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Abstract

In this paper, we present an artificial immune system (AIS) based on the CLONALG algorithm for solving
constrained (numerical) optimization problems. We develop a new mutation operator which produces large
and small step sizes and which aims to provide better exploration capabilities. We validate our proposed
approach with 13 test functions taken from the specialized literature and we compare our results with respect
to Stochastic Ranking (which is an approach representative of the state-of-the-art in the area) and with respect
to an AIS previously proposed by one of the co-authors.
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1 INTRODUCTION

In many real-world problems, the decision variables are subject to a set of constraints (e.g., related
to the geometric properties of an object), and the search has to be bounded accordingly. Constrained
optimization problems are very common, for example, in engineering applications, and therefore the
importance of being able to deal with them efficiently.

Many bio-inspired algorithms (particularly evolutionary algorithms) have been very successful in
the solution of a wide variety of optimization problems [14]. However, when they are used to solve
constrained optimization problems, they require a suitable mechanism to incorporate constraints into
their fitness functions. Within evolutionary algorithms (EAs), external penalty functions have been the
most popular mechanism adopted to incorporate constraints into the fitness function [12]. However,
penalty functions require the definition of accurate penalty factors (which are normally fine-tuned by
hand) and the performance of the EA is highly dependent on them.

Recently, several researchers have proposed constraint-handling techniques for EAs which avoid
the use of a penalty function or do not require any fine-tuning of the penalty factors [2, 7, 11]. Such
approaches have been found to outperform traditional penalty functions and can handle all types of
constraints (linear, nonlinear, equality, inequality).

The main motivation of the work presented in this paper is to explore the capabilities of a new
mutation operator proposed on an AIS in the context of constrained global optimization. The proposed
approach is based on two algorithms: (1) the CLONALG algorithm proposed by Nunes de Castro and
Von Zuben [9, 10] and (2) the AIS-based approach proposed in [4].

The remainder of the paper is organized as follows. In Section 2, we define the problem we want
to solve. Section 3 describes some previous related work. In Section 4, we introduce the approach
and the proposed mutation operator. In Section 5, we present our experiments. In Section 6, our
results are presented and they are discussed. Finally, in Section 7, we present our conclusions and
some possible paths for future work.

2 STATEMENT OF THE PROBLEM

We are interested in solving the general nonlinear programming problem which is defined as follows:

Find ~x = (x1, . . . , xn) which optimizes f(x1, . . . , xn)

subject to:

hi(x1, . . . , xn) = 0 i = 1, . . . , l
gj(x1, . . . , xn) ≤ 0 j = 1, . . . , p

where (x1, . . . , xn) is the vector of solutions (or decision variables) , l is the number of inequality
constraints and p is the number of equality constraints (in both cases, constraints could be linear or
nonlinear).

3 PREVIOUS RELATED WORK

The use of artificial immune systems to solve constrained (numerical) optimization problems is
scarce. The only previous related work that we found in the specialized literature is the following:

Hajela and Yoo [13, 14] have proposed a hybrid between a Genetic Algorithm (GA) and an AIS
for solving constrained optimization problems. Here, the authors adopted two populations. The first
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is composed by the antigens (which are the best solutions), and the other by the antibodies (which are
the worst solutions). The idea is to have a GA embedded into another GA. The outer GA performs
the optimization of the original (constrained) problem. The second GA is run for a few generations,
and uses as its fitness function a Hamming distance (binary encoding was adopted for the GA) so
that the antibodies are evolved to become very similar (at the genotypic level) to the antigens, without
becoming identical. One of the most interesting aspects of this work was that the infeasible individuals
would normally become feasible as a consequence of the evolutionary process performed (based on
similarity and not on constraint values). This approach was tested with some structural optimization
problems.

Kelsey and Timmis [6] proposed an immune inspired algorithm based on the clonal selection the-
ory to solve multimodal optimization problems. Its highlight is the mutation operator called Somatic
Contiguous Hypermutation, where mutation is applied on a subset of contiguous bits. The length and
beginning of this subset is determined randomly.

Coello Coello and Cruz-Cortés [3] have proposed an extension of Hajela and Yoo’s algorithm. In
this proposal, no penalty function is needed (as required by the original approach of Hajela and Yoo),
and some extra mechanisms are defined to allow the approach to work in cases in which there are no
feasible solutions in the initial population. Additionally, the authors proposed a parallel version of the
algorithm and validated it using some standard test functions reported in the specialized literature.

Balicki [1] made a proposal very similar to the approach of Coello Coello and Cruz-Cortés. Its
main difference is the way in which the antibodies’ fitness is computed. In this case, Balicki intro-
duces a ranking procedure. This approach was validated using a constrained three-objective optimiza-
tion problem.

Luh and Chueh [5, 8] have proposed an algorithm (called CMOIA, or Constrained Multi Objective
Immune Algorithm) for solving constrained multi-objective optimization problems. In this case, the
antibody’s population is composed by the potential solutions to the problem, whereas antigens are
the objective functions. CMOIA transforms the constrained problem into an unconstrained one by
associating an interleukine (IL) value with all the constraints violated. IL is a function of both the
number of constraints violated and the total magnitude of this constraint violation (note that this
IL function is actually a penalty function). Then, feasible individuals are rewarded and infeasible
individuals are penalized. Other features of the approach were based on the clonal selection theory and
other immunological mechanisms. CMOIA was evaluated using six test functions and two structural
optimization problems.

Coello Coello and Cruz-Cortés [4] recently proposed an algorithm based on the clonal selection
theory for solving constrained optimization problems. The authors experimented with both binary
and real-value representation, considering Gaussian-distributed and Cauchy-distributed mutations.
Furthermore, they proposed both a controlled and a uniform mutation operator. This approach was
tested with a set of 13 test functions taken from the specialized literature on evolutionary constrained
optimization.

4 OUR PROPOSED APPROACH

This paper presents a bio-inspired approach based on the CLONALG algorithm proposed by Nunes
de Castro and Von Zuben [9, 10]. In its origins, CLONALG was used to solve pattern recognition
and multimodal optimization problems, and there are few extensions of this algorithm for constrained
optimization (remarkably, the approach reported in [4]).

Our proposed approach (called AISconst) is another extension of CLONALG for constrained op-
timization, and it is described next:
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1. Randomly generate j antibodies.
2. Repeat a predetermined number of times

2.1. Determine the affinity of each antibody (Ab).
2.1. Sort antibodies.
2.2. Clone all antibodies. The antibodies

are cloned proportionally to their affinities
2.4. Mutate all clones.
2.5. Determine the affinity of each clone.
2.6. Sort clones.
2.7. Select the best n individuals from the antibodies’

population and the clones population.
2.9. Replace the lowest affinity antibodies by new individuals

generated at random.
3. End repeat.

The most relevant aspects of the approach are the following:

• All antibodies and clones are represented by vectors of real values.

• Determine the affinity of each individual (antibody or clone) implies to compute the following:

– Feasible: an antibody is feasible if it satisfies all the constraints of the problem. All
equality constraints are converted into inequality constraints, |h(~x)| − δ ≤ 0, using a
tolerance δ = 0.0001, this tolerance was used by [11] and it is the value commonly used
in constrained optimization.

– Objective Function Value: objective function value for the antibody or clone.

– Degree of constraint violation: if an antibody or clone is feasible, then its degree of con-
straint violation is zero. Now, if it is infeasible then its degree of constraint violation is a
positive value determined by gi(x)+ for i = 1, . . . , p and |hk(x)| for k = 1, . . . , l.

• Antibodies are sorted using the following criterion: the feasible antibodies whose objective
function are the best are placed first. Then, we place the infeasible antibodies with the lowest
degree of constraint violation. Clones are sorted using the same criterion.

• In order to select the antibodies and clones that will take part of the next iteration, we consider
first the feasible individuals (over the infeasible ones) and then, those infeasible individuals that
have the lowest degree of constraint violation. Note however that the best infeasible individual
(from the antibodies’ or clones population) will always pass to the next generation, unless the
entire population is feasible. The best infeasible individual is an infeasible individual with the
lowest degree of constraint violation.

• The number of clones generated from the selected antibodies is given by:

NC =
∑n

i=1(int)
(
β∗j
i

)

where NC is the number of clones and β is a multiplier factor (generally equal to 1). We used
β = 1 in our experiments.
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• Several mutation operators were tested, however the simplest one was which had the best per-
formance and it is described next:

If a clone is feasible, then only a single position of the string is changed for a randomly
chosen value (from the allowable range for that specific decision variable).

If a clone is infeasible, then each decision variable xi is mutated using equation (1) or (2)
(with a 50% probability).

x
′
i = xi ± random(0, 1) ∗ range(xi)

generation
∗Number Clones (1)

x
′
i = xi ± random(0, 1) ∗ range(xi)

generation ∗Number Clones (2)

where random(0, 1) refers to a random number with a uniform distribution between 0 and
1, range(xi) is a random number in the allowable range of xi with a uniform distribution,
generation is the current generation number and Number Clones is the number of clones.
Equation (1) generates step sizes larger than equation (2).

4.1 Differences between AISconst and the AIS proposed in [4]

There are several differences between our AISconst and the AIS proposed in [4]. First, AISconst
makes one distinction, during the application of the mutation operator, between feasible and infea-
sible solutions, while the AIS proposed in [4] does not. The mutation operators of both approaches
try to reduce the step sizes as the search progresses. The AIS proposed in [4] takes into account the
difference between the lower and upper bounds of each decision variable, the size of the antibodies’
population and their affinity. In contrast, our AISconst considers the range of each decision variable,
the current generation number (as the generation number grows, the mutation operator tries to reduce
the step size) and the number of clones, but it only tries to reduce the step size on infeasible solutions.
The main idea is that, as the search progresses, since the selection criterion is to choose individuals
with the lowest degree of constraint violation for the next population, infeasible individuals that be-
long to the next population could be close to the boundary between the feasible and the infeasible
regions.

5 EXPERIMENTAL SETUP

In order to validate our proposed approach we tested it with a benchmark of 13 test functions taken
from the specialized literature [11] and widely used in the constrained optimiztion area. The 13 test
functions are described in the Appendix at the end of this paper. The functions g02, g03, g08 and
g12 are maximization problems and the rest are minimization problems using−f(x). For the sake of
simplicity, all the test functions have been transformed into minimization problems.

Our results are compared with respect to Stochastic Ranking [11], which is a constraint-handling
technique representative of the state-of-the-art in the area, and with respect to the AIS approach
reported in [4]. 30 independents runs were performed for each problem, each consisting of 350,000
fitness function evaluations, as well Stochastic Ranking. We adopted a 20% replacement for the
antibodies’ population. All the statistical measures reported are taken only with respect to the runs in
which a feasible solution was reached at the end.
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6 DISCUSSION OF RESULTS

Tables 1, 2 and 3 show the results obtained with the AIS proposed in [4], Stochastic Ranking and
our AISconst, respectively. From Table 3, we can see that our AISconst was able to reach the global
optimum in 3 test functions (g03, g08 and g12). Additionally, our AISconst reached feasible solutions
close to the global optimum in 4 more test functions (g01, g06, g09 and g11) and it found acceptable
(i.e., not too far from the global optimum) feasible solutions for the rest of the test functions.

Comparing AISconst with respect to Stochastic Ranking (see Tables 2 and 3), our AISconst only
improved the worst and mean solutions for g06. Additionally, both approaches found similar solutions
for g03, g08 and g11. In the rest of the problems, Stochastic Ranking outperformed our approach.

Comparing AISconst with the AIS proposed in [4] (see Tables 1 and 3), our AISconst obtained
better results in 3 test functions (g01, g05 and g10). However, for g05, our AISconst only converged
to a feasible solution in 75% of the runs while the AIS from [4] converged to a feasible solution
in 90% of the runs. Both approaches found similar solutions for g03, g08 and g11. Finally, our
AISconst was outperformed in the remaining functions, with a difference (with respect to the best
found solutions) that ranged from 0.0001 to 0.42 units. With respect to the mean and worst found
solutions, our AISconst was outperformed in most test functions, except for g01, g02, g08 and g12.
For the last two functions both approaches found the global optimum in all runs.

Table 1: Results obtained with AIS proposed in [4]. The asterisk (*) indicates a case in which only
90% of the runs converged to a feasible solution.

Function Optimum Best Mean Worst Std.Dev
g01 -15 -14.9874 -14.7264 -12.9171 0.6070
g02 -0.803619 -0.8017 -0.7434 -0.6268 0.0414
g03 -1.0 -1.0 -1.0 -1.0 0.0000
g04 -30665.539 -30665.5387 -30665.5386 -30665.5386 0.0000
g05∗ 5126.498 5126.9990 5436.1278 6111.1714 300.8854
g06 -6961.814 -6961.8105 -6961.8065 -6961.7981 0.0027
g07 24.306 24.5059 25.4167 26.4223 0.4637
g08 -0.095825 -0.095825 -0.095825 -0.095825 0.0000
g09 680.63 680.6309 680.6521 680.6965 0.0176
g10 7049.33 7127.9502 8453.7902 12155.1358 1231.3762
g11 0.75 0.75 0.75 0.75 0.0000
g12 -1.0 -1.0 -1.0 -1.0 0.0000
g13 0.05395 0.05466 0.45782 1.49449 0.3790

Taking into account the GenMean (mean generation where the best solution was found), the fact
that in none of the test functions our proposed approach got stuck in a local optimum, the small num-
ber of antibodies adopted (only 5 individuals), and the limitations imposed on the number of objective
function evaluations, we argue that the mutation operator adopted by our approach is capable of per-
forming an efficient local search over each feasible clone, which allows the algorithm to improve on
the feasible solutions found. In cases in which no feasible solutions are found in the initial popu-
lation, the mutation applied is capable of reaching the feasible region even when dealing with very
small feasible search spaces (e.g., in g05 and g13).

Although there is clearly room for improving our proposed AISconst, we have empirically shown
that this approach is able of dealing with a variety of constrained optimization problems (i.e., with
both linear and nonlinear constraints and objective function, and with both equality and inequality
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Table 2: Results obtained with Stochastic Ranking [11]

Function Optimum Best Mean Worst Std.Dev GenMean
g01 -15 -15.0 -15.0 -15.0 0.0E+00 741
g02 -0.803619 -0.803515 -0.781975 -0.726288 2.0E-02 1086
g03 -1.0 -1.0 -1.0 -1.0 1.9E-04 1146
g04 -30665.539 -30665.539 -30665.539 -30665.539 2.0E-05 441
g05 5126.498 5126.497 5128.881 5142.472 3.5E+00 258
g06 -6961.814 -6961.814 -6875.74 -6350.262 1.6E+02 590
g07 24.306 24.307 24.374 24.642 6.6E-02 715
g08 -0.095825 -0.095825 -0.095825 -0.095825 2.6E-17 381
g09 680.63 680.63 680.656 680.763 3.4E-02 557
g10 7049.33 7054.613 7559.192 8835.655 5.3E+02 642
g11 0.75 0.75 0.75 0.75 8.0E-05 57
g12 -1.0 -1.0 -1.0 -1.0 0.0E+00 82
g13 0.05395 0.053957 0.067543 0.216915 3.1E-02 349

Table 3: Results obtained with our proposed AISconst. The asterisk (*) indicates a case in which only
75% of the runs converged to a feasible solution. AE indicates the number of evaluations required to
reach the best solution.

Function Optimum Best Worst Mean Std.Dev GenMean AE
g01 -15 -14.993 -14.982 -14.989 0.002982 34180 310414
g02 -0.803619 -0.7821 -0.7230 -0.7573 0.014765 32703 340224
g03 -1.0 -1.0 -0.9108 -0.9880 0.025057 35556 347944
g04 -30665.539 -30665.1117 -30533.7827 -30645.9122 31.929167 33009 316804
g05∗ 5126.498 5126.660 6112.072 5468.743 339.183 28098 334444
g06 -6961.814 -6961.7940 -6956.7421 -6960.3768 1.183813 26047 135194
g07 24.306 24.531708 27.056296 25.644893 0.667470 35051 345044
g08 -0.095825 -0.095825 -0.095825 -0.095825 0.0 27071 331094
g09 680.63 680.6519 681.1474 680.8343 0.134034 34137 229054
g10 7049.33 7058.45 15787.89 8344.69 1793.850342 30739 335444
g11 0.75 0.7499 0.7499 0.7499 0.000001 25497 283304
g12 -1.0 -1.0 -1.0 -1.0 0.0 26764 345634
g13 0.05395 0.05820 16.43139 1.37142 2.904695 35095 312004

constraints). The benchmark adopted includes test functions with both small and large feasible re-
gions, as well as a disjoint feasible region. We also argue that our proposed approach is very simple
to implement and it does not require the fine-tuning of too many parameters, but only the number of
antibodies to use and the percentage of replacement. Finally, it is important to remark taht AISconst is
not competitive with the state-of-art algorithm, (e.g. stochastic ranking) however the results obtained
from AISconst are comparable with other inmune system results.

7 CONCLUSIONS AND FUTURE WORK

This paper presents an AIS for solving constrained optimization problems in which a novel mutation
operator is adopted. The approach was found to be competitive in a well-known benchmark com-
monly adopted in the specialized literature on constrained evolutionary optimization. The approach
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was also found to be robust and able to converge to feasible solutions in most cases.
Our analysis of the benchmark adopted made us realize that some test functions require small step

sizes, while others require larger values. This was the motivation for proposing a mutation scheme
that considers both situations.

The results are competitive. For some test functions global optimals were reached and for other
functions the approach could found feasible solutions very close to the global optimals.

Obviously, a lot of work remains to be done in order to improve the quality of the solutions found,
so that the approach can be competitive with respect to the algorithms representative of the state-of-
the-art in the area. For example, we plan to analyze alternative mutation schemes, as well as the use of
boundary operators to improve the performance of our approach in problems with equality constraints.
Nevertheless, it is important to emphasize that there is very little work regarding the use of artificial
immune systems for constrained numerical optimization, and in that context, this approach provides
a viable alternative.
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A TEST FUNCTIONS
1. g01:

Minimize: f(~x) = 5
P4
i=1 xi − 5

P4
i=1 x

2
i −

P13
i=5 xi subject to:

g1(~x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0

g2(~x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0

g3(~x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0

g4(~x) = −8x1 + x10 ≤ 0

g5(~x) = −8x2 + x11 ≤ 0

g6(~x) = −8x3 + x12 ≤ 0

g7(~x) = −2x4 − x5 + x10 ≤ 0

g8(~x) = −2x6 − x7 + x11 ≤ 0

g9(~x) = −2x8 − x9 + x12 ≤ 0

where the bounds are 0 ≤ xi ≤ 1 (i = 1, . . . , 9), 0 ≤ xi ≤ 100 (i = 10, 11, 12) and 0 ≤ x13 ≤ 1. The global optimum is at
x∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1) where f(x∗) = −15. Constraints g1, g2, g3, g4, g5 and g6 are active.

2. g02:

Maximize: f(~x) =

˛̨
˛̨
˛
Pn
i=1 cos4(xi)−2

Qn
i=1 cos2(xi)qPn

i=1 ix
2
i

˛̨
˛̨
˛ subject to:

g1(~x) = 0.75−
nY

i=1

xi ≤ 0

g2(~x) =
nX

i=1

xi − 7.5n ≤ 0 (3)

where n = 20 and 0 ≤ xi ≤ 10 (i = 1, . . . , n). The global maximum is unknown; the best reported solution is [11] f(x∗) = 0.803619.
Constraint g1 is close to being active (g1 = −10−8).

3. g03:
Maximize: f(~x) =

`√
n
´nQn

i=1 xi

subject to:
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h(~x) =
Pn
i=1 x

2
i − 1 = 0

where n = 10 and 0 ≤ xi ≤ 1 (i = 1, . . . , n). The global maximum is at x∗i = 1/
√
n (i = 1, . . . , n) where f(x∗) = 1.

4. g04:
Minimize: f(~x) = 5.3578547x2

3 + 0.8356891x1x5 + 37.293239x1 − 40792.141
subject to:
g1(~x) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4

− 0.0022053x3x5 − 92 ≤ 0
g2(~x) = −85.334407 − 0.0056858x2x5 − 0.0006262x1x4

+ 0.0022053x3x5 ≤ 0
g3(~x) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2

+ 0.0021813x2
3 − 110 ≤ 0

g4(~x) = −80.51249 − 0.0071317x2x5 − 0.0029955x1x2

− 0.0021813x2
3 + 90 ≤ 0

g5(~x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3

+ 0.0019085x3x4 − 25 ≤ 0
g6(~x) = −9.300961 − 0.0047026x3x5 − 0.0012547x1x3

− 0.0019085x3x4 + 20 ≤ 0

where: 78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, 27 ≤ xi ≤ 45 (i = 3, 4, 5). The optimum solution is x∗ = (78, 33, 29.995256025682, 45,
36.775812905788) where f(x∗) = −30665.539. Constraints g1 and g6 are active.

5. g05

Minimize:f(~x) = 3x1 + 0.000001x3
1 + 2x2 + (0.000002/3)x3

2

subject to:
g1(~x) = −x4 + x3 − 0.55 ≤ 0
g2(~x) = −x3 + x4 − 0.55 ≤ 0
h3(~x) = 1000 sin(−x3 − 0.25) +
1000 sin(−x4 − 0.25) + 894.8− x1 = 0
h4(~x) = 1000 sin(x3 − 0.25) +
1000 sin(x3 − x4 − 0.25) + 894.8− x2 = 0
h5(~x) = 1000 sin(x4 − 0.25) +
1000 sin(x4 − x3 − 0.25) + 1294.8 = 0

where 0 ≤ x1 ≤ 1200, 0 ≤ x2 ≤ 1200, −0.55 ≤ x3 ≤ 0.55, and −0.55 ≤ x4 ≤ 0.55. The best known solution is x∗ = (679.9453,
1026.067, 0.1188764, −0.3962336) where f(x∗) = 5126.4981.

6. g06
Minimize: f(~x) = (x1 − 10)3 + (x2 − 20)3

subject to:
g1(~x) = −(x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0
g2(~x) = (x1 − 6)2 + (x2 − 5)2 − 82.81 ≤ 0

where 13 ≤ x1 ≤ 100 and 0 ≤ x2 ≤ 100. The optimum solution is x∗ = (14.095, 0.84296) where f(x∗) = −6961.81388. Both
constraints are active.

7. g07
Minimize: f(~x) = x2

1 + x2
2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2 + 2(x6 − 1)2 + 5x2

7 + 7(x8 − 11)2 +
2(x9 − 10)2 + (x10 − 7)2 + 45
subject to:
g1(~x) = −105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0
g2(~x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0
g3(~x) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0
g4(~x) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x2

3 − 7x4 − 120 ≤ 0
g5(~x) = 5x2

1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0
g6(~x) = x2

1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0
g7(~x) = 0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2

5 − x6 − 30 ≤ 0
g8(~x) = −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0

where −10 ≤ xi ≤ 10 (i = 1, . . . , 10). The global optimum is x∗ = (2.171996, 2.363683, 8.773926,
5.095984, 0.9906548, 1.430574, 1.321644, 9.828726, 8.280092, 8.375927) where f(x∗) = 24.3062091. Constraints g1, g2, g3, g4, g5

and g6 are active.

8. g08
Maximize: f(~x) =

sin3(2πx1) sin(2πx2)

x3
1(x1+x2)

subject to:
g1(~x) = x2

1 − x2 + 1 ≤ 0
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g2(~x) = 1− x1 + (x2 − 4)2 ≤ 0

where 0 ≤ x1 ≤ 10 and 0 ≤ x2 ≤ 10. The optimum solution is located at x∗ = (1.2279713, 4.2453733) where f(x∗) = 0.095825.

9. g09
Minimize: f(~x) = (x1 − 10)2 + 5(x2 − 12)2 + x4

3 + 3(x4 − 11)2 + 10x6
5 + 7x2

6 + x4
7 − 4x6x7 − 10x6 − 8x7

subject to:

g1(~x) = −127 + 2x2
1 + 3x4

2 + x3 + 4x2
4 + 5x5 ≤ 0

g2(~x) = −282 + 7x1 + 3x2 + 10x2
3 + x4 − x5 ≤ 0

g3(~x) = −196 + 23x1 + x2
2 + 6x2

6 − 8x7 ≤ 0
g4(~x) = 4x2

1 + x2
2 − 3x1x2 + 2x2

3 + 5x6 − 11x7 ≤ 0

where −10 ≤ xi ≤ 10 (i = 1, . . . , 7). The global optimum is x∗ = (2.330499, 1.951372,−0.4775414,
4.365726,−0.6244870, 1.038131, 1.594227) where f(x∗) = 680.6300573. Two constraints are active (g1 and g4).

10. g10
Minimize: f(~x) = x1 + x2 + x3

subject to: g1(~x) = −1 + 0.0025(x4 + x6) ≤ 0
g2(~x) = −1 + 0.0025(x5 + x7 − x4) ≤ 0
g3(~x) = −1 + 0.01(x8 − x5) ≤ 0
g4(~x) = −x1x6 + 833.33252x4 + 100x1 − 83333.333 ≤ 0
g5(~x) = −x2x7 + 1250x5 + x2x4 − 1250x4 ≤ 0
g6(~x) = −x3x8 + 1250000 + x3x5 − 2500x5 ≤ 0

where 100 ≤ x1 ≤ 10000, 1000 ≤ xi ≤ 10000, (i = 2, 3), 10 ≤ xi ≤ 1000, (i = 4, . . . , 8). The global optimum is: x∗ = (579.19,
1360.13, 5109.92, 182.0174, 295.5985, 217.9799, 286.40, 395.5979), where f(x∗) = 7049.248. g1, g2 and g3 are active.

11. g11
Minimize: f(~x) = x2

1 + (x2 − 1)2

subject to:
h(~x) = x2 − x2

1 = 0

where: −1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1. The optimum solution is x∗ = (±1/
√

2, 1/2) where f(x∗) = 0.75.

12. g12
Maximize: f(~x) = 100−(x1−5)2−(x2−5)2−(x3−5)2

100
subject to:
g1(~x) = (x1 − p)2 + (x2 − q)2 + (x3 − r)2 − 0.0625 ≤ 0

where 0 ≤ xi ≤ 10 (i = 1, 2, 3) and p, q, r = 1, 2, . . . , 9. The feasible region of the search space consists of 93 disjointed spheres.
A point (x1, x2, x3) is feasible if and only if there exist p, q, r such the above inequality (12) holds. The global optimum is located at
x∗ = (5, 5, 5) where f(x∗) = 1.

13. g13

Minimize: f(~x) = ex1x2x3x4x5

subject to:

h1(~x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 − 10 = 0

h2(~x) = x2x3 − 5x4x5 = 0
h3(~x) = x3

1 + x3
2 + 1 = 0

where−2.3 ≤ xi ≤ 2.3 (i = 1, 2) and−3.2 ≤ xi ≤ 3.2 (i = 3, 4, 5). The optimum solution is x∗ = (−1.717143, 1.595709, 1.827247,
− 0.7636413,−0.763645) where f(x∗) = 0.0539498.
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