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Abstract. A Layered Evolution (LE) paradigm based method for the generation of a 
neuron - controller is developed and verified through simulations and experimentally. It 
is intended to solve scalability issues in systems with many behavioral modules. Each 
and every module is a genetically evolved neuro-controller specialized in performing a 
different task. The main goal is to reach a combination of different basic behavioral 
elements using different artificial neural-network paradigms concerning mobile robot 
navigation in an unknown environment [1][2]. The obtained controller is evaluated over 
different scenarios in a structured environment, ranging from a detailed simulation 
model to a real experiment. Finally most important implies are shown through several 
focuses. 
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1   Introduction  

Several researchers in AI looks for understanding how complex biological systems are able to 
adapt, interact [4] and, in particular, build models that let understand and synthesize complex 
behaviors in autonomous robotic context. Modular neuro-controller hierarchies are studied in order 
to solve behaviors stability and scalability issues in evolutionary robotic [5]. In fact in this context 
scalability refers to creation of complex behaviors from simple ones.  

Hierarchical and sequential organization of complex activities in a multiple behaviors systems, 
such as issues in robot navigation and movement learning to the correct target [6][7][8], establish 
some of real problems that robotic and bio-inspired neuroscience confront. Understanding of such 
systems within a robotic context aids to explain in some degree the ways of producing, in example, 
human motor capabilities and its influence in neural and motor system referred to adaptative and 
recovering capabilities.  

One of the most important strategies to deal with scalability in ER is Layered evolution (LE)[9]. 
LE uses Subsumption[10] architecture concept in the evolutive process, supplying a smart focus in 
simulated based systems scalability issues. This approach offers an evolutionary sequence from 
lowest levels (basic behaviors) to highest ones (complex behaviors) throughout a hierarchical 
organization. The key concepts related to LE are modularity, adaptability and multiplicity[3].  

In this paper, concepts from ER are used to get controllers that are able to adapt robot behaviors 
according to the sensory inputs from the environment in order to solve a navigation complex 
behavior in an unknown environment, either at simulated level or a real one using a mini-robot 
Khepera® [11]. This work is within a larger project [3] referred to generation of an adaptative 
autonomous control for an AUVI [12].  
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This article is organized as follow: In section 2 a methodology for creation of unknown a priori 
environment oriented neuro-controllers is presented. The Experimentally obtained results are shown 
in section 3. Then perspectives and tendencies of this work are exposed in section 4. Finally, in 
section 5, conclusions of this work are presented.  

2 Initial supposes and experimental setups 

Test platform used in both simulated and real environment correspond to the mini – robot 
Khepera®. The assumed conditions were: a) Robot moves over a plain surface; b) Robot inertial 
effects and non - holonomic features are not considered; c) Robot moves without slipping; d) 
Environment is structured and unknown. Some elements of it are static (i.e. Walls, corridors, 
labyrinths, doors) while others, such as target position references and obstacles, may me modified 
in each run; e) Variable environmental conditions (i.e., outdoor light influence) are not controlled 
directly and they are considered as controller noise.   
 

2.1   Validation Experiments  

Tasks selection is done in order to reach robotic autonomous mobile navigation in a controlled 
environment to solve autonomous navigation, focusing on getting sure tracks (sub optimal in 
general)[13]. Navigation control can be classified into two categories: Local Strategy (reactive) and 
global (planned). In reactive focus, absolute position is not required and only the interaction should 
be considered. As exposed in [7], to develop navigation task properly is necessary to know if there 
is enough free space to avoid an obstacle to reach the target. Reactive techniques are proper for 
solve navigation task in an unknown environment. . On the other hand, in global strategies an intern 
world model is needed for tracing generation. 

2.2   Evolutionary Algorithm Features  

In order to develop basic behaviors, a genetic algorithm based on Harvey’s proposal [14] was 
used. Each individual represents a specific type of neuro-controller and it is selected according to a 
fitness value. Furthermore just only gene mutation was used. 

A population of 30 controllers was considered where each individual is made of a constant 
number of chromosomes, depending on the dimensionality of each controller (type of neural 
network). 

 Each gene is a real (or integer) value depending on the neuro-controller used. Each genotype is 
awarded according to its observed performance through a fitness measurement that is used as a 
comparison parameter, establishing a ranking. After that, those genotypes situated at the lower part 
of this scale (lower half) are discarded as individuals in the next generation. Copies of the upper 
part replace these individuals. Then, all the individuals, except the first five, are mutated. Next, 
defined parameters in this process are shown. 
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Experimental Setup: 
 

Parameter Value 
Number of input neuronsa 8 (+1 additional input) 
Number of hidden neurons 6 
Number of output neurons 2 
Selection model elitism (5 first) 
Simulation modelb Simple 
Sensors noise level --- 
Number of runs 10 
Number of iterations per run 200 
Number of generations 300 
Number of objects in the    
environment 

0 (phototaxis | learning)  
10 (obstacle avoidance) 

Initial population Random 
Synaptic weight range [-1; 1] 
Initial range of synaptic weightc [0; 0.01] or [-1; 1] 
Selection percentage 50% 
Mutation rate 5% 
Sensors light range [0; 1] 
Sensors proximity range [0; 1] 
Population size 30 
Type of activation function  sigmoid  
Type of mutation Uniform 
Type of selection Ranking 

 

2.3   Neuro-Controller Topologies  

The following neural network topologies were used as alternative controller architectures. They 
were selected to allow performance comparisons among different recurrence and learning 
paradigms. In what follows, i, j refer to node index and w to synaptic weights in networks: 

• Feed-Forward Neural Network (FFNN): no recurrence in any level; wii=0 for all layers; without 
learning associated to synaptic updates. 

• Recurrent Feed-Forward Neural Network (RFFNN): wii≠0 in the hidden and output layer; 
without learning associated to synaptic updates. 

• Continuous-Time Recurrent Neural Network (CTRNN): wii≠0 in the hidden and output layer; 
without learning associated to synaptic updates; temporary activation of neurons. 

• Plastic Neural Network (PNN): wii≠0 in the hidden and output layer; learning associated to the 
synaptic updates (Hebb rules). 

• Homeostatic Plastic Neural Network (HPNN): wii≠0 in the hidden and output layer; learning 
associated to the synaptic updates (homeostatic Hebb rules). 

                                                           
a The additional input only used when it indicates. 
b Simulator based on [29] descriptions, and with the incorporation of modifications related to improvements about its performance. 
c Valid for plastic nets ([0; 0.01]). 
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The “genetically determined controllers” (e.g., FFNN, RFFNN, and CTRNN) are characterized 

by the sign and weight strength for each synapses, and for “adaptive synapse controllers” (e.g., 
PNN, and HPNN) this implies a sign, a specific Hebb-adaptive rule and a learning rate[3]. 
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Fig. 1. Schematic diagram of the generic neuronal connectivity (2 motors or output nodes mx, 6 
hidden nodes nx, 8 input nodes vx, and 1 additional input v0).  

 
Certain parameters for each network, such as the number of neurons in each layer (as pointed out 

in Fig. 1 for a generic net), were considered fixed for each task. That is, instead of letting network 
size to be adjusted as part of the evolutionary process, a fixed network size was adopted. Besides 
speeding up training, a small network size results in acceptable real-time performance, an important 
issue in the experimental phase. However, this is in fact, a human intervention that can constrain a 
pure evolutionary development.   

2.4   Basic Behaviors  

Following the LE philosophy, different basic modules were generated at the lowest hierarchy level, 
using a specific fitness function. Selected tasks for this development were: 

• Phototaxis: the robot’s ability to reach a light source or coming close to it. The reference for this 
part of the work was [5]. The fitness function was composed of two variables: 
 

( )ik −⋅=Φ 11  (1) 
 
where k is proportional to the average value of the frontal sensors measurement (the robot’s 
sensor V3 and V4 according to Fig. 2) (0 ≤ k ≤ γ, with γ a defaulted value); i is the absolute 
value of the difference among the two node-motor activities, representing the deviation angle 
expressed in radians. Therefore, a deviation is valid if it does not exceed 1 radian. The first 
component of (1) is maximized according to the proximity to a light source, while the second 
component is maximized when direct movements to the goal are generated. 
 

• Obstacle avoidance: the robot’s skill to avoid obstacles, when going towards a particular point. 
The fitness measure is associated partially with Nolfi´s work [5]. The fitness function adopted 
Φ2 is: 
 

( ) ( )jzz −⋅∆−⋅=Φ 112  (2) 
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where z is the difference between the output value of m1 and m2 (see Fig. 1). z expresses the 
deviation angle of the robot’s trajectory in radians (-2 ≤ z ≤ 2); ∆z is the absolute value of the 
algebraic difference between the node-motor activations m1 and m2, maximizing (1- z∆ ) when both 
activations are equal. The term z∆  enhances small differences of the motor-nodes; (1-j) is the 
difference between the maximum activation (value 1) and the maximum sensed value j of the 
proximity infra-red sensors. 
 
• Wall following: robot’s abilities to follow a wall. These are intended to complement other 

reactive behaviors in narrow spaces and corridors. The basic objective of wall seeking (wall-
following generalization track) is the generation of a trajectory parallel to a wall, or eventually 
an obstacle. The fitness score used is: 
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where Θ is the minimum distance allowable between each sensor and a wall/obstacle. In all 
simulations a value of Θ=0.3 was adopted.  

 
• Learning: the main references for the learning behavior implementation and analysis were: 

[5][9]. The behavior consists of the robot’s approach to one of two possible light sources 
(targets). In half of the tests (learning stage), the objective to be reached varies without any 
predefined pattern. The robot does not know “a priori” which light source should reach at the 
beginning of each test. Therefore, it is expected that the robot learns to discriminate its objective 
in a trial and error paradigm. Reinforcement learning (ϕ) is accomplished using the following 
score: 
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where δ is a default value, being 2 for the proposed experiment. The aim is to maximize the 
number of times that the robot reaches the right objective in an obstacle-free environment. The 
fitness function is based on Togelius’ proposal [9] with minimum variations: 
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where Vf refers to the sensed value for the fth sensor (1 ≤ f ≤ 8). 

 
The nets’ inputs for each configuration depend on the kind of test to carry out and the nature of 

the controller employed [3]. The above mentioned simple behaviors are combined for the 
implementation of more complex tasks, such as: 
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• Conditional phototaxis: A variant of simple phototaxis is defined when the robot can move 

towards one of several light sources, selecting the right goal. This is indicated by an external 
input (conditional variable) [9]. 

 
• Navigation: Inspired by different works (e.g., [5] and [15]), it is proposed to analyze whether 

the robot approaches to a certain source in a small closed environment avoiding obstacles. This 
means that the whole robot behavior is associated by one part with the goal detection and by the 
other part with obstacle avoidance, as simpler behaviors. 

 
• Conditional learning (variable goal): The behavior associated with this task is linked to 

learning, but incorporating a conditional variable input, as in conditional phototaxis. The 
environment does not have obstacles. 

 
This particular task selection is aimed to compare results with other available works in the 

literature. They present enough complexity to be studied in the outlined context (see [5][9][16]).  

2.5 Coordination of Behavioral Levels  

For the development of coordination among behaviors a hierarchical Subsuption Architecture [17] 
(see [3]) was selected. Basically, it comprises an evolutionary FFNN fed by the behavioral modules 
outputs and robot sensors [1]. Finally, the outputs of the coordination module control the actuators. 
The fitness score adopted is: 

( )BAcoord Θ−Θ=Φ 1  (6)

where  is the maximum of all light sensors and AΘ BΘ  is the maximum of all proximity sensors. The 
coordination network is easy to evolve, and can be replaced by a simple rule-based system, a very 
interesting property of the approach proposed for the project[12].  
 

 

 
Fig. 2.  Connectivity of the neuro-controllers in Subsumption Architecture. 

 
The system doesn’t need to be homogeneous: a neural network can be combined with a 
conventional controller, an expert system, etc., without major modifications or retraining. 
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3 Simulation and Experimental Results 
 

In a previous work [3], neural controllers for each of the basic behaviors stated in section 2.4 were 
developed, using monolithic evolution. Results for five types of neuro-controllers of different net-
topologies were discussed. These results are summarized here for comparison with the proposed LE 
approach. During the generational development, the relationships among the internal components of 
each controller were adapted to the desired behavior, increasing the complexity of their behavioral 
patterns in most cases. Specialization arises as a consequence of reactions to the environment. 

Depending on network topology, this occurs in the generational process as well as during the 
phenotype’s lifetime. Regarding the abilities of each network topology to develop the selected 
behaviors, the most successful in general was FFNN (in conditional phototaxis and obstacle 
avoidance), followed by HPNN (in learning), see Table III. Performance of the remaining 
architectures was significantly lower. This can be seen in Fig. 4, where fitness levels of the different 
neural topologies are shown. It is attractive to analyze if an incremental strategy like LE can reach 
similar results than more conventional approaches, like those cited in section 2.5. 

One of the advantages of LE over monolithic evolution to obtain a neuro-controller is a 
significant reduction on evolution time, due to the smaller size of the networks required on each 
layer. In the experiments presented on this paper, this benefit was evident. An additional advantage 
was that behaviors were preserved without the risk of “unlearning”.  

 

3.1   LE simulation results 

A layered strategy was devised using a simplified simulated model of the Khepera© robot and its 
environment. Considering the results of section 2 A, a FFNN topology was used for each layer. 
First, a bottom layer of Conditional Phototaxis was generated, followed by an Obstacle Avoidance 
layer, a Wall Following layer and finally a Conditional Learning (upper) layer, using the 
methodology described in section 2. The emergent behaviors were developed successfully, and the 
quality of the solutions was, at least, equivalent to those obtained with the monolithic approach in 
the developed tasks. Tests shown that FFNN topologies outperform more “adaptive” architectures 
suggests that basic behaviors are developed in the evolution phase, instead of during controller’s 
life, as happens with HPNN. It was found that the FFNN and HPNN controller implementation in 
the learning level presents a similar final behavior. 

Lately, these controllers are tested on a detailed simulator of the Khepera© while robot moves on 
a labyrinth-like environment. As the available real robot does not have any sensors to recognize 
different light sources, the conditional learning layer was omitted.  

In other words, general reactive navigation strategy was tested under a complex environment, 
having into account several kinds of obstacles and safety issues. Final controller’s robustness was 
analyzed based on sensors imperfection (i.e. Robustness to environmental and morphologic 
variations)[3]. The experiments carried out shown that the controller was able to beat environmental 
changes, but couldn’t overcame morphologic ones in most experimental tests.   
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Fig. 3.  Multilevel controller samples in real experiments 

3.2   Experimental results in real environments 

Controller presented at section 3.1 was kept in order to be used at a real robot Khepera©. The 
environment was represented by a physic labyrinth like the one used at simulated stage. It consisted 
of a 105x105 cm. arena delimited by walls, with different internal walls of white plastic and a 
compact green rubber floor (fig 2). A light source equipped with a bulb of 75 Watts was placed 
perpendicularly to the floor of the arena at approximately 3 cm. high. The test room presented other 
non-controlled light sources, such as fluorescent lights (zenithal) and natural light from windows.  

 Fig. 3 shows results of three independent experimental situations, requiring avoidance of 
concave and convex obstacles, phototaxis, and wall seeking behaviors. The robot is shown in its 
final position after each movement in the labyrinth. The agent was capable of performing the 
appropriate tasks in a partially unknown environment. The white squares indicate the path followed 
by the robot in each case. 

The results show that the combination between behaviors generated through simulated evolution 
is a feasible strategy that gives rise to emergent behaviors, and controllers that can solve real-world 
problems efficiently. From a pure evolutionary perspective, however, it must be noted that the 
methodology presented is too much dependent on expert knowledge, with evolution taking place in 
a rigid, prescribed framework. Subdivision in atomic tasks, individual fitness functions and 
coordination rules are user-guided, leaving small chance for self-organization and feature 
discovering. Scalability in the general case is still an open subject, having into account successful 
results reached in this article. 

 

4   Discussion, Perspectives and Tendencies  

As previously expressed, LE focus implies human intervention mainly in the coordination of 
behavioral modules. Fitness scores used for each individual behavior come from expertise 
knowledge, like as networks size (fixed), being restrictive if  a pure evolutionist focus is considered, 
but does not inside an engineer one. However, the main idea of this job was to compare results of 
applying LE based controllers to monolithic ones which was able to be carried out (see [3]).   

After comparing experiments using module evolutionary coordination to rule based coordination, 
it is possible to say that generated results were quite similar. Probably much the rule based 
coordination as evolutionary one was suitable to generate the desired behavior.  

A possible solution to synthesize behaviors, as done in this article, is to let evolutive process to 
potentially discover rules in a progressive way, and be able to generate and modify them through a 
random variation process, being refined during controller lifetime as an adaptative process part. So 
that lets several emergent properties to be kept and maintained without identify the relationships 
that control the behaviors. 
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Therefore it is valid to guess: While in classic design methods are not simple the full features 
inference that arise from agent-environment interaction (see [5]), the evolutive focus makes that this 
identification possible in an emergent way.  

5   Contributions and conclusions 

LE is a technique that allows controller generation in ER. This focus is able to be performed and its 
performance is so appropriated like one gotten in more traditional ways (i.e. monolithic evolution). 
This permits to scale in a structure in a consistent way. LE is useful in complex situations such as 
navigation in unknown environment. Although, it inherits some rigid features from Subsumption 
Architecture, which depends more on designer abilities that on emergency of process and pure 
emergent behavior coordination. This implies pre-imposed rules which let speculate if the behavior 
emergency really exists in LE.  

From designer perspective, the described perspective enables an incremental development and a 
clear way to generate complex controller in engineering. It is reasonable to say that a major analysis 
should be done to formalize stability and performance issues related to scalability, being nowadays 
a vanguard topic. Finally, one of the most contribution described here (and [3]), was to develop an 
incremental study of adaptative-evolutive control for the project [12] and to generate practical 
contributions inside the ER area.  
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