
An Ontological Approach to Federated Data Integration

Agustina Buccella and Alejandra Cechich
Departamento de Ciencias de la Computación, Universidad Nacional del Comahue,

 Buenos Aires 1400, Neuquén, Argentina
Email: abuccel, acechich@uncoma.edu.ar

Nieves R. Brisaboa

Departamento de Computación, Universidade de A. Coruña,
 Campus de Elviña s/n, 15071 – A. Coruña, España

Email:brisaboa@udc.es

Abstract. During the last years a lot of projects and lines of research have emerged from different
proposals trying to find the best way to reach data integration. Two powerful techniques have
appeared separately – ontology and contextual information – in order to help solve semantic
heterogeneity problems. In our proposal we combine both techniques exploiting the advantages of
each of them. We propose a new approach, in which three main components work together in order
to achieve a consistent integration. Each component contains some type of semantic information
modeled by ontologies and contexts. Our approach helps the building of each of the components
and address other types of heterogeneity such as ontological heterogeneity.

Keywords: Data Integration, Ontology, Semantic Heterogeneity, Context, Federated Databases,
Federated Systems.

1 Introduction

Terminologically, Federated Systems and Federated Databases are used to provide an integrated
data access, which has a number of physically distributed, heterogeneous and autonomous
information sources (databases) [8]. Here autonomy means a direct access to the data through the
federated system or users’ local interfaces. In this sense, it is important that the federation does not
damage the performance of the local system. On the other hand, distribution is intimately connected
to the concept of Internet, and thus to information located in different geographic places. Lastly, in
our case, heterogeneity will be on ontology terms: there is an ontology heterogeneity problem if two
systems make different ontological assumptions about their domain knowledge. Besides, within a
Federated System the information sources integrate any type of information systems, such as
HTML pages, databases, filing, etc. either static or dynamic. On the latter case, some mechanisms
should be created so as to know which information is available at a given moment.

Data integration is the main problem we must face within a Federated System. To get a
consistent integration, a series of decisions should be made in a correct way. When users query a
Federated System, they should get a suitable semantic answer. Herein, the semantic heterogeneity
makes this task difficult because of its bearing problems on synonymous,
generalization/specialization, etc.

Our proposal is based on the use of ontologies and contexts, which provide a higher degree of
semantics to read and combine information sources. On the hand of the ontologies, they provide the
nouns and descriptions of the domain specific entities by using predicates. These predicates
represent the relationships between the entities. An ontology provides a vocabulary to represent and

CACIC 2003 - RedUNCI 905

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15779411?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

communicate knowledge about the domain, and also a number of relationships containing the
vocabulary terms at a conceptual level. On the other hand, contexts are useful tools to model
concepts which are in conflict with one another. Concepts are true or false according to the context
it is in.

In our work, we define one ontology for each information source. These ontologies, called
source ontologies, converge in a shared vocabulary (or global ontology). Hence, our proposal is
based on a hybrid ontology approach [21], where a specific context or domain is defined for each
source ontology. Also, within these ontologies, each concept can involve one or more contexts.
Therefore, a component must be included to deal with the information flow between the source
ontologies and the shared vocabulary. We called this component Ontology and Context Mapping
(OCM) [2].
An ontological heterogeneity problem [20] appears when the mapping between the source
ontologies and the shared vocabularies must be done. The ontological heterogeneity has a series of
inherent problems because each ontology corresponds only to one information source created
independently. There are two basic types of ontology mismatches: conceptualization mismatches
and explication mismatches. The former, conceptualization mismatches, may appear in two or more
conceptualizations of a domain. These conceptualizations differ in the ontological concepts or in the
way these concepts are related The latter, explication mismatches, are not defined on the
conceptualization of the domain but on the way the conceptualization is specified. The definitions
are considered as 3-tuples Def = <T,D,C> in which T is the definiendum, D is the definiens, and C
is the ontology-concept description to be defined (distinguished during the conceptualization
process). An example of a definition is the concept description “A vessel is taken to be something
large and seagoing” that is explicated as vessel(X) _ seagoing(X) _ large(X), in which vessel(X) is
the definiendum (T), and seagoing(X) _ large(X) is the definiens (D). Another example is, one
ontology contains the definition car(X) black(X) large(X) to define the concept of a car and the
other ontology contains the definition shark(X) black(X) large(X) to define the concept of a shark.

We find several research works using a hybrid ontology approach and contexts in literature. One
example is the framework of the COIN project [6,18] that uses a logic and formal specification of
its components. This framework is made up of three components: the domain model, the elevation
axioms and the context axioms. Each information source contains one set of elevation axioms and
one set of context axioms. Both converge in a unique domain model. Another example is presented
in [16], in which the context is defined based on operations needed by the user to describe the
application domain. A last example is the OBSERVER system [10,11], which although without
contexts, uses local ontologies (built up independently) for each information source.

In this paper we define an approach containing some aspects of the systems mentioned above

with an extra combination of ontologies and contexts. In section 2, essential components of our
proposal and their specific functions are described. Then, section 3 explains our approach especially
created to help build these components. Conclusions and future work are addressed in the last
section.

2 A new approach for data integration

The main task of a Federated System is retrieving optimal and consistent information, and returning
this information to the users. In order to do that, data within the available information source must
be selected generating an answer that should be useful for the users.

Figure 1 shows the main components of our proposal. For brevity reasons, in this paper we will
only focus on describing the federation layer. We assume the wrapper layer involves a number of
modules belonging to a specific data organization. These modules know how to retrieve data from
the underlying sources hiding those data organizations. There is a communication between the

CACIC 2003 - RedUNCI 906

source ontologies and the modules since both interact to retrieve the required information. As the
federated system is autonomous, local users access their local databases through the access layer
independently from users of other systems. Otherwise, they need to use the user interface layer to
access the federated system.

The model in Figure 1 is based on the work presented in [3], in which our extension adds the

federation layer.

2.1 The Federation Layer

The federation layer (FL) is the main component of our proposal. This layer should solve the
problems related to the ontological heterogeneity. In order to do that, the federation layer is made
up of three components: the source ontologies, the shared vocabulary and the OCM.

As we have previously mentioned, there is one source ontology for each information source.
Also a specific context (or domain) is defined for each source ontology. Thereby, we use the tuple
(ontology, context) to define each ontology:

FL←(O1, C1) ∧ (O2,C2) ∧ ... ∧ (On,Cn) for n equal to the number of source ontologies
 (and information sources) within the system.

Besides, each ontology might be related to several contexts indicating the different roles of one

database. For example, the use cases of a UML specification [5] might be the source to obtain some
of the contexts. Each context contains a series of concepts included in the ontology, and the specific
context (or domain) is made up of all of these concepts. Then, the set of contexts associated to the
ontologies can be written as:

 (O1, C1) = { c11, c12, c13,..., c1m} for m ≥ 0.

......................
(On,Cn) = { c21, c22, c23,..., cnm} for m ≥ 0.

We represent each ontology as follows:

The concepts in (1) might be relationships, classes, subclass/subrelationship relationships,
class/instance relationships and hierarchy relationships [7].

The OCM component deals with the relationships among the contexts of the different source
ontologies. These relationships are equality, inclusion, intersection, etc. For instance, the equality
relationship means that contexts in one ontology are the same as contexts in another ontology. As
another example, the union (join) of two contexts may be included in another context and vice
versa. Some generic examples are:

 < On,Cn(Cnm) > = < Ok,Ck(Ckl) >

(O1, C1) = { concept1, concept2,, conceptn} for n equal to the number
 of concepts in the ontology

(O1, C1) = { c11, c12, c13,..., c1m} for m ≥ 0.

c11 ={ concept1, concept2, concept5, concept10}
............
c1m = { concept1, concept3, concept5, concept12} for m equal to the whole

 number of contexts.

(1)

CACIC 2003 - RedUNCI 907

 < On,Cn(Cnm) > ∩ < On,Cn(Cnp) > = < Ok,Ck(Cko) >
 < On,Cn(Cnm) > ⊂ < Ok,Ck(Ckl) > ∪ < Ok,Ck(Cko) >

Figure 1. Federated System

These types of relationships help to create a component called shared vocabulary. It includes the

generic concepts involving the source ontologies together with the resulting contexts. The OCM
component is responsible of providing these elements. Also, the OCM component will have the
equality axioms describing the similarity relationships between concepts of two or more contexts,
which are connected by some of the relationship described above. We use the functions defined in
[15,16] in order to find the similarity values within these related contexts. The (2) and (3) functions
show the formulas where a and b are concepts of two ontologies (O1 y O2 respectively).

0,,),(),(.),(.),(21212121 ≥++= afp
OO

aa
OO

ff
OO

pp
OO wwwforbaSwbaSwbaSwbaS

 1=++ afp wwwand

10
1

≤≤
−++

= αfor
A|α(a,b))|B/(|α(a,b)|A/BB||A

B||AS(a,b)
Ι

Ι

(2)

(3)

CACIC 2003 - RedUNCI 908

The function (2) is a sum of products (value times weight (w)) where w represents the parts, the
functions and the attributes (wp, wf, y wa respectively). This model is called feature matching,
where parts are structural elements of a concept (or class), such as “roof” and “floor” of a building;
functions represent the purpose of the concept; and attributes correspond to additional
characteristics of a concept. Consequently, the relationships between the contexts define values to
these weights.

The function (3) is based on the Tversky’s model [19] where A and B correspond to description
sets of a and b (i.e., synonym sets, sets of distinguishing features, etc). The equality axioms are built
with the result of these functions for the significant cases, that is for high similarity values.

Finally, the shared vocabulary involves a series of generic concepts and contexts built using the
equality axioms. Users use the vocabulary to query and get answers through the user interface layer.
Once the user chooses the context and makes the query, the system will use the OCM component to
know which concepts are related with. Thereby, the system gets access to the information sources to
produce the data.

3 An Ontology Construction Approach

In this section we will describe our approach for building the federation layer’s components.

Figure 2 shows the algorithm designed to do so. The method has three main stages: build source
ontologies, build the mappings among the source ontologies (the OCM component) and build the
shared vocabulary. We will briefly explain each stage by using an example. Several languages may
be used to represent an ontology – CLASSIC [1], LOOM [9], Ontolingua [7], etc. Here, we have
used Ontolingua because of its expressiveness to describe the elements of the ontology.

Figure 2. The Ontology Construction Method

3.1 Building source ontologies

As Figure 2 shows, this stage contains two main steps: search for relationships and classes and
search for contexts. The first step implies a complete analysis of the information sources, e.g., what
information is stored, how it is stored, the meaning of this information (the semantic), etc. Each
ontology will be built independently by using any available tool, such as Protégé [13], DODDLE
[17], Ontolingua [4] etc.

CACIC 2003 - RedUNCI 909

Figure 3 shows an example of two similar systems containing information about selling vehicles.
The first system sells three types of vehicles: cars, trucks and pick-ups. The buying_customer class
stores information about the vehicles sold to a customer. The second system also stores information
about vehicles sold to a client (buying_client), but it divides the vehicle class into different
subclasses. To build each ontology we use the Ontolingua Editor [12]. Each resulting ontology will
contain the classes (and its attributes), the relationships and the axioms needed to define it. Figure 4
shows a part of the ontologies of each system represented using Ontolingua.

Figure 3. Two systems about selling cars

The second and last step, search for contexts, implies the definition of the specific context (or
domain) for each ontology, and the definition of the several contexts within an ontology.

Here, we define the classes involved in each context. As we have explained in the last section,
these contexts indicate the different roles or functions of a system. Figure 4 also describes some
defined contexts for each ontology. In order to ease the finding of the mappings between ontologies,
it is important that the contexts in the ontologies are not defined independently.

3.2 Building the mappings among the source ontologies (the OCM component)

As Figure 2 shows, this stage contains three main steps: defining the mapping, search for
similarities and building the equality axioms.

The first step implies defining the relationships among the contexts of the source ontologies built
in the last stage. This is a straightforward step because the contexts are defined globally. For
example, some relationships can be:

(O1,Context1) (c11) = (O2,Context2) (c21)
(O1,Context1) (c11) ∪ (O1,Context1) (c13) = (O2,Context2) (c23)
(O1,Context1) (c13) = (O2,Context2) (c22)
(O1,Context1) (c14) ⊂ (O2,Context2) (c26)

The second step, search for similarities, is the most important step. Here, we should find the

similarity values among the concepts related by the contexts. To do that, we use the similarity
functions described in section 2.1.

CACIC 2003 - RedUNCI 910

Part of theOntology 1

;;; ------------------ Classes --------------

;;;Vehicle
(Define-Class Vehicle (?X) "a conveyance that transports
people or objects" :Def (And (Thing ?X)))

;;;Car
(Define-Class Car (?X) "cars for selling" :Def (And
(Vehicle ?X)))

;;;Person
(Define-Class Person (?X) "the set of people" :Def
(And (Thing ?X)))

;;;Customer
(Define-Class Customer (?X) "the customer who buys
vehicles" :Def (And (Person ?X)))

;;; ------------------ Relations --------------

;;;Last_Name
(Define-Relation Last_Name (?Frame ?Value) "The last
name of the person" :Def (And (Person ?Frame) (String
?Value)))

;;;Make
(Define-Relation Make (?Frame ?Value) "The make of
the vehicle" :Def (And (Vehicle ?Frame) (String
?Value)))

Part of theOntology 2

;;; ------------------ Classes --------------

;;;Vehicle
(Define-Class Vehicle (?X) "a conveyance that transports
people or objects" :Def (And (Thing ?X)))

;;;Automobile
(Define-Class Automobile (?X) "automobiles for selling"
:Def (And (A_Four_Wheels ?X)))

;;;Client
(Define-Class Client (?X) "the client who buys vehicles"
:Def (And (Thing ?X)))

;;; ------------------ Relations --------------

;;;Last_Name
(Define-Relation Last_Name (?Frame ?Value) "The last
name of the client" :Def (And (Client ?Frame) (String
?Value)))

;;;Make
(Define-Relation Make (?Frame ?Value) "The make of
the vehicle" :Def (And (Vehicle ?Frame) (String
?Value)))

;;;Door
(Define-Relation Door (?Frame ?Value) "The amount of
doors in an automobile" :Def (And (Automobile ?Frame)
(Number ?Value)))

Some contexts for these systems are:

Ontology1 = O1
Context1 = selling_vehicles1

c11 = buying_car_customer
c12 = buying_truck_customer
c13 = buying_pickup_customer
c14 = buying_vehicles_customer
……..

(O1,Context1) = { c11, c12, c13, c14}

(O1,Context1) (c11) = { customer, car, buying_customer,

....}
(O1,Context1) (c12) = { customer, truck, buying_customer,

….}
(O1,Context1) (c13) = { customer, pickup,

buying_customer, ….}
(O1,Context1) (c14) = { customer, vehicles, truck, car,

pickup, buying_customer, make,
….}

………………….

Ontology2 = O2
Context2 = selling _vehicles2

c21 = buying_automobile_client
c22 = buying_pickup_client
c23 = buying_a_four_wheels_client
c24 = buying_motorbike_client
c25 = buying_a_two_wheels_client
c26 = buying_vehicles_client
……..

(O2,Context2) = { c21, c22, c23, c24, c25}

(O2,Context2) (c21) = { client, automobile, buying_client,

door,}
(O2,Context2) (c22) = { client, pickup, buying_client

….}
(O2,Context2) (c23) = { client, a_four_wheels,

pickup, automobile, buying_client,
….}

………………….

Figure 4. Part of the two ontologies with some of their contexts

CACIC 2003 - RedUNCI 911

We must begin with the contexts containing only subclasses such as (O1,Context1) (c11) and
(O2,Context2) (c21). In this way, when other contexts (involving superclasses and subclasses) such
as (O1,Context1) (c14) and (O2,Context2) (c23) are compared, the included subclasses will not be
compared again.

For instance, the equality relationship between (O1,Context1) (c11) and (O2,Context2) (c21) only
contains subclasses and we will begin comparing the concepts included in them. Figure 5 shows the
parts, the functions and attributes for the car class and automobile class of each ontology in our
example. We have used WordNet [14] in order to look for the parts and functions of each concept.

(O1,Context1) (c11) = buying_car_customer
Class Car
Parts = {accelerator pedal, door, window, car mirror,
car seat,…, n_parts }
Function = {a conveyance that transports people or
objects}
Attributes = {engine_number, make, model, color}

(O2,Context2) (c21) = buying_automobile_client
Class Automobile
Parts = {accelerator pedal, door, window, car mirror,
car seat,…, n_parts }
Function = {a conveyance that transports people or
objects}
Attributes = {engine_number, make, model, color,
doors, boot_capacity}

Figure 5. Parts, functions and attributes of two classes

The similarity function (3) applied to the parts is:

1
)0),(1()0),((

),(=
−++

=
xautomobilecarxautomobilecarn

nautomobilecarS p αα

In this case, the result is exactly 1 because the car class and the automobile class are synonyms.

The same happens with the similarity function applied to the function because the car and
automobile function are the same. Therefore 1),(=automobilecarS f .

The similarity function applied to the attributes generates another result because the classes share
only some attributes. First of all, the α(car,automobile) function must be calculated. To do so, we
use the vehicle hierarchy of the two systems showed in Figure 3. The depth(car) function in the
Ontology1 is 2 whereas depth(automobile) is 3 for the Ontology2. See [15] for more details on the
calculations.

4.0
32

2
)()(

)(),(
21

1
21 =

+
=

+
= OO

O
OO

automobiledepthcardepth
cardepthautomobilecarα

Then the similarity function applied to the attributes is:

64.0
2.14

4
)2)6.0(()0)4.0((4

4),(=
+

=
++

=
xx

automobilecarSa

Now, in order to conclude the calculation, the function (2) must be applied. In this case we

assume equal values for the weights (w) because the contexts are related by an equality relationship.
Therefore wp=wf=wa=0.33. Then, the function (2) is :

87.0))64.0()33.0(()1)33.0(()1)33.0((),(21 =++= xxxautomobilecarS OO

CACIC 2003 - RedUNCI 912

As we can see, the final similarity value between car and automobile is very high, and surely, these
classes will be in the equality axioms. Other similarity values for other classes included in the
analyzed related contexts are:

93.0),(21 =OO clientcustomerS
76.0)_,_(21 =OO clientbuyingcustomerbuyingS

These functions applied to other combination of classes generate null or low similarity values.

For instance, if we compare the car class with the client class the similarity values are:

0),(

0),(0),(,0),(
21 =

⇒===
OO

afp

clientcarS

clientcarSandclientcarSclientcarS

These similarity values are not taken into account when we create the equality axioms.

The last step, building the equality axioms, also is a straightforward step because high similarity

values must be looked for in the related context. In our example, and extending the language
representation, some axioms are:

(<=> (Car ?a_car) (Automobile ?a_car))
(<=> (Customer ?a_client) (Client ?a_client))
(<=> (Buying_Customer ?a_purchase) (Buying_Client ?a_purchase))

3.3 Building the shared vocabulary

As Figure 2 shows, this stage only has two main steps: creating the generic concepts and creating
the generic contexts. The former step can be achieved by using the equality axioms created in the
last step of the previous stage. For each equality axiom, one concept must be chosen to be the
generic concept within this vocabulary. For example, for the first axiom between car and
automobile we can choose the word car to identify both. Once the generic concepts are chosen, the
ontologies must be used to generate a unique ontology or shared vocabulary. This vocabulary will
be used by the users to query the federated system.

In Figure 6 a part of the resulting ontology is represented using the chosen concepts for each
case. Again, here we use Ontolingua as specification language, but Figure 6 shows the concepts also
graphically in order to make the example clearer.

The latter step, creating the generic context, consists of determining the contexts that will be
used by the users. The contexts must include (like in the first stage) its generic concepts. Figure 7
shows some examples of them.

4 Conclusions and Future Work

In our proposal, we have combined two powerful tools – ontologies and context information – to
help solve many semantic heterogeneity problems. We create a new approach using three main
components within a federation layer: source ontologies, ontology and context mapping (OCM) and
shared vocabulary. Each of them contains semantic information using ontologies and contexts in
order to achieve a consistent integration. We have also presented an approach to build the

CACIC 2003 - RedUNCI 913

components based on three main stages: building source ontologies, building the mappings among
the source ontologies (the OCM component) and building the shared vocabulary.

Our ongoing approach should still analyze a number of aspects. For example, we are working on
defining another relationships among contexts, and the exact values of the weights (w) in the
similarity functions. These values might be based on context relationships, taking into account
another problems about ontological heterogeneity not considered in this work, such as attribute-type
mismatches, structure mismatches, concept mismatches, etc. Also, some automated processes are
being developed to improve and make more efficient some tasks such as the relationships among
contexts, the comparison between two concepts, etc.

Finally, the approach and their extensions need to be validated by using more complex examples
and real cases for study.

Figure 6. The resultant shared vocabulary (or ontology)

Figure 7. Some generic contexts

CACIC 2003 - RedUNCI 914

References

1. Borgida, A., Brachman, R.J, McGuinness, D.L. and Resnick, L.A. CLASSIC: A structural data

model for objects. In Proceedings ACM SIGMOD-89, Portland, Oregon, 1989.
2. Buccella A., Cechich A. and Brisaboa N.R. “Applying an Ontology on Data Integration” ,

WICC’03, 5th Workshop of Investigations on Computer Science. Universidad Nacional del
Centro de Buenos Aires, Tandil –Argentina, (Pages 99-102). May 2003.

3. Busse, S., Kutsche, R.-D., Leser, U., Weber H. Federated Information Systems: Concepts,
Terminology and Architectures. Technical Report. Nr. 99-9, TU Berlin. April 1999.

4. Farquhar, A., Fikes, R., Rice, J. The Ontolingua Server: A Tool for Collaborative Ontology
Construction. Proceedings of KAW96. Banff, Canada, 1996.

5. Fowler, M. and Scott, K. UML distilled, Addison-Wesley 1997.
6. Goh, C.H., Bressan, S., Siegel, M. and Madnick, S. E. Context Interchange: New Features and

Formalisms for the Intelligent Integration of Information. ACM Transactions on Information
Systems, Vol. 17, No. 3, (Pages 270–293). July 1999.

7. Gruber T. Ontolingua: A Mechanism to Support Portable Ontologies. Knwoledge Systems
Laboratory, Stanford University, Stanford, CA, Technical Report KSL 91-66. 1992.

8. Hasselbring, W. Information System Integration. Communications of the ACM. June 2000.
9. MacGregor, R. Inside the LOOM clasifier. SIGART bulletin. Nº 2(3): (Pages 70-76). June,

1991.
10. Mena, E., Kashyap, V., Sheth, A. and A. Illarramendi, A. Managing Multiple Information

Sources through Ontologies: Relationship between Vocabulary Heterogeneity and Loss of
Information. In Proceedings of Knowledge Representation Meets Databases (KRDB’96),
ECAI’96 conference, Budapest, Hungary, August 1996, pp. (Pages 50-52). 1996.

11. Mena, E., Kashyap, V., Sheth, A. and A. Illarramendi, A. Observer: An approach for query
processing in global information systems based on interoperation across pre-existing ontologies.
Kluwer Academic Publishers, Boston. (Pages 1-49). 2000.

12. Ontolingua Editor. http://ontolingua.stanford.edu/index.html.
13. Protégé 2000. http://protege.stanford.edu/doc/users_guide/index.html.
14. Richardson, R. and Smeaton, A. Using WordNet in a Knowledge-Based Approach to

Information Retrieval. Technical Report CA-0395, Dublin City Univ., School of Computer
Applications, Dublin, Ireland, 1995.

15. Rodriguez, A., Egenhofer, M. Determining Semantic Similarity among Entity Classes from
Different Ontologies. IEEE Transactions on Knowledge and Data Engineering, vol. 15, no. 2,
March/April 2003.

16. Rodriguez, A., Egenhofer, M. Putting Similarity Assessments into Context: Matching Functions
with the User’s Intended Operations. Context 99, Lecture Notes in Computer Science, Springer-
Verlag, September 1999.

17. Sekiuchi, R., Aoki, C., Kurematsu, M., and Yamaguchi, T. DODDLE : A Domain Ontology
Rapid Development Environment. In Proc of PRICAI 98,1998.

18. Siegel, M. and Madnick, S. E. A metadata approach to resolving semantic conflicts. In
Proceedings of the 17th Conference on Very Large Data Bases (Barcelona, Spain, Sept.). VLDB
Endowment, Berkeley, CA, (Pages 133–145). 1991

19. Tversky, A. Features of Similarity. Psychological Rev., vol. 84, (Pages 327-352). 1977.
20. Visser, P., Jones, D., Bench-Capon, T., Shave, M. An Analysis of Ontology Mismatches;

Heterogeneity versus Interoperability. AAAI 1997 Spring Symposium on Ontological
Engineering.

21. Wache, H., Vögele, T., Visser, U., Stuckenschmidt, H.. Schuster, G., Neumann, H. and Hübner,
S. "Ontology-based Integration of Information - A Survey of Existing Approaches," In:

CACIC 2003 - RedUNCI 915

Proceedings of IJCAI-01 Workshop: Ontologies and Information Sharing, Seattle, WA, Vol.
(Pages 108-117). 2001.

CACIC 2003 - RedUNCI 916

