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ABSTRACT: In this paper several adder design techniques that probed to be very effective in full-custom 
integrated circuit design are presented as well as the conclusions regarding its implementation on FPGA. 
Particularly, in this work, Xilinx XC4000E family is selected as target technology and results achieved without 
using dedicated carry logic present in these devices are evaluated.  
This paper aims to substantiate the fact that these techniques indeed reduce delay time in other technologies 
than full custom design and from these results decide if it is worth trying implementations using XC4000E 
dedicated carry logic. 

 
I. INTRODUCTION 
Adders are of fundamental importance in a wide variety of digital systems. Many fast adders exist, but 
they are almost always implemented in a full-custom approach what allows taking advantage of the 
very nature of the technique involved. For example, if it is possible to avoid using certain space-
consuming digital components as big multiplexers this produces space savings and, eventually, adds 
fast. 
When working with FPGAs this assumption rarely is true. For one side, when using synthesis tools, is 
not always easy determine how a certain construction will be implemented. By other hand, when 
floorplanning techniques are used, topological restrictions may impose new variables other than those 
directly involved with the technique to implement. Nonetheless, FPGAs present some special features 
that may help the designer reverse an adverse scenario.  
This work present metrics obtained without using this kind of special features over some of the most 
interesting adders found up today. In the next section these adders are presented and briefly discussed. 
 
 
II. ADDER MODELS USED IN THIS WORK: AN OVERVIEW 
Among of the many adders' styles that exist, those that became most general because of their best 
speed/size ratio in full custom designs were used for this work As can be seen, all these styles range 
between ripple and carry-look-ahead.  
Ripple adders are the smallest but also the slowest.  
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Fig. 1 – Ripple-Carry adder 
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Carry-look-ahead [Wei58] and carry-select adders [Bed62] are very fast but far larger and consume 
much more power than ripple or carry-skip adders.  
 
More recently, carry-skip adders [Kan93a] gained popularity due to their high speed and relatively 
small size. The underlying idea in this adders is that, in an N-bit carry-skip adder divided into a proper 
number of k-bit blocks, a long-range carry signal starts at a generic block Bi, rippling through some bits 
in that block, then skips some blocks, and ends in a block Bj. If the carry does not end at the LSB of Bj 
then rippling occurs in that block and an additional delay is needed to compute the valid sum bits. 
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Fig. 2 – General structure of a carry-skip adder 
 

The carry-skip adder is a pretty good circuit [Leh61][Mso61]. However, the implementation reveals 
that with all the skip blocks of the same size, the latter blocks finish switching quickly and then stay 
idle for a while waiting for the carry signal to pass through all the bypass multiplexers.  For example, in 
Fig. 3 a diagram of a 32-bit carry-skip adder is shown where the carry-out for bits 4-7 will be ready at 
the same time as the carry-out for bits 0-3.  This second block will stay around doing nothing while the 
first multiplexer does its job. 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 3 – 32-bit carry-skip adder with block size 4 
 
Let's analyze the worst case delay for a simple n-bit carry skip adder with k-bit blocks. In that situation, 
the delay time consists of: 
i – the time of propagating the carry-in throughout the initial block, i.e. tsum = k – 1  
ii – multiplexer time, i.e. tmux = 0.5 
iii – inner blocks skip time. Let m = n/k be the number of blocks, then tprop = m – 2 
iv - the time of propagating the carry-in throughout the final block, i.e. tsum = k – 1  
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tdelay = tsum + tmux + tprop + tsum =  
           = (k - 1) + 0.5 + (n/k – 2) + (k – 1) = 2 (k -1) + 0.5 + (n/k – 2) =  
           = 2k – 3.5 + n/k  
           = 2k + m – 3.5 
 
Now, it is possible to find out which is the optimal block size: 
 
dt/dk = 0  ⇒   kopt = (n/2)1/2 
 
And the optimal number of blocks 
 
mopt = (2n)1/2 
 
Therefore, the optimal delay time with fixed block width is: 
 
tdelayopt  = 2 (n/2)1/2 + (2n)1/2 – 3.5 =  
               =  (4n/2)1/2 + (2n)1/2 – 3.5 =  
               =     (2n)1/2 + (2n)1/2 – 3.5 =  
               = 2 (2n)1/2 – 3.5 
 
 
 
To speed up the circuit, the size of the skip blocks may be variable. In the case in which the size of two 
consecutive blocks differ by 1, the previous analysis can be generalized considering that:  
 
n = m + (m + 1) + .... + (m + k/2 – 1) + (m + k/2 – 1) + .... + (m + 1) + 1  
 
Then,    k = (n/m) – (m/4) + 0.5          [2] 
 
tdelay = tsum + tmux + tprop + tsum = 2(k – 1) + 0.5 + (m – 2) = 2k – 3.5 + m     [3] 
 
Replacing [2] in [3] yields,    
 
The optimal number of blocks comes from dt/dm = 0 ⇒ mopt = 2n1/2 
 
The optimal block size is kopt = 1/2 = 1 at the ends and goes up to n1/2 en mopt/2 
 
Therefore, the optimal delay time with variable block width is: 
 

tdelayopt = 2kopt + mopt – 3.5 = 2 (1/2) + 2n1/2 – 3.5 = 2n1/2 – 2.5 
 
 
 
Comparing [1] and [4] can be concluded that variable block width is 21/2 (about 40%) times faster than 
fixed block width. 

tdelay = 2(n/m) – 2(m/4) + 1 – 3.5 + m = 2(n/m) + m/2 – 2.5 

tdelayopt = 2 (2n)1/2 – 3.5 [1]

tdelayopt = 2(n)1/2 – 2.5 [4] 
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Oklobdzija and Barnes [Okl88], established that the optimal configuration for a 32-bit adder is that 
shown in fig. 2 
 
 
 
 
 
 
 
 
 
 

Fig. 4 – 32-bit carry-skip adder with variable block size 
 
Corsonello, Kantabutra and Perri [Cor00] presented a new bit block structure that computes propagate 
signals called “carry-strength” in a ripple fashion, giving rise to a family of new carry-skip adders that 
are significantly faster than traditional carry-skip adders while not much larger.   
In this new type of carry-skip adder, the new block structure eliminates the delay due to the rippling at 
the end of the life of a long-range carry signal. The main idea is, that for each bit position k in a block 
Bj we compute whether the carry-in to position k comes from the carry-in to block Bj, or whether this 
carry is internally generated in block Bj. To this purpose a new type of bit block is used, in which 
propagate signals that start at the LSB of the block and end at every bit position are calculated. Fig. 5 
shows an 8-bit block such that. Hereafter, we'll refer to this adder as Carry-Skip-CKP. 
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Fig. 5 – 8-bit block for carry-skip-CKP adders 

 
Two of the fastest known addition circuits are the Lynch-Swartzlander’s [Lyn92] and Kantabutra’s 
[Kan93b] hybrid carry-look-ahead adders. They are based on the usage of a carry tree [Skl60] that 
produces carries into appropriate bit positions without back propagation. In order to obtain the valid 
sum bits as soon as possible, in both Lynch-Swartzlander’s and Kantabutra’s adders the sum bits are 
computed by means of carry-select blocks, which are able to perform their operations in parallel with 
the carry-tree. 
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Fig. 6 – Carry tree of Lynch-Swartzlander's adder 
 
III. FULL CUSTOM RESULTS FOR 32-BIT WIDE OPERANDS 
 
In table 1, data obtained for full-custom adder designs are reported. Obviously, it is not possible to 
contest to these values by means of FPGA technology but through the techniques discussed in the 
previous section, it does make feasible to succeed in the quest for better performances in FPGA-adders.  
Values belong to adders materialized using Austria Mikro Systeme p-sub, 2-metal, 1-poly, 5 V, 0.6µm 
CMOS process (CUB process)[Cor00] 
 
 

32-bit adders Area [µm2] Delay [ns] 
Ripple-Carry 137700 15.80 
Carry-Skip (8) 160173 9.00 
Carry-Skip-CKP (8) 181944 5.80 
Lynch-Swartzlander 419244 4.08 

Table 1 – Performances in full-custom implementations 
 
Carry-Skip-CKP with 8-bit blocks yields a speed about 3 times faster than Ripple-Carry with as little as 
a 30% area increase. Lynch-Swartzlander is even faster but area involved is thrice that of Ripple-Carry. 
It is worth noting that, because of the nature of space when speaking in FPGA terms, this performance 
tendencies not necessarily are to be found in these devices implementations. To establish what 
effectively happens, is the main purpose of this work. 
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IV. RESULTS 
Results obtained in successive implementations for the different adders selected are shown below. 
From the study above, two adders became reference patterns for comparing: 
 
 Ripple Carry because of its simplicity. Comparations with this adder are used to settle down if 

techniques adopted effectively improve performance when implemented on FPGA.  
 The adder implementation provided by the synthesis tool, in this case Synopsys in Foundation 3.1i 

environment, because these adder library macros use the dedicated carry logic features of XC4000E 
devices. Contrasting against this adder, the prospective advantage through the use of floorplanning 
techniques in FPGA are estimated. Throughout this work it will be referred as "Library adder". 
 
The remaining adders implemented are, as follows: 
 Carry-Skip with 8-bit blocks 
 Carry-Skip with 16-bit blocks 
 Carry-Skip CKP with 8-bit blocks 
 Carry-Skip CKP with 16-bit blocks 
 Lynch-Swartzlander 

 
Adder Type XC4003E-PC84 XC4005E-PC84 
Library 29.9 31.9 
Ripple-Carry 40.2 35.9 
Carry-Skip (4) 30.9 41.8 
Carry-Skip (8) 36.5 37.9 
Carry-Skip-CKP (4) 33.4 37.1 
Carry-Skip-CKP (8) 36.9 46.7 
Lynch-Swartzlander 33.6 39.6 

Table 2 – Speed for 16-bit adders (nS) 
 
In Table 2 are summarized the speed (worst-case) values obtained for 16-bit adders implemented in 
two XC4000E devices and table 5 shows CLB occupation. In XC4003E, the best behavior (excepting, 
of course Library Adder) is rendered by Carry-Skip adder with 4-bit blocks while in XC4005E the best 
performance belongs to Ripple-Carry from every point of view: speed and CLB occupation. As a 
matter of fact, the bigger is the FPGA size, the greater are the delays imposed for the inner routing. 
These delays may be overcame introducing local CLBs constraints but it is not the goal of the present 
work. 
 

Adder Type XC4005E-CB164 XC4010E-BG225 XC4025E-HQ304
Library 33.2 37.2 40.3 
Ripple-Carry 47.4 60.7 65.2 
Carry-Skip (8) 47.0 55.2 61.7 
Carry-Skip (16) 43.8 51.9 62.5 
Carry-Skip-CKP (8) 44.0 54.8 68.5 
Carry-Skip-CKP (16) 42.4 50.2 68.7 
Lynch-Swartzlander 40.4 52.8 64.5 

Table 3 – Speed for 32-bit adders (nS) 
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For 32-bit adders, larger FPGAs were used as presented in Tables 3 and 6. When implementations were 
performed on a XC4005E the best speed performance was that of Lynch-Swartzlander's adder even 
though it also was the most space consuming. In this latter sense, Carry-Skip with 8-bit block was the 
cheapest implementation. 
Carry-Skip-CKP with 16-bit blocks got the best speed on XC4010E and regarding space Carry-Skip 
with 8-bit block was again the less expensive implementation. This same adder was the best both in 
speed and space when implemented on a XC4025E. 
 

Adder Type XC4025E-HQ304 
Library 54.7 
Ripple-Carry 77.9 
Carry-Skip (8) 87.8 
Carry-Skip (16) 77.9 
Carry-Skip (32) 92.5 
Carry-Skip-CKP (8) 88.2 
Carry-Skip-CKP (16) 100.6 
Lynch-Swartzlander 76.3 

Table 4 – Speed for 64-bit adders (nS) 
 
At last, Tables 4 and 7 show that for 64-bit adders, the only available FPGA that fitted such operand 
requirements was the XC4025E on which the best performance was that of Lynch-Swartzlander. Its 
speed slightly advantaged those of Ripple-Carry and Carry-Skip with 16-bit block while the best 
occupation ratio was that of Ripple Carry. 
 

XC4003E-PC84 XC4005E-PC84 Adder Type 
CLB IOB CLB IOB 

Library 9 (9%) 50 (81%) 9 (4%) 50 (81%) 
Ripple-Carry 35 (35%) 50 (81%) 35 (17%) 50 (81%) 
Carry-Skip (4) 38 (38%) 50 (81%) 38 (198%) 50 (81%) 
Carry-Skip (8) 39 (39%) 50 (81%) 39 (19%) 50 (81%) 
Carry-Skip-CKP (4) 42 (42%) 50 (81%) 42 (21%) 50 (81%) 
Carry-Skip-CKP (8) 57 (57%) 50 (81%) 57 (29%) 50 (81%) 
Lynch-Swartzlander 46 (46%) 50 (81%) 46 (23%) 50 (81%) 

Table 5 – CLB occupation for 16-bit adders 
 

XC4005E-CB164 XC4010E-BG225 XC4025E-HQ304Adder Type 
CLB IOB CLB IOB CLB IOB 

Library 17 (8%) 98 (87%) 17 (4%) 98 (61%) 17 (1%) 98 (38%) 
Ripple-Carry 81 (41%) 98 (87%) 81 (20%) 98 (61%) 81 (7%) 98 (38%) 
Carry-Skip (8) 76 (38%) 98 (87%) 76 (19%) 98 (61%) 76 (7%) 98 (38%) 
Carry-Skip (16) 80 (40%) 98 (87%) 80 (20%) 98 (61%) 80 (7%) 98 (38%) 
Carry-Skip-CKP (8) 91 (46%) 98 (87%) 91 (22%) 98 (61%) 91 (8%) 98 (38%) 
Carry-Skip-CKP (16) 88 (44%) 98 (87%) 88 (22%) 98 (61%) 88 (8%) 98 (38%) 
Lynch-Swartzlander 101 (51%) 98 (87%) 101 (25%) 98 (61%) 101 (9%) 98 (38%) 

Table 6 – CLB occupation for 32-bit adders 
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XC4025E-HQ304 Adder Type 

CLB IOB 
Library 33 (3%) 194 (75%)
Ripple-Carry 169 (16%) 194 (75%)
Carry-Skip (8) 175 (17%) 194 (75%)
Carry-Skip (16) 183 (17%) 194 (75%)
Carry-Skip (32) 175 (17%) 194 (75%)
Carry-Skip-CKP (8) 187 (18%) 194 (75%)
Carry-Skip-CKP (16) 172 (18%) 194 (75%)
Lynch-Swartzlander 185 (18%) 194 (75%)

Table 7 – CLB occupation for 64-bit adders 
 
V. CONCLUSIONS 
Although the speed values for the different adders implemented are not so diverse, occupation factors 
are really unlike, particularly when they are contrasted with those yielded through the automatic 
synthesis tool. 
Table 8 shows that while the speed difference between the average and Library adders is relatively low 
in most cases, the CLB occupation difference is high in all cases. Therefore, it is perfectly acceptable to 
expect that if XC4000E's dedicated carry logic is used, occupation factors for these techniques decrease 
greatly as well as it will be possible to achieve a significant increase in computation speed. For that 
reason, it is full worthy to try the mentioned implementation as a future work. 
 

 Speed CLB Occupation 
 Library Avg. S.D. Dif. Adder size Library Avg SD Dif. 
XC4003-PC84 29.90 30.68 3.28 0.78 16-bit 9 43 8 34 
XC4005-PC84 31.90 34.71 3.94 2.81 16-bit 9 43 8 34 
XC4005-CB164 33.20 38.24 2.68 5.04 32-bit 17 87 10 70 
XC4010-BG225 37.20 47.04 3.66 9.84 32-bit 17 87 10 70 
XC4025-HQ304 40.30 56.29 2.94 15.99 32-bit 17 87 10 70 
XC4025-HQ304 54.70 76.28 9.03 21.58 64-bit 33 177 7 144 

Table 8 – Relative comparison 
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