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ABSTRACT
 In evolutionary algorithms based on genetics, the crossover operation creates individuals by
interchanging genes. On the other side selection mechanisms aim to favour reproduction of better
individuals imposing a direction on the search process: copies of better ones replace worst
individuals. Consequently, part of the genetic material contained in these worst individuals disappears
forever. This loss of diversity can lead to a premature convergence. To prevent a premature
convergence to a local optimum under the same selection mechanism and multirecombined scheme
then, either a larger population size or adequate crossover and mutation operators are needed. 
 
 In this work we are showing the effect on genetic diversity, quality of results and required
computational effort, when applying different crossover methods to a set of very hard instances of the
weighted tardiness scheduling problem in single machine environments. For these experiments we are
using multirecombined approaches which allow multiple crossover operations on multiple parent each
time a new individual is generated. A description of each method, experiments and preliminary results
are reported.
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1. INTRODUCTION

To achieve higher customer satisfaction current trends in manufacturing are focussed today on
production policies, which emphasizes minimum weighted tardiness. Under this approach jobs to be
delivered in a production system are usually weighted according to clients requirements and job
relevance. Among other heuristics [4, 5, 18, 22], evolutionary algorithms (EAs) have been
successfully applied to solve scheduling problems [14, 23, 24]. Current trends in evolutionary
algorithms make use of  multiparent and multirecombinative approaches. The latter we called,
multiple-crossovers-on-multiple-parents (MCMP). Instead of applying crossover once on a pair of
parents this feature applies n1 crossover operations on a set of n2 parents. In order to improve the
balance between exploration and exploitation in the search process [17] a variant called MCMP-SRI
[20, 21] recombines a breeding individual (stud) by repeatedly mating individuals that randomly
immigrate to a mating pool. Under this approach the random immigrants incorporate exploration
and the multi-mating operation with the stud incorporates exploitation to the search process. Due to
its good performance, previous works using MCMP-SRI always adopted PMX and proportional
selection as the standard mechanisms. In this work we mainly study the influence of different
crossover operators on genetic diversity of the individuals which intervene in the multirecombined
evolutionary process: population, studs, immigrants and descendants. The weighted tardiness
scheduling problem was selected to face this study because its inherent difficulty. Next sections
describe the scheduling problem, the multirecombinative approach, the crossover operators selected
and discuss the results obtained.

2. THE SINGLE MACHINE WEIGHTED TARDINESS SCHEDULING PROBLEM

The single-machine total weighted tardiness problem [18, 22] can be stated as follows: n jobs are to
be processed without interruption on a single machine that can handle no more than one job at a
time. Job j (j = 1,...,n)  becomes available for processing at time zero, requires an uninterrupted
positive  processing time pj on the machine, has a positive weight wj, and a due date dj by which it
should ideally be finished.  For a given processing order of the jobs, the earliest completion time Cj
and  the tardiness Tj = max{Cj-dj,0} of job j can readily be computed. The problem is to find a

processing order of the jobs with minimum total weighted tardiness ∑
=

n

j
jjTw

1
. Even with this simple

formulation, this model leads to an optimization problem that is NP-Hard [22].

3. MULTIRECOMBINATION OF  STUDS AND IMMIGRANTS

The conventional approach to crossover, independently of the method being applied, involves applying
the operator only once on the selected parents. Such a procedure is known as the Single Crossover
Per Couple approach (SCPC). An alternative approach, Multiple Crossover per Couple (MCPC)
implies the repeated application of crossover to exploit the good features of a pair of parents.
Implementation and results are discussed elsewhere [11, 12]. To improve MCPC performance, by
using the multiparent approach of Eiben [8, 9, 10], the method was extended to MCMP [13] where
the multiple crossovers are applied to a set of multiple parents. Results obtained in diverse single
and multiobjective optimization problems indicated that the searching space is efficiently exploited
by the multiple application of crossovers and efficiently explored by the greater number of samples
provided by the multiple parents.
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Attempting to achieve a better balance between exploration and exploitation we devised MCMP-
SRI. Here, the process for creating offspring is performed as follows (see figure 1). From the old
population an individual, designated as the stud, is selected by means of proportional selection. The
number of n2 parents in the mating pool is completed with randomly created individuals (random
immigrants). The stud mates every other parent, the couples undergo crossover and 2*n2 offspring
are created. The best of these 2*n2 offspring is stored in a temporary children pool. The crossover
operation is repeated n1 times, for different cut points each time, until the children pool is
completed. Children may or may not be exposed to mutation. Finally, the best offspring created
from n2 parents and n1 crossover is inserted in the new population. 

4. CROSSOVER OPERATORS FOR PERMUTATION REPRESENTATION

 As a result of selection and recombination during the process of an evolutionary algorithm, copies of
better ones replace worst individuals. Consequently, part of the genetic material contained in these
worst individuals disappears forever. This loss of diversity is defined as the proportion of the
population that is not selected for the next generation and can lead to a premature convergence. To
prevent a premature convergence to a local optimum then, either a larger population size or adequate
crossover and mutation operators are needed. In this work we concentrate in alternative crossovers
which are adequate to permutation representation. The influence of the following methods is studied.
 
PMX (Partial Mapped Crossover):  [15] it can be seen as an extension of the popular TPX (two
point crossovers) for binary or integer representation. Besides, it uses a repair procedure to solve the
appearance of illegal individuals that TPX may cause, as follows.

• Selects two random cutting points in the chromosome, which enclose sub-chains (the
mapping sections between both parents).

• Interchange both sub-strings between parents to produce a proto-child.
• Determines the mapping relation between both mapping sections.
• By means of the mapping relation, creates legal offspring

OX1 (Order Crossover 1): [6] proposed by Davis in 1995, it is a variant of PMX, which uses a
different repair mechanism:

• Selects two random cutting points, enclosing sub-chains in both parents.
• The sub-chain of the first parent is copied in the child.
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Fig. 1. The stud and random immigrants multirecombination process.
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• The remaining alleles in the child are copied from the first parent according to the order they
appear in the second parent and beginning from the second cutting point.

OX2 (Order Crossover 2): [7] also proposed by Davis in 1991. The procedure to create an
offspring is similar to that of OX1, but in the third step the remaining alleles are copied from the
beginning of the first parent.

CX (Circle Crossover): [19] proposed by Oliver in 1987 proceed as follows. It begins by putting in
the first position of the child, the allele value, which is in the first position of the first parent. Then
the allele value found in the same (first) position of the second parent is used as an index to retrieve
an allele value from the first parent and put it into the offspring. Again, the allele value found in the
same position of the second parent is used as an index to retrieve the next allele value to put into the
offspring. This process is repeated until the cycle is finished. Then, if some gene positions are to be
filled, the remaining alleles are extracted from the second parent

OCPX (one cut point crossover): [23] was proposed by Reeves, based on OPX (one point
crossover). Here a cutting point is randomly selected. A child is built by following the sequence of
the first parent until the cutting point, then the rest of the alleles are taken from the beginning of the
second parent in the order they appear.

OBX (Order Based Crossover): [14] Syswerda proposed this crossover operator for the TSP, and
proceeds as follows.

• A binary mask is randomly generated to determine which genes are copied from the first and
which from the second parent.

• Genes from the first parent, which are in the same position as the 1´s in the mask, are copied
in the child.

• The remaining positions in the child are copied in the positions corresponding to 0´s in the
mask, preserving the order they appear in the second parent.

PPX (Precedence Preservative Crossover): [3] the precedence relationships that appear in the
parents are preserved in the child. The method proceeds as follows.

• A binary mask is randomly generated to determine which genes are copied from the first and
which from the second parent.

• Bits set to 1 indicate that genes from the first parent will be copied in the child and bits set to
0 indicate that genes from the second parent will be copied in the child. Genes from the
parents are copied, from left to right, in the same order they appear in either parent.

OSX (One Segment Crossover): [15] it is also based in TPX, and proceeds as follows.
• To determine which genes are copied from the first or second parent two cutting points P1

and P2 are randomly selected.
• Genes from the first parent are copied into the child from its first position until P1.
• Positions between P1 and P2 are copied in the child from the second parent avoiding

repetitions.
• Positions P2+1 to l (chromosome length) are copied from the first parent avoiding

repetitions.
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5. THE BIAS, A MEASURE FOR GENETIC DIVERSITY

 Bäck and Hoffmeister [1], introduced the population diversity in terms of the bias measure defined by
Grefenstette [16] as follows;
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 where l is the chromosome length, µ is the population size  and at

i,j denotes the allele value at time
(generation) t. The bias b  (0.5≤  b ≤  1.0) indicates the average percentage of the most outstanding
value in each position of the individuals. Smaller values of b indicate higher genotypic diversity and
vice versa. The bias b can be used to formulate an adequate termination criterion.

In this work we try to determine the EA behaviour under different crossover methods. Diversity of
individuals is crucial to convergence. Consequently, we studied this diversity in the different type of
individuals, which participate in the multirecombined evolutionary process: population, studs,
immigrants and offspring.

In our multirecombinative scheme, during a generation, each one of these four pools has the
following size, 

Pool Type Pool size (µ)
Population pool size: number of individuals in the population.
Studs pool size: number of individuals in the population.
Immigrants pool size: (n2 – 1) * number of individuals in the population.
Offspring pool size: (n2 – 1) * 2 * n1* number of individuals in the population.

Bias b of Grefenstette was established for binary representation of chromosomes and to calculate it
we can proceed as follows. A vector of length l is built for each allele value (0 or 1), indicating the
number of occurrences of that allele value in each gene position. Then the greatest occurrence
values, of either allele value, are added and averaged to the number of genes in the population (l. µ).

As in our scheduling problem an individual is represented by a permutation of jobs we extend the
bias concept as follows:

( )∑
= =⋅

=
µ

µ 1 ,...,1

,
1))((

i lj

ji
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 where l is the chromosome length, µ is the pool size  and occt
i,j denotes the number of occurrences of

allele value i in position j at time t. The bias b , ranges from 
valuesalleleofnumber ___

1  to 1.0 and  indicates

the average percentage of the most outstanding value in each position of the chromosome in the
considered pool. Smaller values of b indicate higher genotypic diversity and vice versa. To study the
diversity of each pool we build an l x µ matrix, OCC, and again the greatest occurrence values, of
all allele values, are added and averaged to the number of genes in the pool type (l. µ ).
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 Each OCC matrix associated with a pool type, stores the information of individuals through a
generation and it is re-initiated in the next generation. At the end of each generation the bias b is re-
calculated.
 
6. EXPERIMENTAL TESTS AND RESULTS

The evolutionary algorithms were tested for five, 40 job problem size, hard instances (19, 41, 46, 56
and 116) extracted from OR-library benchmarks [2] for the single machine weighted tardiness
scheduling problem. We performed a series of runs for each instance. The maximum number of
generations was fixed at 500. Population size was fixed at 15 individuals. Probabilities for crossover
were set to 0.65 and for mutation (exchange) were set to 0.05, in all experiments. The number n1, of
crossovers and the number n2, of parents, were set to 18 and 20 respectively, in all experiments.

To compare the algorithms, the following relevant performance variables were chosen:

Ebest = ( (best value - opt_val)/opt_val)100. It is the percentile error of the best-found individual when
compared with the known, or estimated, optimum value opt_val. It gives us a measure on how far the
best individual is from that opt_val. 

Gbest. It is the generation where the best individual was found.

Evals: It is the number of evaluations necessary to obtain the best-found individual in a run.

The following tables summarize mean values for the performance variables through the selected
instances under each crossover operator. Boldfaced-italic values indicate the best performer(s) for
each instance. At the bottom of the tables, average, minimum and maximum mean values of the
corresponding performance variable, are indicated.

Instance Upper
Bound PMX OX1 OX2 CX OCPX OBX PPX OSX

19 77122 0.33 0.61 0.31 0.67 6.87 17.21 18.51 0.55
41 57640 0.11 2.59 0.30 1.45 12.30 24.86 25.65 1.21
46 64451 0.03 0.17 0.01 0.55 7.34 18.93 18.71 0.08
56 2099 8.06 6.42 6.10 8.78 29.50 52.46 109.19 13.68

116 46770 0.33 1.92 0.58 1.56 17.80 37.69 41.87 1.28
 Avg 1.77 2.34 1.46 2.60 14.76 30.23 42.79 3.36

Min 0.03 0.17 0.01 0.55 6.87 17.21 18.51 0.08
Max 8.06 6.42 6.10 8.78 29.50 52.46 109.19 13.68

Table 1 summarizes mean Ebest values through all instances and operators. Results show that on
average, the percentile error of the best found individual when compared with the best known
objective value is the smallest (1.46 %) under OX2 and the greatest (42.79 %) under PPX. We can
also see that OX2, PMX, OX1, CX, and OSX are of good or acceptable performance (in that order)
while OCPX, OBX, and PPX are the worst performers.

Table 1. Mean Ebest for each instance under different crossover operators.
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Instance Upper
Bound PMX OX1 OX2 CX OCPX OBX PPX OSX

19 77122 355.2 445.8 279.8 477.8 461.3 361.3 330.2 331.1
41 57640 371.0 456.8 299.8 480.4 461.6 319.3 376.8 392.5
46 64451 371.0 468.4 303.9 472.2 457.9 327.4 397.4 426.3
56 2099 83.2 210.1 112.9 343.0 260.8 338.3 309.5 234.5

116 46770 441.0 468.7 390.0 484.3 427.4 355.2 272.4 456.3
 Avg 324.28 409.96 277.28 451.54 413.80 340.30 337.26 368.14

Min 83.20 210.10 112.90 343.00 260.80 319.30 272.40 234.50
Max 441.00 468.70 390.00 484.30 461.60 361.30 397.40 456.30

Table 2 summarizes mean Gbest values through all instances and operators. Results show that on
average, the minimum number of generations required to find the best individual is 277.28 under OX2,
while the maximum is 451.54 under CX. PMX also shows a low Gbest value of 324.28.

This is reflected in table 3 too, where the corresponding mean Evals values are 2,828,256, 4,605,708
and  3,307,656 for OX2, CX and PMX, respectively.

Instance Upper
Bound PMX OX1 OX2 CX OCPX OBX PPX OSX

19 77122 3623040 4547160 2853960 4873560 4705260 3685260 3368040 3275220
41 57640 3784200 4659360 3057960 4900080 4708320 3256860 3843360 4003500
46 64451 3784200 4777680 3099780 4816440 4670580 3339480 4053480 4348260
56 2099 848640 2143020 1151580 3498600 2660160 3450660 3156900 2391900

116 46770 4498200 4780740 3978000 4939860 4359480 3623040 2778480 4654260
 Avg 3307656 4181592 2828256 4605708 4220760 3471060 3440052 3734628

Min 848640 2143020 1151580 3498600 2660160 3256860 2778480 2391900
Max 4498200 4780740 3978000 4939860 4708320 3685260 4053480 4654260

The following figures resume information on genetic diversity, and are related only to instance 19,
because it is demonstrative for all instances. 

In the multirecombinative processes of MCMP-SRI, immigrants ensure to maintain genetic
diversity incorporating exploration while the studs guide the search to promising areas,
incorporating exploitation.

This assertion is clearly indicated in the following two figures. In figure 2, the high diversity of the
immigrant’s pool is shown. In average the bias b ranges from 0.0486 to 0.0530. In figure 3, the low
diversity of the stud’s pool is shown. In average the bias ranges from 0.5516 (in PPX) to 0.8419 (in
CX).

Table 2. Mean Gbest for each instance under different crossover operators.

Table 3. Mean Evals for each instance under different crossover operators.
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PMX OX1 OX2 CX OCPX OBX PPX OSX
0.33 0.61 0.31 0.67 6.87 17.21 18.51 0.55

From table 4 and figure 3 we can see how the stud´s genetic diversity affects quality of results. Best
performers are PMX, OX1, OX2, CX and OSX, with lower pool diversity while worst performers
are OCPX, OBX and PPX, showing higher pool diversity. 

Fig. 2. Average bias of immigrants over 500 generations for each series of experiments

Fig. 3. Average bias of studs over 500 generations for each series of experiments

Table 4. Mean Ebest values under each crossover method for instance 19
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The stud is the breeding individual, which provides good genetic material into the mating pool for
SRI multirecombinations. Some of the crossover operators (with b ≥ 0.7) preserve better this
genetic material than others. This observation allows us to conjecture that under this condition the
algorithm will better exploit the stud’s neighbourhood creating higher quality populations.

Figure 4 shows bias b values after each generation and for each pool type. The black, white and
grey curves correspond to the stud’s, population’s and offspring’s pools, respectively, through the

Fig. 4.  Bias b values for the stud’s, population’s and offspring’s pools, under each crossover
            method for instance 19, through 500 generations.
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500 generations. We can observe that for the best performers (PMX, OX1, OX2, CX and OSX) the
bias b has similar (high) ranges for the stud’s and the population’s pools showing low diversity and
differs substantially from that of the offspring’s pool which shows higher diversity. On the other
hand for the worst performers (OCPX, OBX and PPX) the population’s pool shows a higher
diversity which, in the extreme cases of OBX and PPX, is in the range of that of offspring’s pool.
At this point there is a clear indication that a correlation exists between the similar variability of
genetic diversity for studs and population, and the quality of results. That is to say: if the crossover
operator does not destroy the guiding ability of the stud, the convergence is performed towards
better individuals. 

7. CONCLUSIONS

MCMP-SRI, showed its good performance by providing new benchmark values for the E-T
scheduling problem [20] or reaching existent benchmarks in other related due-date objectives in
single machine environments. That performance was achieved by using PMX crossover, selected as
a good method in our initial trials.

In this work we selected the most difficult instances of one of the hardest scheduling problem for
that machine environment: the weighted tardiness problem. A variety of crossover methods suitable
for permutation representation were implemented. Their effect on diversity and quality of results
were studied.

We can remark the following observations:

• In SRI multirecombinations we must adopt crossover operators, which better preserve the
genetic material embedded in the stud. This allows the algorithm to better exploit the stud’s
neighbourhood creating higher quality populations.

• If the crossover operator does not destroy the guiding ability of the stud, then the individuals in
the population can perform their search towards the promising areas of the problem space
providing better final solutions. This can be seen by the existent correlation between higher
quality of results and similarity of population and studs (low) diversity.

• We determined that for the fitness landscape associated to weighted tardiness problem, SRI
multirecombination performs better under OX2 and PMX.

• The study of pools diversity offers a framework to determine the influence of other operators
and mechanism in multirecombination.

Future work will be devoted to study the effect of different operators and mechanisms in
multirecombination schemes in a variety of optimization problems.
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