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Abstract

The Semantic Web is a future vision of the web where stored information has exact meaning, thus enabling
computers to understand and reason on the basis of such information. Assigning semantics to web resources
is addressed by means of ontology definitions which are meant to be written in an ontology description lan-
guage such as OWL-DL that is based on so-called Description Logics (DL). Although ontology definitions
expressed in DL can be processed with existing DL reasoners, such DL reasoners are incapable of dealing with
inconsistent ontology definitions.

Previous research has determined that a subset of DL can be effectively translated into an equivalent subset
of logic programming. We propose a method for dealing with inconsistent ontology definitions in the Seman-
tic Web. Our proposal involves mapping DL ontologies into equivalent DeLP programs. That is, given an
OWL-DL ontology OOwl, an equivalent DL ontology ODL can be obtained. Provided ODL satisfies certain
restrictions, it can be translated into an equivalent DeLP program ODeLP . Therefore, given a query Q w.r.t.
OOwl, a dialectical process will be performed to determine if Q is warranted w.r.t. ODeLP .

Keywords: Semantic web, defeasible argumentation, Description Logics, Defeasible Logic Programming,
inconsistent ontology handling

1 INTRODUCTION AND MOTIVATIONS

The Semantic Web [3] is a future vision of the web where stored information has exact meaning, thus
enabling computers to understand and reason on the basis of such information. Assigning semantics
to web resources is addressed by means of ontology definitions. The term ontology stands for a

∗LIDIA is a member of IICyTI (Instituto de Investigación en Ciencia y Tecnologı́a Informática).
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specification of a conceptualization, that is to say a description of the concepts and relationships that
can exist for an agent or a community of agents.

As proposed by the World Wide Web Consortium (W3C)1, ontology definitions are meant to be
written in an ontology description language such as OWL [14], whose subset known as OWL-DL is
based on so-called Description Logics (DL) [1]. Although ontology definitions expressed in DL can
be processed with existing DL reasoners (such as RACER [12]), such DL reasoners are incapable of
dealing with inconsistent ontology definitions. In particular, when a DL reasoner is presented with an
inconsistent ontology definition, it will be unable to extract any useful consequences from it.

However, previous research [11] has determined that a subset of DL can be effectively translated
into an equivalent subset of Horn logic. In particular, DeLP is an argumentative framework based on
logic programming that is capable of dealing with possibly inconsistent knowledge bases codified as
a set of Horn-like clauses [8]. When presented with a query Q w.r.t. to a KB P , DeLP performs a
dialectical process in which all arguments in favor and against Q are considered. In such a process,
arguments regarded as ultimately undefeated will be considered warranted.

In this article, we propose a method for dealing with inconsistent ontology definitions in the
Semantic Web. Our proposal involves mapping DL ontologies into an equivalent DeLP program. That
is, given an OWL-DL ontology OOwl, an equivalent DL ontology ODL can be obtained. Provided ODL

satisfies certain restrictions, it can be translated into an equivalent DeLP program ODeLP . Then given
a query Q, a dialectical process as explained above will be performed to determine if Q is warranted
w.r.t. ODeLP .

The rest of this paper is structured as follows. Section 2 introduces the fundamentals of Descrip-
tion Logics. Section 3 briefly explains the Defeasible Logic Programming formalism. Section 4
introduces how the mapping from DL to DeLP is performed. Section 5 explains how inconsistent
ontology definitions are handled within DeLP. Section 6 discusses related work. Finally Section 7
concludes.

2 DESCRIPTION LOGICS

Description Logics (DL) are a well-known family of knowledge representation formalisms [1]. They
are based on the notions of concepts (unary predicates, classes) and roles (binary relations), and are
mainly characterized by constructors that allow complex concepts and roles to be built from atomic
ones. The expressive power of a DL system is determined by the constructs available for building
concept descriptions, and by the way these descriptions can be used in the terminological (Tbox) and
assertional (Abox) components of the system.

We now describe the basic language for building DL expressions. Let C and D stand for concepts
and R for a role name. Concept descriptions are built from concept names using the constructors
conjunction (C uD), disjunction (C tD), negation (¬C), existencial restriction (∃R.C), and value
restriction (∀R.C). To define the semantics of concept descriptions, concepts are interpreted as sub-
sets of a domain of interest, and roles as binary relations over this domain. An interpretation I consists
of a non-empty set ∆I (the domain of I) and a function ·I (the interpretation function of I) which
maps every concept name A to a subset AI of ∆I , and every role name to R to a subset RI of ∆I×∆I .
The interpretation function is extended to arbitrary concept descriptions as follows: (¬C)I = ∆I\CI ;
(C t D)I = CI ∪ DI ; (C u D)I = CI ∩ DI ; (∃R.C)I = {x|∃y s.t. (x, y) ∈ RI and y ∈ CI}, and
(∀R.C)I = {x|∀y, (x, y) ∈ RI implies y ∈ CI}. Besides, the expressions > and ⊥ are shorthands
for C t ¬C and C u ¬C, resp. Further extensions to the basic DL are possible including inverse and

1www.w3c.org
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Tbox =



(1) bird v animal;
(2) bird v fly;
(3) eagle v bird;
(4) penguin v bird;
(5) penguin v ¬fly;
(6) penguin u ∃isOperatedBy .geneticSurgeon v geneticallyAlteredPenguin;
(7) geneticallyAlteredPenguin v fly;
(8) eagle u hasBrokenWing v ¬fly;
(9) isOperatedBy ≡ operates−;
(10) geneticSurgeon ≡ genetist u surgeon



Abox =



(11) penguin(opus);
(12) eagle(avenger);
(13) hasBrokenWing(avenger);
(14) genetist(frankenstein);
(15) surgeon(frankenstein);
(16) operates(frankenstein, opus)


Figure 1: Knowledge base KB about flying animals expressed in Description Logics

transitive roles noted as P− and P+, resp.
A DL knowledge base (KB) consists of two finite and mutually disjoint sets: Tbox which in-

troduces the terminology and Abox which contains facts about particular objects in the application
domain. Tbox statements have the form C v D (inclusions) and C ≡ D (equalities), where C and
D are (possibly complex) concept descriptions. The semantics of Tbox statements is as follows. An
interpretation I satisfies C v D iff CI ⊆ DI , I satisfies C ≡ D iff CI = DI . Objects in the Abox are
referred to by a finite number of individual names and these names may be used in two types of asser-
tional statements: concept assertions of the type C(a) and role assertions of the type R(a, b), where
C is a concept description, R is a role name, and a and b are individual names. An interpretation I
satisfies the assertion C(a) iff aI ∈ CI , and it satisfies R(a, b) iff (aI , bI) ∈ RI . An interpretation I
is a model of a DL (Tbox or Abox) statement φ iff it satisfies the statement, and is a model of a DL
knowledge base KB iff it satisfies every statement in KB. A DL knowledge base KB entails a DL
statement φ, written as KB |= φ, iff every model of KB is a model of φ.

Example 1 Consider the ontology KB = (Tbox, Abox) in Figure 1 about flying animals. Notice that
although Tbox and Abox are sets of sentences, its elements are enumerated for clarity. Sentence (1)
in Tbox says that every bird is an animal, sentence (2) says that every bird flies. Sentences (3) and (4)
say that eagles and penguins are birds. Sentences (5), (6) and (7) say that penguins do not fly unless
they are genetically-altered, where a genetically-altered penguin is a penguin that has been operated
by a genetic surgeon. Sentence (8) establishes that eagles with a broken wing are no longer able to
fly. Sentence (9) defines relation isOperatedBy as the inverse of relation operates. Finally, sentence
(10) defines a genetic surgeon as a genetist who is also a surgeon.

Sentence (11) in Abox expresses that Opus is a penguin. Sentences (12) and (13) establish that
Avenger is an eagle who has a broken wing. Sentences (14) and (15) say that Frankenstein is both a
genetist and a surgeon, resp. Finally, sentence (16) establishes that Frankenstein has operated Opus.

3 DEFEASIBLE LOGIC PROGRAMMING

Defeasible Logic Programming (DeLP) [8] provides a language for knowledge representation and
reasoning that uses defeasible argumentation [6, 15, 16] to decide between contradictory conclusions
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through a dialectical analysis. Codifying knowledge by means of a DeLP program provides a good
trade-off between expressivity and implementability. Recent research has shown that DeLP provides
a suitable framework for building real-world applications (e.g., clustering algorithms [9], intelligent
web search [5] and intelligent web forms [10]) that deal with incomplete and potentially contradictory
information. In a defeasible logic program P = (Π, ∆), a set ∆ of defeasible rules P −≺ Q1, . . . , Qn,
and a set Π of strict rules P ← Q1, . . . , Qn can be distinguished. An argument 〈A, H〉 is a minimal
non-contradictory set of ground defeasible clauses A of ∆ that allows to derive a ground literal H
possibly using ground rules of Π. Since arguments may be in conflict (concept captured in terms
of a logical contradiction), an attack relationship between arguments can be defined. A criterion is
usually defined to decide between two conflicting arguments. If the attacking argument is strictly
preferred over the attacked one, then it is called a proper defeater. If no comparison is possible, or
both arguments are equi-preferred, the attacking argument is called a blocking defeater. In order to
determine whether a given argument A is ultimately undefeated (or warranted), a dialectical process
is recursively carried out, where defeaters for A, defeaters for these defeaters, and so on, are taken
into account. Given a DeLP program P and a query H , the final answer to H w.r.t. P takes such
dialectical analysis into account. The answer to a query can be: yes, no, undecided, or unknown. For
an example of DeLP, see Examples 2 and 3 in Sections 4 and 5, resp.

4 TRANSLATING FROM DESCRIPTION LOGICS TO DEFEASIBLE LOGIC
PROGRAMMING FOR REASONING WITH INDIVIDUALS

As explained above DL ontologies can be inconsistent. Notably DL reasoners such as RACER [12]
are incapable of dealing with such situations. When presented with such inconsistent ontologies,
RACER will issue an error message and will stop further processing.

Grosof et al. [11] have identified a subset of DL languages that can be effectively mapped into
a Horn-clause logics. Accordingly, our work is based on such research by adapting it to the DeLP
framework. We therefore propose translating a DL ontology KB = (Tbox, Abox) into an equivalent
DeLP program P = (Π, ∆) by means of a mapping T such that P = T (KB). Intuitively Π in P
will correspond to Abox in KB while ∆ will correspond to Tbox in KB. In the rest of this section,
we will explain how to achieve the translation of DL KB into equivalent DeLP programs exempli-
fying the process with the DL KB described in Example 1. Moreover, defeasible rules of the form
“H −≺ B1, . . . , Bn” will be written for clarity as “H −≺ B1 ∧ . . . ∧Bn”.

4.1 Translating Statements

For mantaining backward compatibility with previous knowledge representation languages, part of
OWL-DL constructs are based on RDF Schema (RDFS). RDFS provides a subset of the DL state-
ments (subclass, subproperty, range, and domain statements), which in a DL setting are called Tbox
axioms, and asserted class-instance (type) and instance-property-instance relationships (which in a
DL setting are called Abox axioms). A DL inclusion axiom corresponds to a first-order logic (FOL)
implication2. Then class and property axioms maps to DeLP as: Class C is subclass of class D
(noted as C v D) maps to “D(X) −≺ C(X)” and property Q is a subproperty of property P (noted
as Q v P ) maps to “P (X, Y ) −≺ Q(X, Y )” where X and Y are variable names. The range and
domain statements map as follows: the range of property P is class C (noted as > v ∀P.C) maps
to “C(Y ) −≺ P (X, Y )” and the domain of property P is in class C (noted as > v ∀P.C) maps

2In particular the DL axiom C v D corresponds to the FOL formula (∀x)(C(x)→ D(x)).
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to “C(Y ) −≺ P (Y,X)”. Asserted class-instance (type) and instance-property-instance relationships,
which correspond to DL axioms of the form C(a) and P (a, b) resp. (i.e., Abox axioms), are equivalent
to DeLP facts of the form “C(a)” and “P (a, b)”, where a and b are constants.

Class and property equivalence axioms can be replaced with a symmetrical pair of inclusion ax-
ioms, so they can be mapped to a symmetrical pair of DeLP rules as follows: the class C is equivalent
to the class D (noted as C ≡ D) maps to the set of DeLP rules {C(X) −≺ D(X); D(X) −≺ C(X)}
and the property P is equivalent to the property Q (noted as P ≡ Q) maps to the set of DeLP rules
{P (X, Y ) −≺ Q(X, Y ); Q(X, Y ) −≺ P (X,Y )}. Inverse and transitivity axioms can also be translated:
the property P is the inverse of the property Q (noted as P ≡ Q−) maps to the set of DeLP rules
{Q(Y,X) −≺ P (X, Y ); P (X, Y ) −≺ Q(Y,X)} and the property P is transitive (noted as P+ v P )
maps to “P (X, Z) −≺ P (X, Y ) ∧ P (Y, Z)”.

4.2 Translating Class Constructors

In the previous section we showed how DL axioms correspond with DeLP rules, and how these can
be used to make statements about classes and properties. In DL the classes appearing in such axioms
need not be atomic, but can be complex compound expressions built up from atomic classes and
properties using a variety of constructors. Next we will show how these DL expressions correspond
to expressions in the body of DeLP rules. We will use C, D to denote classes, and P, Q to denote
properties.

Conjunctions: A DL class can be formed by conjoining existing classes (noted as C u D), which
corresponds to a conjunction of unary predicates. Conjunction can be directly expressed in the body of
a DeLP rule. When a conjunction occurs on the left-hand side (l.h.s.) of a subclass axiom (as in C1 u
C2 v D) it becomes a conjunction in the body of the corresponding rule “D(X) −≺ C1(X)∧C2(X)”.
When a conjunction occurs on the right-hand side (r.h.s.) of a subclass axiom (as in C v D1 uD2),
it becomes conjunction in the head of the rule “D1(X) ∧D2(X) −≺ C(X)”; this can be transformed
(via Lloyd-Topor transformations) into a set of DeLP rules {(D1(X) −≺ C(X)); (D2(X) −≺ C(X))}.

Disjunctions: A DL class can be formed from a disjunction of existing classes (noted as C t
D), which corresponds to a disjunction of unary predicates. When a disjunction occurs on the
l.h.s. of a subclass axiom (as in C1 t C2 v D), it becomes a disjunction in the body of the
rule “D(X) −≺ C1(X) ∨ C2(X)”; this is transformed (by Lloyd-Topor) into a pair of DeLP rules
{(D(X) −≺ C1(X)); D(X) −≺ C2(X)}. Notice that when a disjunction occurs on the r.h.s. of a
subclass axiom, it becomes a disjunction in the head of the corresponding rule, and this cannot be
represented in DeLP.

Universal restrictions: In a DL, the universal quantifier can only be used in restrictions (expres-
sions of the form ∀P.C, where P must be a single primitive property but C can be a compound
expression). So when a universal restriction occurs on the r.h.s. of a subclass axiom (C v ∀P.D), it
is expressed as a DeLP rule “D(Y ) −≺ C(X)∧P (X, Y )”. When a universal restriction occurs on the
l.h.s. of a subclass axiom (as in ∀P.C v D), it is equivalent to the rule “C(Y ) −≺ P (X, Y ) −≺ D(Y )”
which is equivalent to “∼ P (X, Y ) ∨ C(Y ) −≺ D(Y )”, which is transformed into the set of rules
{(D(Y ) −≺ ∼P (X, Y )); (D(Y ) −≺ C(Y ))}.

Existential restrictions: In a DL, the existential quantifier is used in an expression of the form
∃P.C, where P must be a single primitive property, but C may be a compound expression. When an
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existential restriction occurs on the l.h.s. of a subclass axiom (as in ∃P.C v D), it is expressed as a
conjunction in the body of a DeLP rule “D(X) −≺ P (X,Y )∧C(Y )”. When an existential restriction
occurs on the r.h.s. of a subclass axiom, it should be expressed as a conjunction in the head of the
corresponding rule, with a variable that is existentially quantified. This cannot be represented in
DeLP.

4.3 A Recursive Mapping from DL to DeLP

In [11], Grosof et al. present a mapping from DL to a subset of Logic Programming. In this section,
we will present an adaptation of such mapping for translating DL KBs into DeLP programs.

In the previous sections, we have defined all the cases regarding the translation of DL sentences
and axioms into DeLP. Using those definitions as guidelines and assuming that every DL sentence is
normalized w.r.t. negation, every DL axiom is mapped into one or more DeLP rules.

Definition 1 (Mapping T from DL to DeLP) Let A, C,D be concepts, X, Y be variables, P, Q be
relationships.
T (C v D) =df Th(D,X) −≺ Tb(C,X)
Th(A,X) =df A(X)
Th((C uD), X) =df Th(C,X) ∧ Th(D,X)
Th((∀R.C), X) =df Th(C, Y ) −≺ R(X, Y )
Tb(A,X) =df A(X)
Tb((C uD), X) =df Tb(C,X) ∧ Tb(D,X)
Tb((C tD), X) =df Tb(C,X) ∨ Tb(D,X)
Tb((∃R.C), X) =df R(X, Y ) ∧ Tb(C, Y )

T (C ≡ D) =df

{
T (C v D)
T (D v C)

T (> v ∀P.D) =df Th(D,Y ) −≺ P (X, Y )
T (> v ∀P−.D) =df Th(D,X) −≺ P (X, Y )
T (D(a)) =def Th(D, a)
T (P (a, b)) =def P (a, b)
T (P v Q) =df Q(X, Y ) −≺ P (X, Y )

T (P ≡ Q) =df

{
Q(X, Y ) −≺ P (X, Y )
P (X, Y ) −≺ Q(X, Y )

T (P ≡ Q−) =df

{
Q(X, Y ) −≺ P (Y,X)
P (Y,X) −≺ Q(X, Y )

T (P+ v P ) =df P (X, Z) −≺ P (X, Y ) ∧ P (Y,Z)

Besides, rules of the form “(H ∧H ′) −≺ B” are rewritten as two rules “H −≺ B” and “H ′ −≺ B”,
rules of the form “H −≺ H ′ −≺ B” are rewritten as “H −≺ B ∧H ′”, and rules of the form “H −≺ (B ∨
B′)” are rewritten as two rules “H −≺ B” and “H −≺ B′”.

Example 2 Consider the DL knowledge base KB shown in Example 1, the DeLP P in Figure 2 is
obtained by applying the mapping T toKB. Rules are numbered in Roman and each rule corresponds
to the equivalent rule numbered in Arabic in Fig. 1 (e.g., T ((3)) = (iii)). Moreover when one
rule from Example 1 generates more than one rule in P according to T , the resulting rules are
superscripted to show their origin (e.g., T ((10)) = {(x), (x′), (x”)}).

For the sake of example, rule (6) in Figure 1 expressing that every penguin which was operated
by a genetic surgeon is a genetically altered penguin is now mapped into rule (vi) in Figure 2:

geneticallyAlteredPenguin(X) −≺ penguin(X), isOperatedBy(X, Y ), geneticSurgeon(Y )

which now expresses that every penguin which was operated by a genetic surgeon is usually a genet-
ically altered penguin.

Moreover, rule (10) in Figure 1 saying that the set of genetic surgeons is exactly the intersection
of the set of genetists and the set of surgeons is now expressed as the three rules:

(x) geneticSurgeon(X) −≺ genetist(X), surgeon(X);
(x′) genetist(X) −≺ geneticSurgeon(X);
(x”) surgeon(X) −≺ geneticSurgeon(X)

expressing that (x) an individual is usually a genetic surgeon every time she is both a genetist and a
surgeon, (x’) an individual is usually a genetist if she is a genetic surgeon, and (x”) an individual is
usually a surgeon when she is a genetic surgeon.
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∆ =



(i) animal(X) −≺ bird(X);
(ii) fly(X) −≺ bird(X);
(iii) bird(X) −≺ eagle(X);
(iv) bird(X) −≺ penguin(X);
(v) ∼fly(X) −≺ penguin(X);
(vi) geneticallyAlteredPenguin(X) −≺ penguin(X), isOperatedBy(X, Y ), geneticSurgeon(Y );
(vii) fly(X) −≺ geneticallyAlteredPenguin(X);
(viii) ∼fly(X) −≺ eagle(X), hasBrokenWing(X);
(ix) operates(X, Y ) −≺ isOperatedBy(Y, X);
(ix′) isOperatedBy(X, Y ) −≺ operates(Y,X);
(x) geneticSurgeon(X) −≺ genetist(X), surgeon(X);
(x′) genetist(X) −≺ geneticSurgeon(X);
(x”) surgeon(X) −≺ geneticSurgeon(X)



Π =



(xi) penguin(opus);
(xii) eagle(avenger);
(xiii) hasBrokenWing(avenger);
(xiv) genetist(frankenstein);
(xv) surgeon(frankenstein);
(xvi) operates(frankenstein, opus)


Figure 2: DeLP knowledge base P = (Π,∆) obtained from KB via T

5 AN APPROACH TO HANDLING INCONSISTENCIES IN ONTOLOGY
DEFINITIONS BASED ON DELP

It is known that ontologies expressed in ontology languages such as OWL-DL can be expressed as
equivalent DL ontologies. Although there exist implementations of DL reasoners (e.g., RACER [12]),
they are incapable of dealing with inconsistent ontologies. As explained above, our proposal consists
of transforming an ontology expressed in a DL into an equivalent DeLP program. Thus, inconsisten-
cies arising from inconsistent ontology definitions will be handled by the DeLP engine by performing
a dialectical analysis in order to determine which conclusions arising from the derived DeLP program
(and indirectly from the original ontology) are warranted. In this section, we will address the issues
of reasoning about instances provided an inconsistent ontology definition, reasoning about the class
structure of an inconsistent ontology definition provided no instance information is given, and finally
will discuss a possible architecture for using our approach in the context of the Semantic Web.

5.1 Reasoning about Instances

As explained in Section 1, our proposal consists of transforming an ontology ODL = (Tbox, Abox)
into an equivalent DeLP program P = (Π, ∆) where axioms (i.e., the Tbox) in ODL will correspond
to a set ∆ of defeasible rules in P while information about individuals in ODL (i.e., the Abox) will
correspond to the set Π of facts in P .

As the set Π comes from the transformation of the Abox, it is solely composed of facts. For the
sake of simplicity we will asume that Π is consistent3 as required for the DeLP framework. Clearly,
in case Π is inconsistent, the pair of conflicting literals can be easily detected and removed.

When the original DL ontology ODL is consistent, the resulting DeLP program P is also consis-
tent. In the case that ODL is inconsistent, this situation is reflected by the fact that contradicting facts
can be entailed by ODL. When considering the translated ontology into P = (Π, ∆), the situation

3That is, there is neither a pair of facts C(a) and ∼C(a) nor R(a, b) and ∼R(a, b) where C is a concept name, R is a
property name, and a and b are individual constants.
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of ODL being inconsistent is reflected into an inconsistent Π ∪ ∆. This situation will lead to the
derivation of conflicting literals as shown in the next example.

Example 3 Consider the DL ontology presented in Example 1, this ontology is inconsistent asKB |=
{fly(opus),¬fly(opus)} and KB |= {fly(avenger),¬fly(avenger)}. Considering now the DeLP
program P presented in Example 2 and obtained from KB, this situation is reflected by the existence
of arguments 〈A1, f ly(avenger)〉 and 〈A2,∼fly(avenger)〉 as well as 〈B1, f ly(opus)〉 and 〈B2,∼
fly(opus)〉.4

As explained in Section 3, in DeLP given a query Q, consideration of conflicting arguments on
behalf and against Q leads to a process known as dialectical argumentation in which defeaters for
arguments favoring Q have to be taken into account as well as defeaters for these defeaters and so on.
In the case of having an inconsistent DL ontology ODL and given a query Q, the resulting equivalent
DeLP program will be fed into the DeLP engine to carry out such dialectical analysis. The following
example depicts the above described situation.

Example 4 Inferences in the DL KB KB, such as KB |= fly(opus), are modeled in DeLP pro-
gram P as P |∼ fly(opus). However, as the derived program P is inconsistent, we have that both
P |∼ fly(opus) and P |∼ ∼fly(opus), leading to the construction of conflicting arguments.

Next we will show the arguments arising from P and will characterize their interactions in the
dialectical analysis that arises when considering them. There exists an argument A1 supporting the
defeasible conclusion that Avenger flies, i.e., 〈A1, f ly(avenger)〉 where:

A1 = {(fly(avenger) −≺ bird(avenger)); (bird(avenger) −≺ eagle(avenger))}

Assuming that the rule comparison establishes that (8) � (2), this argument is defeated by an
argument 〈A2,∼fly(avenger)〉 supporting that Avenger does not fly because he has a broken wing,
where:

A2 = {∼fly(avenger) −≺ eagle(avenger), hasBrokenWing(avenger)}

ArgumentA2 has no defeaters, argumentA1 is therefore defeated and it is marked as a D-node. The
corresponding dialectical tree is depicted in Figure 3.(i).

Likewise there exists an argument B1 supporting the defeasible conclusion that Opus flies, i.e.,
〈B1, f ly(opus)〉 where:

B1 = {(fly(opus) −≺ bird(opus)); (bird(opus) −≺ penguin(opus))}

Another argument 〈B2,∼ fly(opus)〉 can be derived from P , supporting the conclusion that Opus
does not fly, with:

B2 = {∼fly(opus) −≺ penguin(opus)}

Argument B2 defeats B1 provided that the rule comparison criterion establishes that (5) � (2).
However, provided that (7) � (5), argument B2 is defeated by another argument 〈B3, f ly(opus)〉
which reinstates argument B1, where:

B3 = {(fly(opus) −≺ geneticallyAlteredPenguin(opus));
(geneticallyAlteredPenguin(opus) −≺ penguin(opus), isOperatedBy(opus, frankenstein),

geneticSurgeon(frankenstein));
(isOperatedBy(opus, frankenstein) −≺ operates(frankenstein, opus));
(geneticSurgeon(frankenstein) −≺ genetist(frankenstein), surgeon(frankenstein))}

4Notice that this also happens because of the existence of arguments 〈B2,∼fly(opus)〉 and 〈B3, f ly(opus)〉.
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Figure 3: Dialectical trees for: (i) fly(avenger), (ii) fly(opus), (iii) animal(avenger), and (iv)
animal(opus)

Hence the associated dialectical tree for fly(opus) has three nodes, with the root labelled as U-node
(see Figure 3.(ii)). The original argument for fly(opus) is therefore warranted.

There exist two more arguments 〈C1, animal(avenger)〉 and 〈D1, animal(opus)〉 supporting the
defeasible conclusions that both Avenger and Opus are animals resp., where:

C1 = {(animal(avenger) −≺ bird(avenger)); (bird(avenger) −≺ eagle(avenger))}
D1 = {(animal(opus) −≺ bird(opus)); (bird(penguin) −≺ penguin(opus))}

These two arguments have no defeaters, they are therefore warranted and the resulting dialectical
trees will have a unique node, as depicted in Figure 3.(iii–iv).

5.2 Reasoning about Class Structure

Given an ontology ODL = (Tbox, Abox) with Abox = ∅, the resulting DeLP program P = (Π, ∆)
obtained when applying the transformation function T presented above has no facts (i.e., Π = ∅).
Thus, the DeLP engine will not be able to infer any information from ∆ alone. In the case that
Abox = ∅ and the ontology still was unsatisfiable, it would be desirable to be able to detect this
situation in the framework of logic programming.

The solution to this problem consists of translating the Tbox to an equivalent AnsProlog¬,⊥ pro-
gram [2] enriched with information regarding class unsatisfiability. Each DL axiom in Tbox is trans-
formed according to Grosof et al.’s mapping [11]. Besides for each class name, a constraint is added
to prevent the existence of complementary literals.

Example 5 Consider again the DL knowledge base KB presented in Example 1. Transforming the
Abox into AnsProlog¬,⊥ results in the program PLP presented in Figure 4. Every rule equivalent
to the respective rule enumerated with lowercase Romans in Figure 1 is enumerated in uppercase
Romans.

5.3 An Architecture for Handling Inconsistent Ontologies in the Web

In this section we will present a possible architecture which integrates a web browser with a web form
for interaction with a human user. The web browser will ultimately access a remote database stored
in the web whose data is defined according to some ontology definitions that might be inconsistent.
Our proposal for inconsistent ontology management therefore consists in proposing a web service to
which a web browser can connect on behalf of a human user who wants to query a certain database
located somewhere in the web. The architecture for the approach is depicted in Figure 5.
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(I) animal(X) ← bird(X);
(II) fly(X) ← bird(X);
(III) bird(X) ← eagle(X);
(IV ) bird(X) ← penguin(X);
(V ) ¬fly(X) ← penguin(X);
(V I) geneticallyAlteredPenguin(X) ← penguin(X), isOperatedBy(X, Y ), geneticSurgeon(Y );

. . .
(X) geneticSurgeon(X) ← genetist(X), surgeon(X);
(X ′) genetist(X) ← geneticSurgeon(X);
(X”) surgeon(X) ← geneticSurgeon(X);

⊥ ← animal(X),¬animal(X)
⊥ ← bird(X),¬bird(X)
⊥ ← fly(X),¬fly(X)
⊥ ← penguin(X),¬penguin(X)
. . .

Figure 4: AnsProlog¬,⊥ program PLP obtained from KB via Grosof et al.’s mapping
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Figure 5: A possible architecture for handling inconsistent ontology definitions in DeLP

We will assume that the web browser is able to query a remote database Db in the web where
the information contained in its data records must be interpreted according to an ontology definition
OOwl also accesible in the web. Incidentally we will also assume the ontology definition OOwl will be
stored in an ontology server.

The proposed system works as follows. The user issues through the web browser a query Q
w.r.t. to database Db and ontology OOwl. This query is processed by the query solver who asks the
AnsProlog reasoner if OOwl is consistent which is retrieved by the OWL-DL to AnsProlog translator
from the ontology server. If the ontology OOwl is inconsistent, it is translated to a DeLP program
P = (Π, ∆) along with the records from database Db by the OWL-DL to DL and DL to DeLP
translators. Using P , the DeLP engine performs a dialectical analysis to determine the epistemic
status A of Q w.r.t. to P . Finally the epistemic status of Q is returned as answer A which will be
displayed in the web browser.

In order to perform the dialectical process of Q w.r.t. P , we will also assume that there exists a
human expert who provides the comparison criterion� for performing rule comparison into the DeLP
engine.

1194



6 RELATED WORK

RACER [12] implements a TBox and ABox reasoner for the logic SHIQ, it was also the first full-
fledged ABox description logic system for a very expressive logic and is based on optimized sound
and complete algorithms. In constrast to our proposal, it is not able to deal with inconsistent ontology
definitions.

Grosof et al. [11] show how to interoperate, semantically and inferentially, between the leading
Semantic Web approaches to rules (RuleML Logic Programs) and ontologies (OWL/DAML+OIL
Description Logic) via analyzing their expressive intersection. To do so, we define a new interme-
diate knowledge representation (KR) contained within this intersection: Description Logic Programs
(DLP), and the closely related Description Horn Logic (DHL) which is an expressive fragment of first-
order logic (FOL). They show how to perform DLP-fusion: the bidirectional translation of premises
and inferences (including typical kinds of queries) from the DLP fragment of DL to LP, and vice versa
from the DLP fragment of LP to DL. Part of our article is based on Grosof et al. work as we found the
algorithm for translating DL ontologies into DeLP on their work. However, as Grosof et al.work uses
standard Prolog rules, they are not able to deal with inconsistent DL knowledge bases as our proposal
does.

In [13], Heymans and Vermier extend the description logic SHOQ(D) with a preference or-
der on the axioms. With this strict partial order certain axioms can be overruled, if defeated with
more preferred ones. They also impose a preferred model semantics, thus effectively introducing
nonmonotonicity into SHOQ(D). They argue that since a description logic can be viewed as an on-
tology language, or a proper translation of one, they obtain a defeasible ontology language. Similarly
to Heymans and Vermier’s work we allow for inferencing from inconsistent ontologies by considering
subsets of of the original KB (arguments), comparing them in terms of a rule comparison criterion.
However, we choose to translate to the original DL KB into the DeLP language.

In [7], Eiter et al. propose a combination of logic programming under the answer set semantics
with the description logics SHIF(D) and SHOIN (D), which underlie the Web ontology languages
OWL Lite and OWL DL, resp. This combination allows for building rules on top of ontologies but
also, to a limited extent, building ontologies on top of rules. In contrast to our approach, they keep
separated rules and ontologies and handle exceptions by codifying them explicitly in programs under
answer set semantics.

7 CONCLUSIONS

We have presented a novel argument-based approach for handling inconsistent ontology definitions
in the Semantic Web. As discussed in the introduction, given an ontology expressed in a DL we
proposed translating it into an equivalent DeLP program. Then given a query posed w.r.t. the DL
ontology, it will be answered w.r.t. to the DeLP program.

Our approach is not able to deal with axioms that requires the construction of rules with a disjunc-
tion in the head which are not currently supported by DeLP, a possible extension to this work would
consist in enhancing DeLP with the possibility of handling disjunctions in the head of the rules.

Other issue associated with the approach that needs to be addresed is given by the mapping of
equivalence DL axioms into DeLP rules. Currently a DL axiom of the form ‘C ≡ D’ generates two
rules of the form ‘C(X) −≺ D(X)’ and ‘D(X) −≺ C(X)’. This situation could clearly produce loops
during the argument construction when solving queries in actual DeLP programs.

One of the goals of the Semantic Web initiative consists of providing methods of entailing in-
formation from ontologies that scale to the size of the web. Cecchi et al. [4] have proved that the
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complexity of the decision problems of determining whether a set of defeasible rules is an argument
for a literal under a DeLP program and determining whether there exists an argument for a given
literal are P-complete and NP, respectively. Other issue to address involves eliminating the assistance
of a human user in order to provide a rule comparison criterion for performing the dialectical process.
Part of our current research is focused on these issues.
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