periods of time without any reorganization, and that can take advantage of
available memory to improve search and deletion costs.

References

[1] D. Arroyuelo, F. Muñoz, G. Navarro, and N. Reyes. Memory–adptative dynamic spatial approx-
imation trees. In Proceedings of the 10th International Symposium on String Processing and
Information Retrieval (SPIRE 2003), LNCS. Springer, 2003. To appear.

[2] E. Chávez, G. Navarro, R. Baeza-Yates, and J.L. Marroquı́n. Proximity searching in metric
spaces. ACM Computing Surveys, 33(3):273–321, September 2001.

[3] G. Navarro and N. Reyes. Fully dynamic spatial approximation trees. In Proceedings of the 9th
International Symposium on String Processing and Information Retrieval (SPIRE 2002), LNCS
2476, pages 254–270. Springer, 2002.

[4] G. Navarro and N. Reyes. Improved deletions in dynamic spatial approximation trees. In Proc. of
the XXIII International Conference of the Chilean Computer Science Society (SCCC’03). IEEE
CS Press, 2003. To appear.

CACIC 2003 - RedUNCI 1513

