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Abstract 

The Estimation Distribution Algorithms (EDAs) compose an evolutionary metaheuristic whose main characteristic is 
the construction of solutions in randomly form, using a distribution of probabilities that evolves during the execution. 
The Population-Based Incremental Learning Algorithm (PBIL) is a type of EDA where the variables are 
independent, that is, they do not have significant interactions between themselves. The PBIL considers that the 
solutions can be represented as vectors of discrete variables, what makes it more adequate for combinatorial 
optimization problems. This paper presents a method called Multi-PBil that is an extension of PBIL with applications 
in multimodal problems. The Multi-PBil was developed with the goal to have an efficient and non expensive 
algorithm of search in multimodal spaces. From PBIL, it was implemented a routine that allows the Multi-PBil to 
create a probability model to act in the search space. A formula that allows initiating the probability models in 
regions of the search space next to the searched global points was applied in the process of the probability model 
initialization rule. The Multi-PBil method was tested and analyzed, presenting some experimental results that 
highlight its viability and characteristics. It is also shown a comparison of the performance between the Multi-PBil 
and a traditional Genetic Algorithm using the sharing method. 

 
 
 
 
 
 
 
 
 
Keywords: Artificial Intelligence, Evolutionary Computation, Genetic Algorithms, Estimation Distribution 
Algorithms. 
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1   Introduction 

The Evolutionary Computation (EC) relates to a great class of optimization algorithms, which are 
inspired in the evolutionary systems of the natural world [1]. Generally, each algorithm starts with a 
population of individuals that will multiply and compete for their survival [2]. Each individual has 
fitness value that indicates its potential inside the population. Between the techniques that are part of 
the evolutionary computation is [3]: Evolutionary programming (EP), Evolutionary Strategies (ES), 
Genetic Algorithms (GA) and Genetic Programming (GP). 

Genetic algorithms are random optimization techniques that imitate the Darwinian Evolution through 
the process of modeling of natural selection and the genetic modifiers [4]. They are based on 
principles of genetic biology and operate analogous to the theory of evolution [5]. The genetic 
algorithms have been shown viable in a variety of unimodal domains [6]. In an environment of natural 
evolution it is common to have a variety between the species, each one occupying an ecological niche 
separately. However, when it’s works with genetic algorithms, it can occur of quickly an artificial 
population to suffer a convergence, and all the individuals of the almost population to become 
identical [7]. 

However, this attractive fact can not be interesting in many problems, for example, in the case of the 
multimodal functions, where the algorithm runs the risk to converge to a point of premature 
convergence [8]. That is because of the loss of population diversity. To surpass this problem, the 
diversity must be kept during the process of generation of individuals in the population, preventing 
that the individuals becomes clones of the best individual [9]. 

The Estimation Distribution Algorithms (EDAs) [10] are heuristic optimization algorithms that base 
its search in the stochastic character. Like the genetic algorithms, the EDAs are based on populations 
that evolve. Instead of evolving the population directly, the EDAs evolve the parameters of a 
probability distribution in which is estimated a set of individuals. Amongst the main algorithms used 
for implementation of the EDAs it is distinguished the Population Based Incremental Learning (PBIL) 
[11] for its robustness and simplicity. 

The Population Based Incremental Learning (PBIL) is one of the based evolutionary algorithms that 
use models. The PBIL is the result of a combination of two techniques, the GA and the competitive 
learning [11]. Originally, the PBIL was designed for binary search spaces [11]. Differently from GA 
that evolves its population of individuals, the PBIL evolves its probability model [12, 13, 14]. 

Baluja shows that PBIL is more efficient than GA and the hill-climbing algorithm in a set of problems 
[11], and since then the PBIL have been used in a variety of applications. Between the possible 
applications of PBIL there are, for example, researches using complex probability models [10, 13, 14]. 

The challenge of solving optimization problems, for example combinatorial problems, is a function not 
only related to combinatorial complexity, but also, related to the difficulty in reaching all the efficient 
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solutions that grows with the number of objectives of the problem. In this context, to resolve the 
multimodal optimization problems are welcome more flexible and easy implementation methods. The 
evolutionary algorithms, more specifically the EDAs present a set of characteristics that are applicable 
to the solution of this type of this problem. 

In this class of problem, the methods based on evolutionary concept privilege the individuals with 
better fitness, where the search procedure is based on the evolution of the probability vectors. 

This work presents a study and implementation of an evolutionary method, more specifically, an 
Estimation Distribution Algorithm called Multi-PBil with the insertion of characteristics that allow the 
search in multimodal spaces. 

The characteristics that make the Multi-PBil a robust and efficient method are two. The first one is the 
possibility to create how many probability models were necessary to an efficient search in a 
multimodal space. The second characteristic allows initiating the initiation rules of the probability 
models with values next to a 0 or 1; that means that de models can be initialized near to the searched 
objective.  

Section 2 briefly reviews PBIL and its extensions to work with multimodal spaces. Section 3 presents 
the algorithm test environments that consist of the Generalized Schwefel’s Problem and Generalized 
Rastrigin’s Function. Section 4 provides the experimental results with analysis, and finally section 5 
give out the conclusions with discussions on future work.   

2. The Multi-PBil Method 
 
2.1 Extensions from PBIL to Multi-PBil 
 
PBIL is one of the simplest model-based EAs, which assumes no dependence among variables. The 
probabilistic model in use is a real-valued vector with each element independently representing the 
probability of generating a 1 in each corresponding bit.  

PBIL allows representing the entire genetic population base through a probability vector rather than a 
myriad of chromosomes. A probability vector is simply a sequence of probabilities. Each probability 
value in the sequence represents the probability to generate a 1 or 0 at the gene position. By a scenario, 
the basic representation of a solution working with a traditional algorithm PBIL can be the same as a 
GA, but instead of to keep each possibility explicitly, the population is substituted by a probability 
distribution.  

Learning in PBIL consists of using the current probability distribution to create N individuals. These 
individuals are evaluated according to the objective function. The “best” individual is used to update 
the probability vector, increasing the probability of producing solutions similar to the current best 
individual. 
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This work presents extensions to PBIL applied in multimodal problems with additional characteristics. 
One is the formula used to create many probability models instead of just one like PBIL does. With 
many probability models the algorithm can find more than one objective simultaneously. Second is a 
probability model initialization rule that starts with values on each entry set to values next to a 0 or 1, 
what is the contraire of PBIL that starts from an initial probability vector with values on each entry set 
to 0.5. The models with initialization next to a 0 or 1 allow locating the probability models next to the 
objectives searched.  

2.2 Building Probability Models from Initial Population 
 
A population member (individuals) is expressed as a binary string. Each individual has a fitness value 
which determines it’s potential. The individuals are evaluated and ranked decreasingly according to a 
specific criterion related to the problem. 

2.3 Probability Models. 
 
The Multi-PBil method uses the initial population to create the probability models. Necessarily, the 
individual 1 of the population is used to create the first probability model. The probability models are 
initially configured with values generated by the formula (1): 

 

Mi = (1 - α) * Xi + α * (AVERAGE HALF BEST INDIVIDUALS) (1) 

 
Where: 

•  Mi  is the created model; 
•  α is the learning rate; 
•  Xi is the binary value of the current position of the individual; 

 
The criterion used to create the subsequent models follows a conditional structure. From the individual 
2 to the least, a test must be done to verify if these individuals can present conditions to create the 
subsequent probability models. The conditional structure uses a parameter called Factor Creation 
(Fc), to verify the probability of each individual be used to create a new probability model. 

The Fc parameter represents a thermometer in the creation of few or many probability models. That is, 
as bigger as the value of Fc, bigger it will be the number of probability models created. And, 
inversely, as smaller as the value of Fc, less probability models will be created. 
 
To calculate the possibilities of individual 2 to create the probability model 1, a calculation is used that 
measures the amount of positions that possess equal values between individual 2, and individual 1. 
This calculation compares all the positions filled by bits of individuals 1 and 2, and calculates the 
amount of position where the bits are equal (Hamming Distance). Then through the formula (2): 
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Probn = (A * 100) / (T) (2) 

Where: 
•  Probn is the proximity of individual analyzed; 
•  A is the amount of position with existing equal bits between two individual; 
•  T is the total size of the individual in number of bits. 

 
If the value of Probn is less than Fc, for example, then individual 2 will be used to create a new 
(second) probability model 2 using the formula (1). On the contrary, if the value of Probn is bigger or 
equal to Fc, then the individual analyzed also presents great probability to create the probability model 
1. Thus, the individual 2 is discarded and the next individual to be analyzed is the individual 3. The 
analysis of the individuals follows until the last individual has been compared.  
 
Generalizing, for each individual Indi of the population, with i > 1, it has been realizes a test to know if 
this individual in question can also create the last probability model created until then. Thus, to each 
execution with the goal to create the probability models, a number nearly always different of models 
can be had created, that is, the amount of probability models bred directly is related with the diversity 
of the initial population. 

The algorithm (1) shows the responsible routine for the creation of the models. 

Algorithm 1: Routine Creation of the Models 
 

Sub-routine Initialization  
  for individual Indi = 2 until N do 

    If max (Prob
N
(Indi | M ( k )), k = 1...Ni

) < Fc then; 
         Generate a new probability model; //using formula (1) 
    else Ind

i
++; 

  end for. 

end. 

 
2.4 The Phases of Multi-PBil Algorithm 

 

Each probability model created generates a population of individuals. Each probability model when 
sampled, reveal relatively high quality solution vectors with high probability. The probability model is 
expressed as a real-valued vector with elements in the range [0,1].  

Initially, each entry of the probability model are set to values next to 0 or 1. Sampling from this vector 
reveals random solution vectors with different probability of generating a 1 or 0 in it position of the 
vector. 
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2.5 Evaluation and Fitness Function 
 
Each probability model works with a proper population of individuals. So that, each model makes the 
independent update of itself from the others models. The fitness function allows evaluating the 
individuals of the population. After all the individuals of the population had been evaluated and ranked 
according to its fitness value, one of these is chosen to update the probability model. The way to 
perform the update is made using a selection method. The update of the models is made according to 
following formula (3): 

PI + 1 = PI * (1.0 - α) + Xi * (α)  (3) 

 
Where: 
•  Pi + 1 is the probability model position value i after the update; 
•  Pi is the probability model actual position value i; 
•  α is the learning rate; 
•  Xi is the individual binary value in position i. 
 

The formula (3) is applied to all the probability models. 

The phases of the Multi-PBil method are composed of the following steps: 

1. Generate the individuals; 
2. Evaluate and rank the individuals; 
3. Create the probability models; 
4. For each probability model created 

a. Initiate the probability models according to the formula (1); 
b. Initiate a population size N individuals for each probability model, and determine 

randomly the gene of each position of each individual (0,1); 
c. Evaluate and rank the individuals; 
d. Update the probability models, through an individual chosen by a selection method, and 

using a learning rate; 
e. Verify if the probability model converged. Else, repeat the steps (b) to (e). 

 

After the probability model is updated a new set of solutions is generated by sampling from the new 
probability model and this cycle is repeated. The phases of the Multi-PBil method continue until a stop 
criterion is satisfied. The stop criterion for each probability model can be: 

•  The algorithm executes until that one objective is founded; or 
•  The algorithm executes until the end of generations; or 
•  The algorithm executes until the elimination of the probability model. 
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2.6 The Mutation Operator 
 
The mutation operator is applied in the probability models. The mutation helps to prevent premature 
convergence of the probability model. Thus, the application of the operator in the probability model 
will cause a movement of all the population through the search space, creating this way conditions so 
that more than one individual can find the global point [11]. 

The application of the mutation operator follows the following rule. For all the elements of the 
probability model, if a value randomly generated in the interval (0, 1] were less them Mut_prob, then 
the position where occurred this truth it suffers a movement according to the formula (4): 

 

Pi = Pi * (1 – MUT_SH) + RAND(0 OR 1) * (MUT_SH) (4) 

 
Where: 

•  Rand() is a mathematical function that generate numbers randomly; 
•  Mut_Sh is a constant defined by the user that indicates the motion rate of the mutation operator 

when it’s applied to the probability model. 
 

The Algorithm (2) shows a routine responsible for the applying of mutation operator. 

Algorithm 2: Routine Mutation  

 
  For each position i of probability model do 

     If (rand(0, 1] < Mut_prob) them  
          P

i
 = P

i
 * (1 – Mut_Sh) + rand(0or1) * (Mut_Sh) 

     end if; 
  end for; 

end. 

 

Where: 
•  Mut_prob is a constant defined by the user, that indicates the mutation operator probability 

occurs in each position; 

3. Experiments 
 
The Multi-PBil method is designed to solve multimodal problems. It was used the multimodal function 
Generalized Schwefel’s Problem and Generalized Rastrigin’s function [15] in the experimental 
studies. Table (1) lists all the test functions. Each problem was run 50 times for the proposed method 
and GA-sharing[16], from k=1 to k=30. The results are compared with a GA-sharing. These functions 
are examples of non linear multimodal functions with many local minima points, where these points 
grow up exponentially as the dimension of the function grows. The functions are: 
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Table 1: Test Funcions. 
“Generalized  Schwefel’s Problem”: 

 

Min f8(y) = -∑ =

k

i
yiyi

1
|)|sin(( ), 

where: 
•  K = 1, 2, ..., 30 
•  -500 < yi < 500 

 

“Generalized Rastrigin’s Function”: 

min f9(y) = ∑
=

+−
k

i
ii

yy Cos
1

2
)10)(*10( π , 

where: 
•  k = 1, 2, ..., 30 
•  -5.12 < yi < 5.12 

 

 
The table 2 shows the parameters used in the tests.  
 

Table 2: Parameters used in Method Multi-PBil and GA-Sharing. 
Multi-PBil Genetic Algorithm – Sharing 

Parameters Value Parameters Value 
Individuals size 50 bits Chromosome size 50 bits 

Amount of individuals 500 individuals Amount of individuals 500 individuals 
Learning rate 0.005 Prob. Crossover 0.6 

Tournament selection (k) 10% Prob. Mutation 0.1 
Factor criation (Fc) 80 Crossover Rate - 1 point 1 

Mut_Prob 0.02 Crossover Rate - 2 ponts 1 
Mut_Sh 0.05 Uniform Crossover 2 

 
4 Discussions  
 
The functions used in the experimental test are multimodal functions with many local minima. The 
number of local minima increases exponentially as the function dimensions increases. These functions 
appear to be very “rugged” and difficult to optimize. The figures 1, 2 and 3 shows the results of 
Generalized Schwefel’s Problems, and figures 4 and 5 treats on Generalized Rastrigin’s Functions. 
The average of probability models created during the runs for boths test functions were 380 probability 
models. 

Figure 1 compare the performance of the Multi-PBil method driven by on the best local search versus 
the performance of the GA using sharing driven by the other local search procedures working with 
Generalized Schwefel’s Problem. It plots the performance measure value found, expressed as a 
percentage of the optimal value. It’s possible to realize that with the growing of the dimension of the 
function the Multi-PBil method presents a consistent and a higher value on the best local search points. 
At the end of the higher dimension both methods presents less performance, but it is still noted a better 
behavior of the Multi-PBil. 

Figure 2 shows the mean function value where the lateral coordinates is the dimension of the test 
function. Figure 3 shows the standard deviation of the function value f. They can be calculated, as 
follow: 
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According to these results, we have that when the dimension of the function is large; the mean 
function value of the Multi-PBil method is smaller than that of the GA-sharing. It means that the 
search ability of Multi-PBil method is strongest compared with the GA-sharing. The standard 
deviation on Multi-PBil is smaller than that of GA-sharing. It means that the Multi-PBil can increase 
the robustness against uncertainty of GA. When the dimension of function is small, the mean function 
value and the standard deviation of the proposed method are larger than GA. 

Figure 4 compare the performance of the Multi-PBil method driven by on the best local search versus 
the performance of the GA using sharing driven by the other local search procedures working with 
Generalized Rastrigin’s Function. It plots the performance measure value found, expressed as a 
percentage of the optimal value. It’s possible to realize that with the growing of the dimension of the 
function the Multi-PBil method presents a consistent and a higher value on the best local search points. 
But the difference on the percentage of success for both methods becomes closer. From dimension 1 to 
12 both methods was able to reach approximately the same solutions.  

A bigger distance is noted when k = 16 to k = 30. At the end of the higher dimension both methods 
presents less performance, but it is still noted a better behavior of the Multi-PBil. Even if the Multi-
PBil method outperforms GA sharing on this apparently difficult function.  
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Figure 1: Success relation between the Multi-PBil method and 

the GA-sharing. 
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Figure 2: Performance Comparison average of the best 

individual between the Multi-PBil and the GA-sharing 
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Figure 3: Standard Deviation comparison. 
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Figure 4: Success  Multi-PBil and GA-sharing. 
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Figure 5: Performance of Multi-PBil method and GA-sharing. 

 

 
Figure 5 shows that the results achieved by Multi-PBil are more accurate and are attained faster than a 
standard genetic algorithm using sharing. For example, the average final result obtained by the Multi-
PBil method was attained in generation 789 (after this generation, no improvement was made). The 
Multi-PBil method was able to find equivalent solutions to the GA-sharing, measured over the entire 
run, in fewer generations. Figure 5 also shows in which generation the Multi-PBil was able to first 
achieve its highest evaluation, and in which generation was first able to surpass it. 
 
5. Conclusions 

This paper presents a method called Multi-PBil with the goal to supply a set of probability models 
capable to find solutions in multimodal problems. The Multi-PBil presents as advantage the possibility 
to initiate the probability models with values next to a 0 or 1, what have a strong influence on 
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migration of the population to the optimum global point. The method allows the creation of many 
probability models as necessary. 

The Multi-PBil allows a simultaneous search for more then one solution, where this possibility to 
work with more than one probability model on the search allows a parallelization of the probability 
models. Extensively empirical studies on non linear multimodal functions were carry out to evaluate 
the performance of the proposed method.  

The Multi-PBil performs better than a standard genetic algorithm using sharing in the problems 
empirically compared in this paper. The results achieved by Multi-PBil are more accurate and are 
attained faster than a standard GA-sharing, both in terms of number of evaluations performed and the 
success of the best local search procedures. A relative gain in clock speed was achieved because of the 
simplicity of the method. The method does not require all the mechanisms of a GA; rather the few 
steps in the method are small and simple.  

One explanation for the good behavior of Multi-PBil is the ability to focus search effort in many 
regions of the space very quickly. When one region is explored extensively, the GA-sharing 
population loses diversity, and thereby also loses its ability to explore other regions. The empirical 
results show that Multi-PBil does enough exploration before the commitment is made to outperform a 
standard GA-sharing. That is because of the possibility to create how many probability models were 
necessary. This characteristic is a benefit over a traditional GA, highlighting its easily parallelizable. 

But the method presents some limitation related to the amount of probability model created. In the 
most part of the test it was created more probability models then the necessary. Another limitation was 
the convergence of many probability models to the same objectives. 

The good results obtained in this paper serve as stimulus for the application of the method in new 
domains of problems. Amongst the possible improvements to be carrying through, there are the use of 
a metric measure with the purpose to analyze with precision the distances between probability models 
and objectives searched and the consequent impact on the elimination on real time of the probability 
models with unsatisfactory performance. A deep study about the number of probability models created 
to be used in the search space. And as third future work there is the study of the method Multi-PBil in 
a parallel architecture. 
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