
Process Tracking for Dynamic Tuning Applications on the Grid  
 

Genaro Costa, Anna Morajko, Tomás Margalef, Emilio Luque ∗
CAOS, Universitat Autònoma de Barcelona  

Bellaterra, Barcelona, 08193, Spain  
genaro@aomail.uab.es, {anna.morajko, tomas.margalef, emilio.luque}@uab.es 

Abstract  

The computational resources need by the scientific community to solve problems is beyond the current available 
infrastructure. Performance requirements are needed due constant research progress, new problems studies or 
detail increase of the current ones. Users create new wide distributed systems such as computational Grids to 
achieve desired performance goals. Grid systems are generally built on top of available computational resources 
as cluster, parallel machines or storage devices distributed within different organizations and those resources are 
interconnected by a network. Tune applications on Grid environment is a hard task due system characteristics like 
multi-cluster job distribution among different local schedulers and dynamic network bandwidth behavior. We had 
a Monitoring, Analysis and Tuning Environment (MATE) that allows dynamic performance tuning applications 
within a cluster. Due to the many software layers present on the grid, similar job submission may execute on 
different places. To tune application jobs, our tool needs to locate and follow the jobs execution within the system. 
We call this a process tracking problem. This paper presents MATE integration to the Grid and the two process 
tracking approaches implemented in order to solve the process tracking problem within Grid systems. 

Keywords: Grid Monitoring, Dynamic Instrumentation, Dynamic Performance Analysis.  

Resumen  

Los recursos computacionales requeridos por la comunidad científica para solucionar problemas son mayores que 
los ofrecidos por la infraestructura actual. La necesidad de mayores prestaciones se debe al constante progreso de 
la investigación, nuevos problemas o aumento del detalle en los problemas corrientes. Usuarios crean nuevos 
sistemas distribuidos en larga escala como sistemas Grid para lograr prestaciones deseadas. Sistemas Grid son 
generalmente construidos sobre los recursos computacionales disponibles como clusters, maquinas paralelas o 
dispositivos de almacenamiento distribuidos en diferentes organizaciones e interconectado por una red. Sintonizar 
aplicaciones en un sistema Grid no es fácil debido a las características de distribución de procesos en múltiples 
clusters controlados por diferentes sistemas de colas y heterogeneidad de la red de comunicaciones. Nosotros 
tenemos un entorno de monitorización, análisis y sintonización (MATE) que permite la sintonización dinámica de 
aplicaciones en entornos cluster. Debido a las muchas capas de software presente en sistemas Grid, dos 
ejecuciones de una misma aplicación pueden usar recursos distintos. Para sintonizar los procesos de la aplicación, 
nuestra herramienta debe localizar y seguir la ejecución de los procesos en el sistema. Nosotros llamamos eso 
como problema de localización de procesos. Este artículo presenta la integración de MATE con Gris y dos 
aproximaciones implementadas para solucionar el problema de localización de procesos dentro de sistemas Grid. 

Palabras claves: Sintonización en Grid, Instrumentación Dinámica, Análisis Dinámico de Prestaciones.  
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1 INTRODUCTION  

The Internet age made possible cooperation in many levels. Internet based technologies like the web 
became the standard interface for human to machine as machine to machine communication. Other 
important characteristic of Internet age is the large number of resources plugged online. Clusters 
like Beowulf, NOW and HNOW concepts are popular and widely used [1, 2]. Different level of 
details, new scientific problems and bigger simulation scenarios pushes users to build new wide 
systems based on current available computational resources. These wide systems configurations are 
currently studied as Computational Grid technologies. Grid System generally belongs to more than 
one organization. These organizations join resources in a high level abstraction called Virtual 
Organization (VO). Its resources are shared relying on local organization polices and the system 
abstraction is provided by a software layer. Key concepts are interoperability and openness [3-5]. 

Although, applications need to be modified in order to have benefits from execution in such 
environment. These modifications are more complex that a simply application parallelization. The 
Grid is a distributed system architecture generally composed by different levels of interconnect 
network between its resources. Some resources are accessible by others and others are not. Data 
communication between different resources may have different throughput and latencies. Typical 
problems of distributed systems like load balance, synchronization bottlenecks are hard to locate 
and much hard to solve. Another interesting system property is the configuration. Each Grid system 
configuration is unique and that has different application optimization requirements. The system 
configuration is not static, that may change frequently by events like machine and software 
upgrades, machines acquisitions, new member joins sharing its resources or organization polices 
changes [4]. 

Once an application is sent to execution on a Grid environment, its execution request of job 
processes are delivered through a set of software layers until reach the processor machine node. 
These layers are required to enforce Grid VO polices, organization polices and scheduling polices. 
Using these layers, application job processes could be running on any processor machine node that 
match the execution request job profile, and such information may be available only at runtime. At 
machine layer, or fabric layer using the Grid terminology presented by Foster in [3], the application 
execution spawns parallel processes jobs through middleware layers and controlled by a batch 
queue system. The application can use a single cluster to avoid communication overheads or can 
spawn itself over more than one cluster, possibly dealing with high latency message passing 
communication problems [4]. 

To reach performance goals, users need to parallelize and optimize its applications. With computer 
cluster popularity users should have more expertise on build parallel applications. Indeed, this 
expertise is generally bound to the system configuration they have. There are some researches to 
make this work easier by framework creation, auto-tuning libraries, programming language 
abstractions and execution environments [6-10]. The techniques that do not require changes in the 
adopted application development have advantage to cover the big set of currently existing 
applications. 

Application optimization is not a trivial task. In distributed systems the machine communication 
topology and processor computational capacity are key property to the optimization work. 
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Characteristics of Grid system makes that work even harder. Due to dynamic system configuration, 
different application executions can get different system configurations. In such conditions auto-
tuning libraries and tuning environment could help users support configuration or network 
characteristics changes [8-10]. We have built a Monitoring, Analysis and Tuning Environment 
(MATE), a tool that enables dynamic tuning of parallel applications running on a cluster using 
DyninstAPI [11]. MATE has is capable of dynamic application instrumentation to get execution 
trace events, analyzes these events and dynamic tune the application based on a performance model. 
It uses the concept of tuning components called tunlets holds all logic for monitoring, analysis and 
tuning. With that architecture, the application instrumentation is guided by each tunlet contained 
performance model, what minimize intrusion overhead due that only the measure points required by 
the performance model are instrumented [12, 13].  

This paper presents the MATE techniques for process tracking on Grid system, (i) system service 
approach and (ii) binary packaging approach, implementation detail and discuss about advantages 
of each approach. Session 2 describe our target Grid environment. Section 3 presents some 
background information about performance analysis and describes our Monitoring, Analysis and 
Tuning Environment (MATE).  Section 4 presents the approaches for process tracking in Grid used 
by MATE. Section 5 presents some findings and the conclusion of this work. 

2 COMPUTATIONAL GRID 

An oversimplification of Computational Grid could be a wide collection of interconnected 
resources distributed under different administrative domains. These resources could be workstation 
machines, high performance parallel machines, homogeneous or heterogeneous clusters, storage 
sites or even data input device like measure sensors [4]. The idea behind Computational Grids is 
that these resources belong to different organizations and these organizations need and 
infrastructure that enable cooperation between them. For each cooperation project, organization 
members are grouped on a concept named Virtual Organization (VO). One organization can 
participate on one or more VOs. The VO concept also groups each organization available resources, 
users, and resource use polices. One organization XYZ can share its cluster A exclusively to the VO 
Genome, for example. Each resource has its access polices, characterization and interface. To fulfill 
VO resource use requirements, software layers like Globus Toolkit [4] and Legion [14] were built 
on top of existing resource. We can use Globus toolkit to solve problems like data replication, 
resource allocation, VO to resource security mapping, inter-organization communication, service 
deployment and another Grid wide services [3, 4].  

Figure 1 presents the software stack proposed by Foster on [3] with extended information about 
layer example components. The Fabric Layer provides the interface used on direct resource level 
operations. The Connectivity Layer solve problems like security requirements, resource security 
trust and communication abstractions. The Resource Layer solves problems like resource 
negotiation, accounting and monitoring. The Collective Layer solves resource group wide 
operations like meta-schedulers, resource broker and data replication. A common way of use the 
computational power of a Grid is to spawn the processes of a massive parallel application within the 
available processing node resource. A user can interact to a Grid Web Portal and submit his batch 
application. That application should enter a meta-scheduler queue like Condor-G [15] or 
Community Scheduler Framework (CSF), services of Collective Layer [4]. The meta-scheduler 
negotiates to Resource Layer services in order to do resource reservation using authenticated and 
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secure communication services provided by Connectivity Layer.  Following the Grid Protocol 
Stack, that request is translated in Fabric Layer to a local cluster scheduler like Condor, PBS, LSF 
or SGE, where the application job is executed [16]. 

 
Figure 1: Grid Protocol Stack presented on [3] with layer component examples. 

An important problem that the application may deal with in a Grid environment execution is that 
such system generally have a heterogeneous infrastructure and in most cases, a dynamic system 
configuration. That behavior could lead to performance drawbacks such load imbalance problems, 
high latencies caused by improper message fragmentation or inadequate buffer sizes [17]. If the 
target platform is modified (number of processors, processor speed, network bandwidth, etc.) the 
required optimizations should be different. Grid brings new challenges in performance analysis and 
tuning making classical approaches less useful. For example, post-mortem analysis, as presented on 
[18], presumes repeatability and may not be used as the Grid platform. System configuration is 
highly dynamic and rarely repeatable. In this sense, a dynamic tuning tool seems to be relevant 
approach that could adapt applications to system changes or runtime configuration.  

3 PERFORMANCE ANALYSIS AND MATE 

Application performance depends of many properties in many levels. At hardware level, it depends 
on cache size, memory size, and jump prediction techniques, for example. At operating system 
level, it can be affected by quantum size, buffers size and scheduling police. At libraries level, it can 
be affected by thread model, data alignment, buffers sizes, and parameters configuration [12]. On 
parallel machine level, the communication topology hardly affects application performance. To 
achieve performance on a distributed system, the users should attack on all levels. At hardware 
level, the hard work is done by compilers, although is not easy to get the best performance for an 
application in a select machine. Other important point is that optimization done to an application to 
run on a target machine may not be used on a different machine. The optimization is deeply bound 
to machine configuration. At parallel machine level, machine configuration can easily lead to load 
balance or synchronization problems [12]. 

In all levels, the performance optimization steps are very similar. The application should be 
instrumented to generate performance data; executed, to be monitored; the gathered data must be 
analyzed; and the application should be modified to solve the identified problems. These steps are 
performed until performance goals are satisfied or reach machine performance peak. The 
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instrumentation generally introduces some overhead and change the default behavior of the 
application. With the increase of instrumentation detail inserted, the more application execution 
behavior differs from original executions.  

The instrumentation insertion process can be static or dynamic. In static instrumentation, the 
application developer changes application code in order to generate performance data. This is not a 
hard task due the existence of tools that perform all the required code instrumentation 
automatically. After the static instrumentation, the application must be recompiled. The dynamic 
instrumentation is done without need of application code. The binary of application is instrumented 
online during application execution [11, 13]. 

The data collected by the application execution can be data sampling or trace event. On data 
sampling, execution times are accumulated and on trace events, it should generate an event on code 
region entry and another for code region exit. Event tracing generally introduce more overhead than 
data sampling due the amount of generated data bound to application execution. With data 
sampling, it is easier the verify what function spend more time, but more complex of causes can be 
obtained from event trace analysis. To analyze the collected data, the developer can use 
visualization tools. This is widely used in all levels, thought hardware counters to message parsing 
events analysis. But, these tools use require developer expertise about performance problems and 
machine configuration [18, 19]. 
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Figure 2: Dynamic Monitoring, Analysis and Tuning Approach. 

The Monitoring, Analysis and Tuning Environment (MATE) consists of execution environment that 
permits dynamic tuning of application without need of code modification, compilation or linkage, 
based on DyninstAPI [11]. The idea is that the developer does not need to be an expert to tune 
his/her application. Internally, the tool has the knowledge about the performance bottlenecks 
problems, how to detect and solve them. 

The figure 2 shows which work part is done by the user and which is done the tool. MATE inserts 
the instrumentation need to do the performance analysis within the running application. The 
instrumentation inserted by the monitoring process, generates performance data that is colleted and 
represented by execution events. These evens information are analyzed using performance models, 
which are used to verify the existence of bottlenecks. For example, the instrumentation can be used 
to measure the size of message used on transport operations and its buffer sizes. Performance model 
could relate message sizes to optimal buffer size. With this information, MATE may introduce 
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modifications in the application in order to improve its execution. The optimization process is done 
without user interaction. 
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Figure 3: Dynamic Monitoring, Analysis and Tuning Approach. 

As presented of figure 3, MATE has two main components: (i) the Application Controller (AC) and 
(ii) the Analyzer. The AC is the component which interacts with the application process, by 
inserting instrumentation code and by doing the dynamic tuning modifications [12, 13]. The AC 
uses DyninstAPI to attach to the application process and load within the application process space a 
MATE dynamically linked library called DMLib in order to help the instrumentation and tune 
process. In current architecture, it is need to runt just one AC process instance per processor nodes 
[11-13]. One AC process instance can monitor and tune many application job processes on the same 
machine. The Analyzer component consists of a software container of tuning components called 
tunlets. It has the responsibility of coordinate the tune session in cooperation with the AC 
components distributed over the system. Each tunlet can encapsulate the logic of what should be 
measured, how data can be interpreted by a performance model and what can be changed to 
accomplish better execution time or better resource utilization. 

Analyzer

DTAPI
Tunlet

Performance model

Measure points

Tuning point, action, sync

Tunlet

Performance model

Measure points

Tuning point, action, sync

 
Figure 4: Internal representation of the Analyzer. 

The Analyzer interacts with the tunlets though the Dynamic Tunlet Application Programming 
Interface (DTAPI) as presented on figure 4. That API allows that the tunlet receives functions calls 
associated with events like application startup, job process startup, instrumentation generated event 
receive. Within these function calls, each tunlet can request for application process instrumentation 
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or application modification. All request generated by tunlets are forwarded to the AC. The AC 
receives the requests, instruments the application and forwards the trace back to the Analyzer. By 
DTAPI, these trace events are dispatched to the desired tunlets. The tunlet may decide, based on its 
performance model, what should be changed on the program in order to tune the application and 
requests to the Analyzer application changes. These requests are forwarded to the AC and the 
requested dynamic changes are made on the application [12, 13].   

4 GRID PROCESS TRACKING 

To instrument an application in such environment, a monitoring tool should track down the 
application process components to gather instrumentation data. This starts to be a problem because 
resource utilization is indirectly selected through the Grid Protocol Stack.  

To track down process in a Grid environment, two main approaches can be used:  

• Binary Packaging approach – bind the application and the MATE AC component together 
with a tracking process in a single binary 

• System Service approach – have a tracking process running on the target execution machine 
waiting for the application process.  

In the first approach, the execution of the application process is controlled by the bound tracking 
process, which may be responsible for gathering instrumentation or doing the dynamic tuning. In 
the second approach, the tool can look for application start in a pooling method or can monitor the 
scheduler tracing the application startup. The first approach can be done by application developers 
and users, targeting better application execution time, and the second can be done by site 
administrators interested in efficiency, since installation requires administrative privileges.  

In the current version of MATE it has the feature of PVM process tracking. The application is 
started under the control of the Analyzer component. The track down application job processes, the 
AC component bounds itself as PVM Tasker, so, when the Analyzer spawns the application the AC 
is notified to spawn each process. After the application job spawn, the AC component register itself 
into the Analyzer component. By this sequence, MATE has total control of the application and does 
steering execution of its controlled processes [12, 13].  

4.1 Binary Packaging Approach 

To work in a Grid environment, the first change is that, the Analyzer is started independently of the 
application and the AC is in charge to start the tuning session. The idea of Binary Packaging 
approach is to track down application processes using the same binary distribution and execution 
used by the application. It is done by generating a composed binary using three applications: a glue 
code, the current application and the AC binary. That preparation step can be done by the developer 
or even by the application users before the execution. By doing that composition, at runtime, the 
first executed code is the one that is loaded on memory. The key idea is to put the glue code as the 
first application in the composed binary. In startup phase, the glue code locates the application and 
AC code within the composed binary, does some checkups initializations and executes the AC 
code.  
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When the AC executes, it starts the application child process using the DyninstAPI library. The 
information needed at runtime by the glue code is a fixed size information record append at the end 
of the composed binary in preparation phase. When the glue code runs, it uses the information 
record to un-pack the AC and application code. After that, the glue code verifies if the environment 
has DyninstAPI installed by checking its environment variables. It the environment permits 
dynamic instrumentation, the glue code executes the AC code; elsewhere, it executes the 
application without instrumentation. If the AC is started, it creates the child process controlled by 
DyninstAPI as presented on figure 5. The glue code acts as a wrapper process to AC or the 
application based on target system execution properties. 

new ‘Task’

DMLib

AC
Task

DMLib
AC

Task

Remote Machine

DMLib

Remote Machine

AC
AC

Taskn

detects 
Dyninst create

control

Analyzer
subscription

Job submission

new ‘Task’

create

 
Figure 5: Creation of the ‘new’ application binary and its execution. 

Using the Binary Packaging approach, MATE has total control of the application execution. In a 
scenario where a user submits an application to Grid, the execution request should enter a Condor-
G [15] queue. The request properties are used by Condor-G to elect which grid resource should be 
used. The elected resource can be a cluster exposed to Globus Resource and Allocation Manager 
(GRAM) component [20]. The binary is so transferred automatically by GridFTP service carrying 
out the MATE bound binary and libraries [4, 20].  

4.1 System Service Approach  

This approach consists of have the AC daemon running on the processor nodes waiting for tuning 
sessions. This approach requires administration privileges. The key idea is to enable the machine 
with dynamic tuning services that can be used by any registered application. With the AC daemon 
running on each machine of a cluster, this cluster is ready to do tuning sections by user request. The 
application to tuned should be registered to the Analyzer by the user in order to start the tuning 
session. By doing this, the Analyzer broadcasts the location request containing application 
identification with the name and binary checksum hash to all registered AC process. This is 
necessary due possible process name coincidences.  

The AC can operate in pooling mode or pull mode. In pooling mode, it monitors changes in proc 
file system to detect applications process startup, as presented on figure 6. When an application 
process name is found, AC ensures that the binary belongs to the application, attaches to the found 
process and starts the steering execution. In pull mode, the AC instruments the batch scheduler with 
DyninstAPI and waits for the callback event generated by exec system call [11]. This allows 
application startup detection and control. We currently support OpenPBS [16] as proof of concept. 
In each of presented models of execution, the target execution machine should support DyninstAPI, 
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without that, the dynamic tuning cannot be done [11]. 
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Figure 6: Sequence of process tracking using AC in System Service approach. 

The distribution of MATE components over the Grid generates some problems. The application can 
use some Grid enable message parse interface such MPICH-G2 to perform inter-process 
communication [21]. To group by all process from an execution session apart from other executions 
of same binary, process environment variable information is used. To locate the correct Analyzer 
instance running on the Grid, the MATE AC component may use the process environment variable 
GLOBUS_GRAM_JOB_HANDLE than contains the URL location of the process contract. The 
contract information contains the Job ID. With this identification the AC component uses the 
services provided by MATE Grid integration to register itself in the tuning session. 

Grid integration is done by a new component called AC Service Wrapper. This component provides 
web services compliant to WSRF [22] and expose services which allows the Analyzer and AC 
components to locate each other. As presented on figure 7, the integration uses the Grid Information 
Services available from MDS [23]. The AC Service Wrapper registers itself to receive notification 
of tuning session startups. When the Analyzer register itself as responsible for a tuning session the 
registered ACs Wrapper receives this information and informs the AC daemon, represented as AC 
Service Daemon on Figure 7. The AC Service Daemon performs the System Service Approach and, 
in case of application process detection, it uses the MDS to publish the execution information. In 
response to that, the Analyzer uses the AC Service Wrapper services to establish communication 
channels between the AC back to Analyzer.  

Globus Container

AC Service Wrapper
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Cluster Machine 1

AC Service Daemon

Management
Channels

Taskn

Management
Channel Event Data

Channel

Subscription 
of Application
Information

Publishing of
Execution

Information

Analyzer  
Figure 7:  MATE Grid services integration sequence. 
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The communication between the Analyzer and AC is done by two different channels. The 
Management Channel transports messages of instrumentation request and change request. The 
Event Data Channel transports the generated event trace data resulted of the instrumentation. In 
order to respect the requirements of each VO component organization, the communication channels 
used between the AC and Analyzer components where modified to use middleware transport 
services. The communication between the AC and the Analyzer is done using Globus-XIO 
communication library [24] configured with the GSI driver over the TCP provided driver. By that 
implementation strategy, organization network use polices like available TCP ports are respected. 
The security access is restricted by PKI certificates used to submit application execution to the 
Grid. 

5 CONCLUSIONS  

Performance tuning of Grid application becomes very complicated due to unique Grid dynamic 
characteristics. Some properties are hard to predict such network bandwidth or selected resources 
through execution. The dynamic behavior of Grid environment reinforces the need of dynamic 
tuning tools since the user has less control about the application target execution hosts. The 
literature is not clear about what makes a tool enabled for Grids, although, if this tool could work 
within the Grid Protocol Stack, it is part of the system. We presented two alternatives that enable 
MATE to be used in a Grid, working within the Fabric Layer of the Grid Protocol Stack. With the 
selected communication mechanism, the tool respects the organization requirements and provides 
the security semantic characteristics to work on the Grid. Even with the tunlets already 
implemented in MATE, new tunlets should be developed to cover Grid specific performance 
models and its optimizations. 
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