

Metrics for Fast, Low-Cost Adders in FPGA
Daniel Simonelli and Martín Vázquez

INCA/INTIA – Facultad de Ciencias Exactas – UNICEN
Paraje Arroyo Seco, Campus Universitario – Tandil, Argentina

{dsimonel|mvazquez}@exa.unicen.edu.ar

ABSTRACT: In this paper several adder design techniques that probed to be very effective in full-custom
integrated circuit design are presented as well as the conclusions regarding its implementation on FPGA.
Particularly, in this work, Xilinx XC4000E family is selected as target technology and results achieved without
using dedicated carry logic present in these devices are evaluated.
This paper aims to substantiate the fact that these techniques indeed reduce delay time in other technologies
than full custom design and from these results decide if it is worth trying implementations using XC4000E
dedicated carry logic.

I. INTRODUCTION
Adders are of fundamental importance in a wide variety of digital systems. Many fast adders exist, but
they are almost always implemented in a full-custom approach what allows taking advantage of the
very nature of the technique involved. For example, if it is possible to avoid using certain space-
consuming digital components as big multiplexers this produces space savings and, eventually, adds
fast.
When working with FPGAs this assumption rarely is true. For one side, when using synthesis tools, is
not always easy determine how a certain construction will be implemented. By other hand, when
floorplanning techniques are used, topological restrictions may impose new variables other than those
directly involved with the technique to implement. Nonetheless, FPGAs present some special features
that may help the designer reverse an adverse scenario.
This work present metrics obtained without using this kind of special features over some of the most
interesting adders found up today. In the next section these adders are presented and briefly discussed.

II. ADDER MODELS USED IN THIS WORK: AN OVERVIEW
Among of the many adders' styles that exist, those that became most general because of their best
speed/size ratio in full custom designs were used for this work As can be seen, all these styles range
between ripple and carry-look-ahead.
Ripple adders are the smallest but also the slowest.

FA

xn-1 yn-1

rn-1

cn-2 FA cn-3cn-1

rn-2rn

xn-2 yn-2

FA

x1 y1

r1

c0 FA c-c1

r0

x0 y0

...

Fig. 1 – Ripple-Carry adder

CACIC 2003 - RedUNCI 1384

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15779417?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Carry-look-ahead [Wei58] and carry-select adders [Bed62] are very fast but far larger and consume
much more power than ripple or carry-skip adders.

More recently, carry-skip adders [Kan93a] gained popularity due to their high speed and relatively
small size. The underlying idea in this adders is that, in an N-bit carry-skip adder divided into a proper
number of k-bit blocks, a long-range carry signal starts at a generic block Bi, rippling through some bits
in that block, then skips some blocks, and ends in a block Bj. If the carry does not end at the LSB of Bj
then rippling occurs in that block and an additional delay is needed to compute the valid sum bits.

S(7)-S(0)S(15)-S(8)

X(7)-X(0) Y(7)-Y(0)X(15)-X(8) Y(15)-Y(8)

0

1

S(23)-S(16)

X(23)-X(16) Y(23)-Y(16)

S(31)-S(24)

Cout

X(31)-X(24) Y(31)-Y(24)

B4
Cout

B3
Cout

B2
Cout

B1

0

1

0

1

CinCinCin Cin

Carry-out

Carry-in

Don't skip Don't skip Don't skip Conventional RCA

MUX*MUX*

Fig. 2 – General structure of a carry-skip adder

The carry-skip adder is a pretty good circuit [Leh61][Mso61]. However, the implementation reveals
that with all the skip blocks of the same size, the latter blocks finish switching quickly and then stay
idle for a while waiting for the carry signal to pass through all the bypass multiplexers. For example, in
Fig. 3 a diagram of a 32-bit carry-skip adder is shown where the carry-out for bits 4-7 will be ready at
the same time as the carry-out for bits 0-3. This second block will stay around doing nothing while the
first multiplexer does its job.

Fig. 3 – 32-bit carry-skip adder with block size 4

Let's analyze the worst case delay for a simple n-bit carry skip adder with k-bit blocks. In that situation,
the delay time consists of:
i – the time of propagating the carry-in throughout the initial block, i.e. tsum = k – 1
ii – multiplexer time, i.e. tmux = 0.5
iii – inner blocks skip time. Let m = n/k be the number of blocks, then tprop = m – 2
iv - the time of propagating the carry-in throughout the final block, i.e. tsum = k – 1

0 1 2 3

Setup

Sum

4 5 6 7

Setup

Sum

8 9 10 11

Setup

Sum

12 13 14 15

Setup

Sum

16 17 18 19

Setup

Sum

20 21 22 23

Setup

Sum

24 25 26 27

Setup

Sum

28 29 30 31

Setup

Sum

Cin

CACIC 2003 - RedUNCI 1385

tdelay = tsum + tmux + tprop + tsum =
 = (k - 1) + 0.5 + (n/k – 2) + (k – 1) = 2 (k -1) + 0.5 + (n/k – 2) =
 = 2k – 3.5 + n/k
 = 2k + m – 3.5

Now, it is possible to find out which is the optimal block size:

dt/dk = 0 ⇒ kopt = (n/2)1/2

And the optimal number of blocks

mopt = (2n)1/2

Therefore, the optimal delay time with fixed block width is:

tdelayopt = 2 (n/2)1/2 + (2n)1/2 – 3.5 =
 = (4n/2)1/2 + (2n)1/2 – 3.5 =
 = (2n)1/2 + (2n)1/2 – 3.5 =
 = 2 (2n)1/2 – 3.5

To speed up the circuit, the size of the skip blocks may be variable. In the case in which the size of two
consecutive blocks differ by 1, the previous analysis can be generalized considering that:

n = m + (m + 1) + + (m + k/2 – 1) + (m + k/2 – 1) + + (m + 1) + 1

Then, k = (n/m) – (m/4) + 0.5 [2]

tdelay = tsum + tmux + tprop + tsum = 2(k – 1) + 0.5 + (m – 2) = 2k – 3.5 + m [3]

Replacing [2] in [3] yields,

The optimal number of blocks comes from dt/dm = 0 ⇒ mopt = 2n1/2

The optimal block size is kopt = 1/2 = 1 at the ends and goes up to n1/2 en mopt/2

Therefore, the optimal delay time with variable block width is:

tdelayopt = 2kopt + mopt – 3.5 = 2 (1/2) + 2n1/2 – 3.5 = 2n1/2 – 2.5

Comparing [1] and [4] can be concluded that variable block width is 21/2 (about 40%) times faster than
fixed block width.

tdelay = 2(n/m) – 2(m/4) + 1 – 3.5 + m = 2(n/m) + m/2 – 2.5

tdelayopt = 2 (2n)1/2 – 3.5 [1]

tdelayopt = 2(n)1/2 – 2.5 [4]

CACIC 2003 - RedUNCI 1386

Oklobdzija and Barnes [Okl88], established that the optimal configuration for a 32-bit adder is that
shown in fig. 2

Fig. 4 – 32-bit carry-skip adder with variable block size

Corsonello, Kantabutra and Perri [Cor00] presented a new bit block structure that computes propagate
signals called “carry-strength” in a ripple fashion, giving rise to a family of new carry-skip adders that
are significantly faster than traditional carry-skip adders while not much larger.
In this new type of carry-skip adder, the new block structure eliminates the delay due to the rippling at
the end of the life of a long-range carry signal. The main idea is, that for each bit position k in a block
Bj we compute whether the carry-in to position k comes from the carry-in to block Bj, or whether this
carry is internally generated in block Bj. To this purpose a new type of bit block is used, in which
propagate signals that start at the LSB of the block and end at every bit position are calculated. Fig. 5
shows an 8-bit block such that. Hereafter, we'll refer to this adder as Carry-Skip-CKP.

Cin

Don't_skip

CS1

C1

CS2 CS3

C2

X1 Y1

S1

0
1

X0 Y0

S0

CS8

0
1

X2 Y2

S2

0
1

0
1

X3 Y3

S3

X7 Y7

S7

C4

C6

CS4 CS7

Cout
0
1

0
1

0
1

0
1

C3

CC2 CC3 CC6

Fig. 5 – 8-bit block for carry-skip-CKP adders

Two of the fastest known addition circuits are the Lynch-Swartzlander’s [Lyn92] and Kantabutra’s
[Kan93b] hybrid carry-look-ahead adders. They are based on the usage of a carry tree [Skl60] that
produces carries into appropriate bit positions without back propagation. In order to obtain the valid
sum bits as soon as possible, in both Lynch-Swartzlander’s and Kantabutra’s adders the sum bits are
computed by means of carry-select blocks, which are able to perform their operations in parallel with
the carry-tree.

0 1 2 3

Setup

Sum

5 6 7 8

Setup

Sum

12 13 14 15

Setup

Sum

Cin

4 9 10 11 19 20 21 22

Setup

Sum

16 17 18 24 25 26 27

Setup

Sum

23 28 29 30

Setup

Sum

31

CACIC 2003 - RedUNCI 1387

p3:0-g3:0
p2:0-g2:0
p1:0-g1:0

p3,g3
p2,g2
p1,g1
p0,g0

p3:0-g3:0
p2:0-g2:0
p1:0-g1:0

p3,g3
p2,g2
p1,g1
p0,g0

p3:0-g3:0
p2:0-g2:0
p1:0-g1:0

p3,g3
p2,g2
p1,g1
p0,g0

p3:0-g3:0
p2:0-g2:0
p1:0-g1:0

p3,g3
p2,g2
p1,g1
p0,g0

p3:0-g3:0
p2:0-g2:0
p1:0-g1:0

p3,g3
p2,g2
p1,g1
p0,g0

p3:0-g3:0
p2:0-g2:0
p1:0-g1:0

p3,g3
p2,g2
p1,g1
p0,g0

p3:0-g3:0
p2:0-g2:0
p1:0-g1:0

p3,g3
p2,g2
p1,g1
p0,g0

p3:0-g3:0
p2:0-g2:0
p1:0-g1:0

p3,g3
p2,g2
p1,g1
p0,g0

p3:0-g3:0
p2:0-g2:0
p1:0-g1:0

p3,g3
p2,g2
p1,g1
p0,g0

p3:0-g3:0
p2:0-g2:0
p1:0-g1:0

p3,g3
p2,g2
p1,g1
p0,g0

p3:0-g3:0
p2:0-g2:0
p1:0-g1:0

p3,g3
p2,g2
p1,g1
p0,g0

C0cin
p0,g0

p3,g3
p4,g4

p7,g7
p8,g8

p11,g11
p12,g12

p15,g15
p16,g16

p19,g19
p20,g20

p23,g23
p24,g24

p27,g27
p28,g28

p31,g31

C8

C16

C24

C32

1

0

1

0

1

0

8-bit Adder

8-bit Adder

8-bit Adder

8-bit Adder

8-bit Adder

8-bit Adder

8-bit Adder M
U
X

M
U
X

M
U
X

S7:0

S15:8

S23:16

S31:24

Fig. 6 – Carry tree of Lynch-Swartzlander's adder

III. FULL CUSTOM RESULTS FOR 32-BIT WIDE OPERANDS

In table 1, data obtained for full-custom adder designs are reported. Obviously, it is not possible to
contest to these values by means of FPGA technology but through the techniques discussed in the
previous section, it does make feasible to succeed in the quest for better performances in FPGA-adders.
Values belong to adders materialized using Austria Mikro Systeme p-sub, 2-metal, 1-poly, 5 V, 0.6µm
CMOS process (CUB process)[Cor00]

32-bit adders Area [µm2] Delay [ns]
Ripple-Carry 137700 15.80
Carry-Skip (8) 160173 9.00
Carry-Skip-CKP (8) 181944 5.80
Lynch-Swartzlander 419244 4.08

Table 1 – Performances in full-custom implementations

Carry-Skip-CKP with 8-bit blocks yields a speed about 3 times faster than Ripple-Carry with as little as
a 30% area increase. Lynch-Swartzlander is even faster but area involved is thrice that of Ripple-Carry.
It is worth noting that, because of the nature of space when speaking in FPGA terms, this performance
tendencies not necessarily are to be found in these devices implementations. To establish what
effectively happens, is the main purpose of this work.

CACIC 2003 - RedUNCI 1388

IV. RESULTS
Results obtained in successive implementations for the different adders selected are shown below.
From the study above, two adders became reference patterns for comparing:

 Ripple Carry because of its simplicity. Comparations with this adder are used to settle down if

techniques adopted effectively improve performance when implemented on FPGA.
 The adder implementation provided by the synthesis tool, in this case Synopsys in Foundation 3.1i

environment, because these adder library macros use the dedicated carry logic features of XC4000E
devices. Contrasting against this adder, the prospective advantage through the use of floorplanning
techniques in FPGA are estimated. Throughout this work it will be referred as "Library adder".

The remaining adders implemented are, as follows:
 Carry-Skip with 8-bit blocks
 Carry-Skip with 16-bit blocks
 Carry-Skip CKP with 8-bit blocks
 Carry-Skip CKP with 16-bit blocks
 Lynch-Swartzlander

Adder Type XC4003E-PC84 XC4005E-PC84
Library 29.9 31.9
Ripple-Carry 40.2 35.9
Carry-Skip (4) 30.9 41.8
Carry-Skip (8) 36.5 37.9
Carry-Skip-CKP (4) 33.4 37.1
Carry-Skip-CKP (8) 36.9 46.7
Lynch-Swartzlander 33.6 39.6

Table 2 – Speed for 16-bit adders (nS)

In Table 2 are summarized the speed (worst-case) values obtained for 16-bit adders implemented in
two XC4000E devices and table 5 shows CLB occupation. In XC4003E, the best behavior (excepting,
of course Library Adder) is rendered by Carry-Skip adder with 4-bit blocks while in XC4005E the best
performance belongs to Ripple-Carry from every point of view: speed and CLB occupation. As a
matter of fact, the bigger is the FPGA size, the greater are the delays imposed for the inner routing.
These delays may be overcame introducing local CLBs constraints but it is not the goal of the present
work.

Adder Type XC4005E-CB164 XC4010E-BG225 XC4025E-HQ304
Library 33.2 37.2 40.3
Ripple-Carry 47.4 60.7 65.2
Carry-Skip (8) 47.0 55.2 61.7
Carry-Skip (16) 43.8 51.9 62.5
Carry-Skip-CKP (8) 44.0 54.8 68.5
Carry-Skip-CKP (16) 42.4 50.2 68.7
Lynch-Swartzlander 40.4 52.8 64.5

Table 3 – Speed for 32-bit adders (nS)

CACIC 2003 - RedUNCI 1389

For 32-bit adders, larger FPGAs were used as presented in Tables 3 and 6. When implementations were
performed on a XC4005E the best speed performance was that of Lynch-Swartzlander's adder even
though it also was the most space consuming. In this latter sense, Carry-Skip with 8-bit block was the
cheapest implementation.
Carry-Skip-CKP with 16-bit blocks got the best speed on XC4010E and regarding space Carry-Skip
with 8-bit block was again the less expensive implementation. This same adder was the best both in
speed and space when implemented on a XC4025E.

Adder Type XC4025E-HQ304
Library 54.7
Ripple-Carry 77.9
Carry-Skip (8) 87.8
Carry-Skip (16) 77.9
Carry-Skip (32) 92.5
Carry-Skip-CKP (8) 88.2
Carry-Skip-CKP (16) 100.6
Lynch-Swartzlander 76.3

Table 4 – Speed for 64-bit adders (nS)

At last, Tables 4 and 7 show that for 64-bit adders, the only available FPGA that fitted such operand
requirements was the XC4025E on which the best performance was that of Lynch-Swartzlander. Its
speed slightly advantaged those of Ripple-Carry and Carry-Skip with 16-bit block while the best
occupation ratio was that of Ripple Carry.

XC4003E-PC84 XC4005E-PC84 Adder Type
CLB IOB CLB IOB

Library 9 (9%) 50 (81%) 9 (4%) 50 (81%)
Ripple-Carry 35 (35%) 50 (81%) 35 (17%) 50 (81%)
Carry-Skip (4) 38 (38%) 50 (81%) 38 (198%) 50 (81%)
Carry-Skip (8) 39 (39%) 50 (81%) 39 (19%) 50 (81%)
Carry-Skip-CKP (4) 42 (42%) 50 (81%) 42 (21%) 50 (81%)
Carry-Skip-CKP (8) 57 (57%) 50 (81%) 57 (29%) 50 (81%)
Lynch-Swartzlander 46 (46%) 50 (81%) 46 (23%) 50 (81%)

Table 5 – CLB occupation for 16-bit adders

XC4005E-CB164 XC4010E-BG225 XC4025E-HQ304Adder Type
CLB IOB CLB IOB CLB IOB

Library 17 (8%) 98 (87%) 17 (4%) 98 (61%) 17 (1%) 98 (38%)
Ripple-Carry 81 (41%) 98 (87%) 81 (20%) 98 (61%) 81 (7%) 98 (38%)
Carry-Skip (8) 76 (38%) 98 (87%) 76 (19%) 98 (61%) 76 (7%) 98 (38%)
Carry-Skip (16) 80 (40%) 98 (87%) 80 (20%) 98 (61%) 80 (7%) 98 (38%)
Carry-Skip-CKP (8) 91 (46%) 98 (87%) 91 (22%) 98 (61%) 91 (8%) 98 (38%)
Carry-Skip-CKP (16) 88 (44%) 98 (87%) 88 (22%) 98 (61%) 88 (8%) 98 (38%)
Lynch-Swartzlander 101 (51%) 98 (87%) 101 (25%) 98 (61%) 101 (9%) 98 (38%)

Table 6 – CLB occupation for 32-bit adders

CACIC 2003 - RedUNCI 1390

XC4025E-HQ304 Adder Type

CLB IOB
Library 33 (3%) 194 (75%)
Ripple-Carry 169 (16%) 194 (75%)
Carry-Skip (8) 175 (17%) 194 (75%)
Carry-Skip (16) 183 (17%) 194 (75%)
Carry-Skip (32) 175 (17%) 194 (75%)
Carry-Skip-CKP (8) 187 (18%) 194 (75%)
Carry-Skip-CKP (16) 172 (18%) 194 (75%)
Lynch-Swartzlander 185 (18%) 194 (75%)

Table 7 – CLB occupation for 64-bit adders

V. CONCLUSIONS
Although the speed values for the different adders implemented are not so diverse, occupation factors
are really unlike, particularly when they are contrasted with those yielded through the automatic
synthesis tool.
Table 8 shows that while the speed difference between the average and Library adders is relatively low
in most cases, the CLB occupation difference is high in all cases. Therefore, it is perfectly acceptable to
expect that if XC4000E's dedicated carry logic is used, occupation factors for these techniques decrease
greatly as well as it will be possible to achieve a significant increase in computation speed. For that
reason, it is full worthy to try the mentioned implementation as a future work.

 Speed CLB Occupation
 Library Avg. S.D. Dif. Adder size Library Avg SD Dif.
XC4003-PC84 29.90 30.68 3.28 0.78 16-bit 9 43 8 34
XC4005-PC84 31.90 34.71 3.94 2.81 16-bit 9 43 8 34
XC4005-CB164 33.20 38.24 2.68 5.04 32-bit 17 87 10 70
XC4010-BG225 37.20 47.04 3.66 9.84 32-bit 17 87 10 70
XC4025-HQ304 40.30 56.29 2.94 15.99 32-bit 17 87 10 70
XC4025-HQ304 54.70 76.28 9.03 21.58 64-bit 33 177 7 144

Table 8 – Relative comparison

VI. REFERENCES
Bed62 Bedrij, O. 1962. “Carry select adder.” IRE Transactions on Electronic Computers , vol. 11,

pp. 340–346. Original reference to carry-select adder. See also [Weste, 1993] p. 532. [p. 84]
Cor00 P. Corsonello, V. Kantabutra, S. Perri, "Fast, Low-Cost Adders Using Carry Strength

Signals", SSGRR 2000, l'Aquila, Italy, July 31-Aug 6
Kan93a

Kan93b

V. Kantabutra, “Designing optimum one-level carry-skip adders”, IEEE Trans. on Comp.,
1993, Vol. 42, n°6, pp.759-764.
V. Kantabutra, “A recursive carry-look-ahead/carry-select hybrid adder”, IEEE Trans. on
Comp., Vol. 42, n°12, Dec. 1993.

Leh61

M. Lehman and N. Burla, "Skip Technique for High Speed Carry Propagation in Binary
Arithmetic Units", IRE Transactions on Electronic Computers, Vol. EC-10, 1961, pp. 691-
698

CACIC 2003 - RedUNCI 1391

Mso61 O. L. MacSorley, "High-Speed Arithmetic in Binary Computers", Proceedings of the IRE,
Vol. 49, 1961, pp. 67-91

Lyn92 T. Lynch, E.E. Swartzlander, “A spanning-tree carry-look-ahead adder”, IEEE Trans. on
Comp., Vol. 41, n°8, Aug. 1992.

Okl88 Vojin G. Oklobdzija, Earl R. Barnes: On Implementing Addition in VLSI Technology.
Journal of Parallel and Distributed Computing 5(6): 716-728 (1988)

Skl60 J. Sklansky, "Conditional-Sum Addition Logic", IRE Transactions on Electronic Computers,
Vol. EC-9, 1960, pp. 226-231

Wei58 A. Weinberger and J. L. Smith, "A Logic for High-Speed Addition", National Bureau of
Standards Circular, No. 591, 1958, pp. 3-12

CACIC 2003 - RedUNCI 1392

