
Towards A Non Monotonic Description Logics Model

Martı́n O. Moguillansky Marcelo A. Falappa
mom@cs.uns.edu.ar mfalappa@cs.uns.edu.ar

Laboratorio de Investigación y Desarrollo en Inteligencia Artificial (LIDIA)
Departamento de Ciencias e Ingenierı́a de la Computación (DCIC)

Universidad Nacional del Sur (UNS)
Consejo de Investigaciones Cientı́ficas y Técnicas (CONICET)

Av. Alem 1253 - (B8000CPB) Bahı́a Blanca - Argentina

Abstract

In order to deal with the Ontology Change problem and considering an environment where Description Logics
(DLs) are used to describe ontologies, the question of how to integrate distributed ontologies appears to be in
touch with Belief Revision since DL terminologies may define same concept descriptions of a not necessarily
same world model. A possible alternative to reason about these concepts is to generate unique concept descrip-
tions in a different terminology. This new terminology needs to be consistently created, trying to deal with the
minimal change problem, and moreover, yielding a non-monotonic layer to express ontological knowledge in
order to be further updated with new distributed ontologies.

Keywords: Belief Revision, Description Logics, Non Monotonic Reasoning, Ontology Change.

1 INTRODUCTION

In order to reason about different ontologies, probably allocated in different places round the web,
we will consider translated OWL ontologies into description logics (DLs). In DLs, the concept of
Knowledge Base (KB) is composed of two main parts, TBoxes or Terminologies and ABoxes or
Assertions. In this paper we focuss our investigation on how to reason about terminologies. Here
many possibilities come through.

Just think about two distinct terminologies modeling each two different worlds, but containing
a same subset of concepts (referred as Ontology Integration in [Flo06]). Or just two distinct termi-
nologies modeling the same world, where naturally a common subset of concepts will be described
as part of both terminologies (referred as Ontology Merging in [Flo06]). Furthermore, it might be
probably impossible to get two concepts defined by different persons with exactly the same logic in-
tention. Here is where the theory change arises as relevant protagonist in order to join consistently
two terminologies redefining or reinforcing sub-concepts.

The remainder of this paper is disposed as follows. The next section gives a brief description of
the DL formalism, continued by section 3 with the analogous description of the theory change model,
section 4 contributes to the formalization of merging DL terminologies, and describes an example
operation of two different terminologies. Finally section 5 concludes and explains the related and
future work in the area.

Partially financed by CONICET (PIP 5050), Universidad Nacional del Sur (PGI 24/ZN11) and Agencia Nacional de
Promoción Cientı́fica y Tecnológica (PICT 2002 Nro 13096).

1354

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15779451?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 THE DL BASIC FORMALISM

A Knowledge Representation (KR) system based on Description Logics (DL) provides a formaliza-
tion to specify the knowledge base (KB) contents, a way to reason about it, and a process to infer
implicit knowledge. A KB is composed by two components. A TBox to manage the terminology of
the application world and an ABox containing the assertions about named individuals in terms of the
previous concepts.

A terminology is composed by atomic concepts which denote sets of individuals and atomic roles
to manage relationships between individuals. Besides, complex concepts and roles are built from the
atomics using given constructors. Reasoning tasks are dedicated to determine whether a description is
satisfiable (i.e. non-contradictory), or whether one description is more general than another one, that
is, whether the first subsumes the second.

For an ABox, the problem is to verify the consistency of each set of assertions (i.e. test if there is
a model for the set) and find out whether a particular individual is an instance of a concept description
in the TBox depending on the assertions in the ABox. The environment will interact with the KR by
querying the KB and finally by adding and retracting concepts, roles and assertions.

2.1 Description Languages

Description Languages are defined by the constructors they provide. In this paper we will consider a
subset of the large DL constructors set investigated so far. The basic Description Language introduced
by [SSS91] is the AL (Attribute Language). Let A be an atomic-concept, R an atomic-role, and C, D
complex concepts, the grammar for the AL language is defined as follows,

C, D → A|>|⊥|¬A|C uD|∀R.C|∃R.>
To define the formal semantics of AL-concepts we use interpretations (I) that consist of a non-

empty set ∆I (the domain of the interpretation) and an interpretation function ıI, that assigns to every
atomic concept A a set AI ⊆ ∆I and to every atomic role R a binary relation RI ⊆ ∆I × ∆I. The
interpretation function I = (∆I, ıI) is extended to concept descriptions as follows,

>I = ∆I ⊥I = ∅
(¬A)I = ∆I\AI (C uD)I = CI ∩DI

(∀R.C)I = {a ∈ ∆I| ∀b.(a, b) ∈ RI → b ∈ CI}
(∃R.>)I = {a ∈ ∆I| ∃b.(a, b) ∈ RI}

In [BN02] is exhaustively detailed all language extensions depending on the constructors allowed
in it, and namely AL[U][E][N][C][Q]1. In Table 1 a brief summary is given.

Example 1 : Considering a language constructor N and given a role completedCourse, a stu-
dent of computer science is considered advanced if he has passed 15 courses out of a total of 25,
> 15 completedCourse u 6 25 completedCourse. For Q, the number restrictions are concerned
with roles limited to a certain concept. In this case, one can also say that a student should pass at least
6 logic courses and 9 computational courses to be considered advanced,

> 6 completedCourse.LogicCourse u
> 9 completedCourse.ComputationalCourse u

6 25 completedCourse

2

1The use of C stands for complement. For N and Q, n varies over the nonnegative integers, and ‖X‖ stands for the
cardinality of the set X .

1355

Constructor Written Interpreted
Union (U) C tD (C tD)I = CI ∪DI

Negation (C) ¬C (¬C)I = ∆I\CI

Existential
Quantification (E) ∃R.C (∃R.C)I = {a ∈ ∆I| ∃b.(a, b) ∈ RI ∧ b ∈ CI}

Number > nR (> nR)I =
{
a ∈ ∆I|

∥∥{b|(a, b) ∈ RI}
∥∥ ≥ n

}
Restrictions 6 nR (6 nR)I =

{
a ∈ ∆I|

∥∥{b|(a, b) ∈ RI}
∥∥ ≤ n

}
(N) = nR (= nR)I =

{
a ∈ ∆I|

∥∥{b|(a, b) ∈ RI}
∥∥ = n

}
Qualified > nR.C (> nR.C)I =

{
a ∈ ∆I|

∥∥{b|(a, b) ∈ RI ∧ b ∈ CI}
∥∥ ≥ n

}
Number 6 nR.C (6 nR.C)I =

{
a ∈ ∆I|

∥∥{b|(a, b) ∈ RI ∧ b ∈ CI}
∥∥ ≤ n

}
Restrictions (Q) = nR.C (= nR.C)I =

{
a ∈ ∆I|

∥∥{b|(a, b) ∈ RI ∧ b ∈ CI}
∥∥ = n

}
Table 1: Constructors to extend the expressivity of AL-languages.

2.2 Terminologies

Terminological axioms indicate how concepts or roles are related to each other following the inclusion
form, C v D (R v S), or the equality form, C ≡ D (R ≡ S), where C and D are concepts (R and
S are roles).

An interpretation I satisfies an inclusion C v D if CI ⊆ DI, and it satisfies an equality C ≡ D if
CI = DI. Now given a set of axioms T, an interpretation I satisfies T iff I satisfies each element of
T. If I satisfies an axiom in T, then we say that it is a model of this axiom in T. Then two axioms or
two set of axioms are equivalent if they have the same models.

Definitions are used to describe complex concepts and made abstraction of them using a single
name. An atomic concept on the left side of an equality defines the complex description explained on
its right side.

A set of definitions T is called a terminology or a TBox if a symbolic name is defined only once.
A terminology T contains a cycle iff there exists an atomic concept in T that uses itself [BN02];
otherwise T is called acyclic. An acyclic terminology T can be expanded iteratively through each
definition in it, replacing each occurrence of a name on the right hand side with the concepts that it
stands for. Now, we say that a terminology T is definitorial if it is acyclic, and we call to its semantics
descriptive semantics. Those semantics that are motivated by the use of intuitively cyclic definitions
are called fixpoint semantics. We will not consider fixpoint semantics in this paper.

2.3 Role Constructors

Binary relations between concepts are modeled by roles. If every role name is considered a role
description or atomic role, and if R and S are roles descriptions, then R u S (intersection), R t S
(union), ¬R (complement), R ◦ S (composition), R+ (transitive closure), and R− (inverse) are
also role descriptions. An interpretation I is adapted to the inverse role description as follows,

Inverse (I or −1): (R−)I = {(b, a) ∈ ∆I ×∆I | (a, b) ∈ RI}

Example 2 : For instance a hasParent role is obtained by applying the inverse role constructor to a
given hasChild role. 2

1356

2.4 Properties for Reasoning

Given a terminology T, if there is some interpretation of a concept that satisfies the axioms in T (a
model of T), then the concept denotes a nonempty set for the interpretation, furthermore this concept
is known to be satisfiable w.r.t. T. Otherwise it is called unsatisfiable. Formally,

Satisfiability [BN02]: A concept C is satisfiable w.r.t. T if there exists a model I of T such that CI

is nonempty. In such a case we say that I is a model of C.

Checking (un)satisfiability of concepts might be considered a key inference given that a number of
other important inferences for concepts can be reduced to it. For instance, in order to check whether a
domain model is correct, or to optimize concepts, we may want to know whether one concept is more
general than another. This is called the subsumption problem. A concept C is subsumed by a concept
D if in every model of T, C is a subset of D.

Subsumption [BN02]: A concept C is subsumed by a concept D w.r.t. T if CI ⊆ DI for every
model I of T. In such a case we write C vT D or T |= C v D.

A new kind of reasoning algorithms in DLs raised from the approach of considering satisfiability
checking as the main inference. These algorithms are known as Tableaux Algorithms and can be
understood as a specialized tableaux calculi.

3 THE BELIEF DYNAMIC MODEL

A belief base is a knowledge state represented through a set of sentences not necessarily closed under
logical consequence. We also know that a belief set is a set of sentences of a determined language,
closed under logical consequence. In general, a belief set is infinite being this the main reason of the
impossibility to deal with this kind of sets in a computer. Instead, it is possible to characterize the
properties that must satisfy each of the change operations on finite representations of a knowledge
state.

The classic operations in the theory change are expansions, contractions, and revisions. An Ex-
pansion operation noted with “+”, adds a new belief to the epistemic state, without guaranteeing
its consistency after the operation. A Contraction operation, noted with “−”, eliminates a belief α
from the epistemic state and those beliefs that make possible its deduction or inference. The sen-
tences to eliminate might represent the minimal change on the epistemic state. Finally, a Revision
operation (“∗”) inserts sentences to the epistemic state, guaranteeing consistency (if it was consistent
before the operation)[AGM85] [Gar98]. This means that a revision adds a new belief and perhaps it
eliminates others to avoid inconsistencies. Other non-classical operations exists, like Merge opera-
tion [Fuh96][FKS02] noted with “ ◦ ”, that fusions belief bases or sets assuring a consistent resultant
epistemic state, and a Consolidation operation (“ ! ”) that restores consistency to the epistemic state
[Han97].

3.1 Kernel Contractions

The Kernel Contraction operator is applicable to belief bases and belief sets. It consist of a contrac-
tion operator capable of the selection and elimination of those beliefs in K that contribute to infer α.

Definition 3.1.1 - [Han94]: Let K be a set of sentences and α a sentence. The set K⊥⊥α, called set

1357

of kernels is the set of sets K ′ such that (1) K ′ ⊆ K , (2) K ′ ` α , and (3) if K ′′ ⊂ K ′ then K ′′ 0 α.
The set K⊥⊥α is also called set of α-kernels and each one of its elements are called α-kernel.

For the success of a contraction operation, we need to eliminate, at least, an element of each α-
kernel. The elements to be eliminated are selected by an Incision Function.

Definition 3.1.2 - [Han94]: Let K be a set of sentences and “σ” be an incision function for it such
that for any sentence α it verifies, (1) σ(K⊥⊥α) ⊆

⋃
(K⊥⊥α) and (2) If K ′ ∈ K⊥⊥α and K ′ 6= ∅ then

K ′ ∩ σ(K⊥⊥α) 6= ∅.

Once the incision function was applied, we must eliminate from K those sentences that the in-
cision function selects, i.e. the new belief base would consist of all those sentences that were not
selected by σ.

Definition 3.1.3 - [Han94]: Let K be a set of sentences, α a sentence, and K⊥⊥α the set of α-kernels
of K. Let “σ” be an incision function for K. The operator “−σ”, called kernel contraction determined
by “σ”, is defined as, K −σ α = K\σ(K⊥⊥α).

Finally, an operator “ − ” is a kernel contraction operator for K if and only if there exists an
incision function “σ” such that K − α = K −σ α for all sentence α.

3.2 Merging Belief Bases

Fuhrmann defined in [Fuh96] a partial meet merge operation as a union of two bases, not necessarily
closed under logic consequence, and a later consistency restoring applying a bottom contraction. In-
spired on it we propose a merge operation over two bases, defined by means of the Kernel Contraction
operator, and determined by an Incision Function, as follows.

Definition 3.2.1 - Merge: Let “−” be a kernel contraction for the union of two belief bases K1∪K2,
determined by an incision function “σ”. Then the Merge for Belief Bases operator ◦ is defined as,
K1 ◦ K2 = (K1 ∪K2)−σ ⊥.

4 CONSISTENT TERMINOLOGY INTEGRATION

In order to reason about two presumably distributed and potentially inconsistent terminologies, a non
monotonic operation for integration of both terminologies in a new consistent one is required. For
achieving a formal definition of such an operator the following features might be desirable.

• A function that maps a concept name defined in one terminology to another concept name in the
second terminology in order to recognize different concept names referring to a same concept
of the real world.

• A theory change framework would be an interesting environment for revising beliefs and merg-
ing knowledge bases defined as part of the given terminologies.

• Conveniently, a concept defined in a given terminology will be expanded in order to generate
its correspondent belief base in the theory change. This means that each concept description in
it is expressed as a conjunction of basic concept descriptions in the same terminology.

• A translation method for expressing DL concepts as part of a first order logic language might
be needed in order to apply the theory change operations.

• Contractions might retract minimal information. This means that an operation for merging
terminologies should keep as much as possible knowledge in a consistency restoring process.
This property reflects the minimal change requirement of the theory change.

1358

4.1 Basic Definitions

Formal definitions might be interesting to specify reflecting some of the previous features to be the
basis of a terminology integration operator.

Definition 4.1.1 - Concept Id.: Let T be a terminology composed of n distinct definitions, the ith

concept description D defined in the terminology T will be identified as DT
i , where 1 ≤ i ≤ n.

Definition 4.1.2 - Names Mapping: Let ξ be a mapping function from a concept name defined in a
terminology T1 to a different concept name defined in a terminology T2. Then DT1

i = ξ(DT2
j) indi-

cates that DT1
i and DT2

j are name identifiers of a unique concept of the real world.

Definition 4.1.3 - Consistent Terminology Integration: Let /. be the operator for a consistent ter-
minology integration T1/.T2. Such an operation will be composed of two consecutive sub-operations,
terminology unification and terminology consolidation.

Intuitively, a terminology unification consist of copying every concept description from each ter-
minology to a new one except for the application of a non monotonic concept conjunction. In such a
case, those concepts defined in both terminologies that refers to a same concept in the real framework,
identified by a names mapping function ξ, are consistently unified in a unique new concept. The fol-
lowing sub-operation is defined as terminology consolidation. Here the idea is to restore consistency
to the unified terminology T, capturing and solving inconsistencies that yields the unification process
in concept descriptions that refers to a yet unified concept in its right hand side. A tentative unifica-
tion operation was provided in [MF06] although this version did not consider a more complex case of
study that we capture in this paper with the consolidation operation.

4.2 From Description Logics to First Order Logic Languages

DLs are not rule based languages but they may be translated into fragments of first order logics (FOL)
in order to make an easier mapping to rule languages. By this, efficient logic programming based rea-
soners and deductive systems may be defined to make inference about the knowledge representation
originally specified by a description language. Table 2, originally specified in [GHV03], summarizes
the translation rules above introduced.

DL FOL
C ≡ D ∀x.C(x) ↔ D(x)
C v D ∀x.C(x) → D(x)
C C(x)
C uD C(x) ∧D(x)
¬C ¬C(x)
∃R.C ∃x.(R(y, x) ∧ C(x))
∀R.C ∀x.(R(y, x) → C(x))
> nR ∃y1, ..., yn.(R(x, y1) ∧ ... ∧R(x, yn)) ∧ (

∧
16i<n,i<j6n yi 6= yj)

6 nR ∀y1, ..., yn+1.(R(x, y1) ∧ ... ∧R(x, yn+1)) → (
∨

16i<(n+1),i<j6(n+1) yi = yj)

Table 2: DL - FOL equivalence.

The following definitions describe how our proposal manages DLs concepts descriptions as frag-
ments in the theory change2.

Definition 4.2.1 - KB of a Concept Description: Let C ≡ C1 u ... u Cn be an expanded concept

2We adopt a ALCEN description language, where the classical AL attribute language is extended by complement,
existential quantification, and number restriction concept constructors.

1359

description, then the set K(C) will be the knowledge base for the concept description C such that
φC1 , ..., φCn ∈ K(C), where φCi

is the first order logic translation of the concept Ci.

Observation 4.2.2: A DL conjunction C1uC2 is interpreted in the theory change as K(C1)∪K(C2).
Proof: Let C ≡ C1uC2 be a concept description, and let C1 ≡ A1u ...uAn, and C2 ≡ B1u ...uBn

be their respective atomic concept descriptions. Then the expanded concept description for C is
C ≡ A1u...uAnuB1u...uBn. Finally using definition 4.2.1 follows that K(C) = K(C1)∪K(C2).�

4.3 Non Monotonic Concept Conjunction (u◦)

Let “ u◦ ” be a Non Monotonic Concept Conjunction DL operator used as part of the terminology
unification process and furthermore in the specification of the terminology consolidation, such that
D = D1 u◦ D2 defines a new satisfiable concept description D from consistently unifying concepts
D1 and D2 by the application of the operator u◦ .

A consistent conjunction of two such a concept descriptions may intuitively be thought as a merge
of the belief bases representing each concept. Afterwards, the resultant belief base should be trans-
lated back to the original description language in order to express the result as a new concept descrip-
tion. A translation method from DLs to belief bases in the theory change is necessary, then following
the translation rules from a description language to a subset of first order logic rules in table 2, we
may obtain the conversions of concept descriptions to belief bases in the theory change.

Definition 4.3.1 - Non Monotonic Concept Conjunction : Let D1 and D2 be two concept descrip-
tions and let K(D1) and K(D2) be their correspondent belief bases (not necessarily closed under
logical consequence). A non monotonic concept conjunction operation D1 u◦ D2, is interpreted as a
merge operation for belief bases, such that D1 u◦ D2 ⇔ K(D1) ◦ K(D2).

Observation 4.3.2: If the conjunction D1 u D2 is satisfiable3, then the non monotonic conjunction
D1 u◦ D2 is equivalent to D1 uD2.
Proof: Suppose we have two concept descriptions D1 and D2, then by definition 4.2.1 their respective
knowledge bases are K(D1) and K(D2).
(⇒) Consider the non monotonic concept conjunction D1 u◦ D2, by definition 4.3.1 it may be though
as a merge operation of their knowledge bases such that K(D1) ◦ K(D2). Using definition 3.2.1
(merge) we have (K(D1) ∪K(D2))−σ ⊥. Then by definition 3.1.3 (kernel contraction) it is equiva-
lent to (K(D1) ∪K(D2))\σ((K(D1) ∪K(D2))

⊥⊥⊥).
Now suppose that (by hypothesis) D1 u D2 is satisfiable, then by definition 3.1.1 (set of kernels) it
follows that there is no K ′ ⊆ (K(D1)∪K(D2)) such that K ′ ` ⊥. Thus, we have no beliefs to select
from (K(D1) ∪K(D2)), and finally by observation 4.2.2 we have D1 uD2 (as we wanted to prove).
The opposite (⇐) direction can be similarly proved. �

The following algorithm describes the operation D ≡ D1 u◦ D2 defined in definition 4.3.1 and
optimizes it considering the observation 4.3.2.

4.4 Consistent Merging of Terminologies (/.)

As previously specified, an operation T = T1/.T2, consist of two sub-operations; unification of
both terminologies T1 and T2 in a new one T, and the respective consolidation of T for consistency
restoring. In what follows we provide the correspondent algorithms for both sub-operations.
Observation 4.4.1: If no loss of knowledge is desired in a concept unification process – i.e. that the

3A conjunction D1 uD2 is satisfiable if there exists a model I of T such that (D1 uD2)I is non empty.

1360

Algorithm 1 Non Monotonic Concept Conjunction D ≡ D1 u◦ D2

Input: Two expanded concepts D1, D2.
Output: D.

if D1 uD2 is un-satisfiable then
D ⇐ K(D1) ◦ K(D2).

else
D ⇐ D1 uD2

end if

Algorithm 2 Terminology Unification
Input: Two terminologies T1 and T2.
Output: A unified terminology T.

for all D in T1 or T2 do
if exists a mapping ξ(D) for concept description D then

DT ⇐ D u◦ ξ(D) is a new concept in T

else
DT ⇐ D is a new concept in T

end if
end for

conjunction of concept descriptions is unsatisfiable and the non monotonic conjunction will eliminate
some beliefs from the epistemic state– then we should not consider these concepts as specifiers of a
same concept of the real framework. So we should remove the mapping value in ξ that relate them.

Algorithm 3 Terminology Consolidation
Input: The unified terminology T.
Output: The consolidated terminology T.

for all DT do
for all CT ≡ D u Ctail, where Ctail may be thought as C1 u C2 u ... u Cn do

if DT u Ctail is satisfiable then
Replace the original definition CT ≡ D u Ctail by CT ≡ DT u Ctail

else
Let S be σ((K(DT) ∪K(Ctail))⊥⊥⊥) where the selection’s scope is restricted to K(DT).
Generate DT

1 ⇐ K(DT)\S in T.
Redefine DT ≡ DT

1 u SDL in T, where SDL is the description language translation of S.
Replace the original definition CT ≡ D u Ctail by CT ≡ DT

1 u Ctail.
end if

end for
end for

Observation 4.4.2: Note that the consolidation algorithm adds new concept descriptions noted as C

and D and these new definitions are considered in later iterations.

4.5 Worked Example

In this section we show how two different terminologies might be consistently merged in a new one
following the previous definitions.

The terminology expressed in table 4 shows among other definitions, some main characteristics
of mammals and oviparous animals, and particularly defines monotremes to be a conjunction of both

1361

Bird ≡ Animal uBipedal uOviparous u hasFeathersu = 2hasWings
Mammal ≡ Animal u ∀giveBirth.LiveBirth

Oviparous ≡ Animal u ∀giveBirth.Egg
Bipedal ≡ = 2hasFoot

LiveBirth ≡ hasHeartBeat u hasV oluntaryMovement
Egg ≡ hasHeartBeat u ¬hasV oluntaryMovement

Table 3: A terminology T1 (TBox) with concepts about animals.

Platypus ≡ Aquatic uMonotreme
Monotreme ≡ Mammal uOviparous

Mammal ≡ Animalu > 2hasMammaryGlands
Oviparous ≡ Animalu > 1layEggs

Table 4: A terminology T2 (TBox) with concepts about animals.

animal classes. When we try to merge terminologies T1 and T2 we find that the concept descriptions
for mammals and oviparous in T1 yield the following contradiction,

hasV oluntaryMovement u ¬hasV oluntaryMovement

4.5.1 Method Application

In what follows we will develop the integration of both terminologies following the previous /. oper-
ation definition in order to see more clearly how the consistency problem is solved. Let consider the
following mapping instances, MammalT1 = ξ(MammalT2) and OviparousT1 = ξ(OviparousT2).

Then, the unified terminology T = T1/.T2 will have the following concept descriptions,

Bird ≡ BirdT1

Platypus ≡ PlatypusT2

Monotreme ≡ MonotremeT2

Mammal ≡ MammalT1 u◦ MammalT2

Oviparous ≡ OviparousT1 u◦ OviparousT2

Bipedal ≡ BipedalT1

LiveBirth ≡ LiveBirthT1

Egg ≡ EggT1

Table 5: The unified terminology T from the originals T1 and T2.

When merging the two belief bases K(MammalT1) and K(MammalT2), no inconsistency arises,

K(MammalT)
Animal(X)
hasMammaryGlands(X, y1)
hasMammaryGlands(X, y2)
giveBirth(Y,X) → hasHeartBeat(X) ∧ hasV oluntaryMovement(X)

The resultant unified concept will be translated from the previous belief base to the correspon-
dent description language as, MammalT ≡ Animalu > 2hasMammaryGlandsu ∀giveBirth.

1362

(hasHeartBeat u hasV oluntaryMovement). A similar situation occurs with the belief base for
concept description Oviparous, and its correspondent translation to DLs, OviparousT ≡ Animalu
> 1layEggsu ∀giveBirth.(hasHeartBeat u ¬hasV oluntaryMovement).

K(OviparousT)
Animal(X)
layEggs(X, y1)
giveBirth(Y,X) → hasHeartBeat(X) ∧ ¬hasV oluntaryMovement(X)

We developed so far the terminology unification, first sub-operation of the terminology integration
previously defined. The following step is the application of the terminology consolidation in order to
verify and restore consistency to the resultant unified terminology. Here, the concept description for
Monotreme yields the inconsistency.

MonotremeT ≡ Animalu > 2hasMammaryGlandsu
∀giveBirth.(hasHeartBeat u hasV oluntaryMovement)u

Animal u > 1layEggsu ∀giveBirth.(hasHeartBeat u ¬hasV oluntaryMovement)

Clearly, this concept is unsatisfiable, so from the set (K(MammalT) ∪K(OviparousT))⊥⊥⊥ of
⊥-kernels, an appropriate4 incision function σ would select rules only from K(MammalT) in order
to avoid the inconsistency in this concept. In such a case the correspondent sentence would be

giveBirth(Y,X) → hasHeartBeat(X) ∧ hasV oluntaryMovement(X)

that comes from the DL concept ∀giveBirth.(hasHeartBeatuhasV oluntaryMovement) so a new
concept MammalT1 is defined to be part of the terminology T without considering the previous selec-
tion, such that MammalT1 ≡ Animal u > 2hasMammaryGlands. Then the definitive concept for
the definition of Mammal in T would be,

MammalT ≡ MammalT1 u∀giveBirth.(hasHeartBeat u hasV oluntaryMovement)

Finally, following the consolidation algorithm, the concept description for Monotreme in termi-
nology T would be, MonotremeT ≡ MammalT1 uOviparousT.

Note that following the proposed method for terminology integration we do not only eliminate the
inconsistency when merging both terminologies, but also keep all information as part of the resultant
terminology, by identifying and splitting the problematic concept in two interrelated, revisiting the
hierarchy technique of the object oriented paradigm.

5 CONCLUSIONS, RELATED AND FUTURE WORK

A union operation of terminologies probably yields contradictions on concept descriptions and further
inconsistency in the resultant terminology. The use of a belief revision framework to define terminolo-
gies in order to meet a consistent merge operation is proposed and generates a new Non-monotonic
Description Logics model as a powerful theory to be applied on future Semantic Web researches.

Ontology Change [Flo06] expresses the necessity of modifying the knowledge described in on-
tologies responding to different given interests. For instance, ontology changes may arise due to some
change originated in the world being modeled, or on users’ needs; and\or due to previously unknown
knowledge, or bugs found after design steps.

4The reader is invited to refer the conclusions of this work to understand this selection.

1363

Bird ≡ Animal uBipedal uOviparous u hasFeathersu = 2hasWings
P latypus ≡ Aquatic uMonotreme

Monotreme ≡ Mammal1 uOviparous
Mammal1 ≡ Animalu > 2hasMammaryGlands
Mammal ≡ Mammal1 u ∀giveBirth.LiveBirth

Oviparous ≡ Animal u ∀giveBirth.Eggu > 1layEggs
Bipedal ≡ = 2hasFoot

LiveBirth ≡ hasHeartBeat u hasV oluntaryMovement
Egg ≡ hasHeartBeat u ¬hasV oluntaryMovement

Table 6: The resultant terminology T = T1/.T2 with concepts about animals.

Many authors are nowadays focusing their efforts in some closely related areas under terms like,
ontology translation, evolution, integration and merging. For instance, in [Flo06] an AGM compat-
ible contraction operator for DLs is described, and based on it a DL revision operator is defined in
[QLB06], from the generalized AGM postulates in [Flo06]. These two works are some of the newest
results obtained so far by considering theory change and DLs as an hybrid framework for belief revi-
sion.

Our proposed approach means an interesting alternative in the area, whose most notorious dif-
ference relays in the fact of the focalization on non-prioritized change operations where the AGM
postulates are not fully met. From a naming convention point of view, although most of our work
might be thought as Ontology Merging, we enclose it in the so called Ontology Integration, following
the terminology specified in [Flo06], due to some slight overlapping that we consider exists between
these terms.

The incision function (σ) deserves a special discussion due to its responsibility on the information
management of knowledge bases which makes to keep or restore consistency regarding the selections
it does. For instance, several merge operators have been proposed in the theory change bibliography,
but in this work we proposed a different one based on a kernel contraction determined by an incision
function. This is due to our intentions to reduce every belief revision and merge operation to an
“intelligent” definition of the incision function, so placing it on top of our future investigations.

Another situation is given by concept descriptions to be consistently merged “retracting” those
simple concepts descriptions that presumably generate the inconsistency in the new concept descrip-
tion. This selection is the one being made by the incision function, but here always might be more
than one possible election to avoid inconsistency. More formally, C ⇐ K(C1)∪K(C2)−σ⊥might be
solved selecting knowledges from any of the two involved concept descriptions. Here is where Epis-
temic Entrenchment methods arise, in order to properly select, w.r.t. the local environment, the most
convenient knowledge and to give only one possible concept description as the operation resultant.

Motivated by the latter examples, a deeper investigation on Epistemic Entrenchment 5 methods
could be useful to semi-automate the well functioning of a reasonable incision function (σ) to cut the
α-kernels obtained by the use of merge operations. This means that the incision function (σ) will
select those sub-concepts with less epistemic entrenchment to be cut off the resulting definition.

To achieve this, we will investigate confidence levels on terminologies to be incorporated by the
ontology integration requester depending on his confidence about the origin where the ontology came
from (author). Furthermore, it would be interesting also to consider confidence levels on concept
descriptions incorporated by the ontology designer. By this, we intend to have some extra information

5The Epistemic Entrenchment method specifies a way to measure the level of importance of a sentence α to belong to
the epistemic state.

1364

at the time of evaluating which is the most relevant knowledge to be held after an integration operation.

Acknowledgements: We would like to thank to the anonymous referee for their valuable contribution
to this paper.

REFERENCES

[AGM85] Carlos Alchourrón, Peter Gärdenfors, David Makinson. On the logic of theory change:
Partial Meet Contraction and Revision Functions, The Journal of Symbolic Logic,
50:510-530, 1985. 1985.

[BHS03] F. Baader, Ian Horrocks, U. Sattler. Description Logics as Ontology Languages for the
Semantic Web, Lecture Notes in Artificial Intelligence. Springer, 2003.

[BN02] F. Baader, W. Nutt. Basic Description Logics. In the Description Logic Handbook, Cam-
bridge University Press, 2002, pages 47-100.

[FKS02] M. Falappa, G. KernIsberner, G. Simari. Explanations, belief revision and defeasible rea-
soning. Artificial Intelligence Journal 141(1-2):1-28, 2002.

[Flo06] Giorgos Flouris. On Belief Change and Ontology Evolution. Doctoral Dissertation, De-
partment of Computer Science, University of Crete, February 2006.

[Fuh96] André Fuhrmann. An Essay on Contraction, The European Association for Logic,
Language and Information (FOLLI), ISBN (Paperback): 1575860546, ISBN (Cloth):
1575860554, 1996.

[Gar98] Peter Gärdenfors. Knowledge in Flux: Modelling the Dynamics of Epistemic States. The
MIT Press, Bradford Books, Cambridge, Massachusetts, 1988.

[GHV03] Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker. Description Logic
Programs: Combining Logic Programs with Description Logic. In Proceedings 12th In-
ternational Conference on the World Wide Web (WWW-2003), Budapest, Hungary, May
20-23, 2003.

[Han94] S. O. Hansson. Kernel Contraction, The Journal of Symbolic Logic, 59:845-859, 1994.

[Han97] S. O. Hansson. Semi-Revision. Journal of Applied Non-Classical Logic, 7:151-175, 1997.

[MF03] M. Moguillansky, M. Falappa. Aplicación de Operaciones de Cambio en Sistemas
Basados en Conocimiento, IX Congreso Argentino de Ciencias de la Computación,
CACIC’2003: 1490-1501, Universidad Nacional de La Plata, Octubre de 2003.

[MF06] M. Moguillansky, M. Falappa. On the Use of Belief Revision to Merge Description Logic
Terminologies, WICC’2006: 57-62, Universidad de Moron, Junio de 2006.

[QLB06] Guilin Qi, Weiru Liu, and David A. Bell. Knowledge base revision in Description Log-
ics, In Proceedings of 10th European Conference on Logics in Artificial Intelligence
(JELIA’06), Springer Verlag, To appear, 2006.

[SSS91] Manfred Schmidt-Schauß and Gert Smolka. Attributive concept descriptions with com-
plements. Artificial Intelligence, 48(1):1-26, 1991.

1365

