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Abstract

Humans have always been intrigued by their ability toreason. We have constantly attempted to emulate this
process, trying almost everything, from physiological explanations, to sociological accounts. The approach
with possibly the longest tradition conceives this process as a mere manipulation ofsymbols. Yet, symbolic
reasoning cannot be applied directly over the problem at hand: we require that the knowledge about that domain
be also described symbolically, where this description is in turn the outcome of the process calledKnowledge
Representation.

Defeasible Logic Programming(DeLP) is a formalism that by combining Logic Programming with De-
feasible Argumentation is able to represent incomplete and potentially contradictory information. Its ability to
represent this kind of informartion make it suitable for describing many real world situations, where its infer-
ence engine can then later be used to solve concrete problems in those scenarios. In this article we propose a
formal methodology, striving to standardize the process of knowledge representation in DeLP, that defines a set
of guidelines to be used during this key task.

Keywords: nonmonotonic reasoning, defeasible reasoning, argumentation theories, knowledge representation

1 INTRODUCTION

Humans have always been intrigued by their ability toreason, even before the invention of comput-
ers. For decades, we have been attempting to emulate the process of reasoning, but it proved to be
quite hard to capture in a practical sense. Scientist have tried almost everything, from physiological
explanations (involving even quantum physics [12]), to sociological accounts (for instance, problem
solving using the ant-colony metaphor [1]). Out of those approaches, the one with possibly the longest
tradition, going back at least to the golden age in classical Greece, conceives this process as a mere
manipulation ofsymbols[10]. This great insight produced nowadays the most usefull and versatile
creations at our disposal (computers included). However, symbolic reasoning cannot be applied di-
rectly over the problem at hand: we require that the knowledge about that particular domain be also
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described symbolically, where this description is in turn the outcome of the process calledKnowledge
Representation.

From a knowledge engineer standpoint, knowledge representation is the process upon which they
classifies all the information present in a given domain into two categories: the core characteristics
of the scenario under study, and the rest of the knowledge, that is, those other aspects deemed not
relevant considering the problem at hand. Although this may look simple or straight, this is by no
means a trivial task. Sometimes, it is more an art than a science, provided that what can be derived
applying this kind of reasoning is usually intrinsically intertwined with the way knowledge is being
represented. When dealing with this, what we actually require is a set of guidelines assuring us that
no core characteristics may mistakenly be ignored. In other words, we are looking for amethodology.

Defeasible Logic Programming(DeLP) is a formalism that by combining Logic Programming with
Defeasible Argumentation is able to represent incomplete and potentially contradictory information.
Ideas borrowed from defeasible argumentation such as representing defeasible reasons as arguments
or performing a full dialectical analysis before answering queries are carefully added to a knowledge
representation language featuringPROLOG-like rules. Its ability to represent incomplete information
makes it suitable for describing many real world situations, where its inference engine can then later
be used to solve concrete problems in those scenarios. However, often times the results one may obtain
by adoptingDeLPare directly related to the decisions (or lack thereof) made during this initial phase
of knowledge representation. As a consequence, in this article we propose a formal methodology,
striving to standardize the process of knowledge representation inDeLP, that defines a set of guidelines
to be used during this key task.

In what follows, Sect. 2 briefly introduces the inner working ofDeLP. Then, Sect. 3 outlines the
proposed methodology for knowledge representation, illustrating its use with some examples from
the literature. Finally, Sect. 4 presents the conclusions obtained.

2 DEFEASIBLE LOGIC PROGRAMMING

This section briefly introducesDeLP’s essentials following its most recent formulation [6] (we refer
the reader looking for a more comprehensive presentation to its original formulation [5]).

The DeLP language is defined in terms of three disjoint sets:facts, strict rules, anddefeasible
rules. Literals can be ground atoms (e.g., A), or their strong negation (e.g., ∼A). Facts are simply
literals. Strict rules are ordered pairsL0 ← L1, . . . , Ln whose first component,L0, is a literal,
and whose second component,L1, . . . , Ln, is a finite non-empty set of literals. In a like manner, a
defeasible rule is an ordered pairL0 −≺ L1, . . . , Ln whose first component,L0, is a literal, and whose
second component,L1, . . . , Ln, is a finite non-empty set of literals. Syntactically, the symbol ‘−≺’
is all that distinguishes a defeasible rule from a strict one. Pragmatically, defeasible rules are used to
represent defeasible knowledge (i.e., tentative information that can be used as long as nothing is posed
against it), whereas strict rules are used to represent non-defeasible knowledge (i.e., incontrovertible
information). Observe that both strict and defeasible rules induce a meta-relation between set of
literals, so the symbols ’←’ and ‘−≺’ have no interaction with the literals.

In this formalism, the state of the world is modelled as aDefeasible Logic Program(de.l.p), es-
sentially a possibly infinite set of facts, strict rules and defeasible rules. In a givende.l.p P, the subset
of facts and strict rules is referred to asΠ, and the subset of defeasible rules as∆. When required,
thede.l.p P can also be noted as(Π, ∆). Since the setΠ represent non-defeasible information, it is
assumed that it is non-contradictory, that is, no pair of complementary literals can be derived from it
at the same time. As usual, the literals that may be derived are obtained chaining as many rules and
facts as required.
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Definition 1. (strict and defeasible derivations) [6]
Let P = (Π, ∆) be ade.l.p, andL a ground literal. Adefeasible derivationof L from P, noted
P |∼ L, is a finite sequenceL1, L2, . . . , Ln = L of ground literals, such that for everyLi, 1 ≤ i ≤ n:

• Li ∈ Π (Li is one of the facts inΠ), or

• there exists a strict or defeasible rule inP, with headLi and bodyB1, B2, . . . , Bm, such that
for everyBj, 1 ≤ j ≤ m, there exists ak, 1 ≤ k < i, such thatBj = Lk.

Those defeasible derivations that only use facts and strict rules are also calledstrict derivations. �

Since modelling incomplete infomation usually gives rise to conflicting conclusions, we should
not accept at the same time all the literals that may be defeasible derived from a given program.
Only those derivations that constitutelogical argumentsare to be considered. In this formalism, an
argument is a tentative piece of reasoning supporting a given conclusion, that satisfies the following
restrictions:

Definition 2. (argument structure) [6]
Let h be a literal, andP = (Π, ∆) be ade.l.p. We say that〈A, h〉 is anargument structurefor h, if,
and only if,A is a set of defeasible rules fromP (i.e.,A ⊆ ∆), such that:

• there exists a defeasible derivation forh from Π ∪ A,

• the setΠ ∪ A is non-contradictory, and

• A is minimal with respect to set inclusion (i.e., noA′ ⊂ A satisfies the previous conditions).

�

Argument structures only contain the defeasible rules used in order to defeasible derive a given
conclusions. Even though one may be tempted to add the facts and strict rules used too, recall that
only defeasible rules may later be challenged (given that facts and strict rules, as such, cannot be
questioned). Also, argument structures are required to be minimal with respect to set inclusion. This
restriction, often forgotten in other theories of argumentation, is paramount in importance, since we
do not want to allow as sensible arguments those that include more “defeasible information” than
what is strictly required. Should we fail to do so, valid arguments might end up rejected on the
basis of a certain superfluous assumption that happens to be too weak. In a sense, this restriction
is embodying the sound principle that the strength of an argument must be related to the amount of
defeasible information upon which it depends.

Example 1. Let us consider thede.l.p P1 = (Π1, ∆1), where:

Π1 ∆1

bird(X) <- penguin(X) flies(X) -< bird(X)
∼penguin(X) <- ∼bird(X)
∼flies(X) <- penguin(X)

penguin(pengo)

bird(tweety)

According toP1, 〈A, f lies(tweety)〉 constitutes an argument structure forflies(tweety), whereA =
{flies(tweety) −≺ bird(tweety)}, but, at the same time, it is impossible to formulate an argument
structure forflies(pengo), provided that the set of defeasible rules{flies(pengo) −≺ bird(pengo)}
allowing the derivation offlies(pengo) is in conflict withΠ1, sinceΠ1 |∼ ∼flies(pengo)). Therefore,
〈∅, ∼flies(pengo)〉 constitutes a valid argument structure for∼flies(pengo).
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Having an argument structure for a certain conclusion is not enough to warrant it, since there may
also exist another argument structure for a conflicting conclusion.

Definition 3. (disagreement) [6]
Let P = (Π, ∆) be ade.l.p and letL1 andL2 be two literals. We say thatL1 disagreeswith L2, if,
and only if, the setΠ ∪ {L1, L2} is contradictory. �

This relation between literals is generalized to argument structures using the auxiliary notion of
sub-argument structure: we say that〈A′, h′〉 is a sub-argument structure of〈A, h〉 if, and only if,
A′ ⊆ A.

Definition 4. (counter-argumentation) [6]
Let 〈A1, h1〉 and 〈A2, h2〉 be two argument structures. We say that〈A1, h1〉 counter-argues(also
rebutsor attacks) 〈A2, h2〉 at h if, and only if, there exists a sub-argument structure〈A, h〉 from
〈A2, h2〉 such thath andh1 disagrees. �

Considering that〈A, h〉 is one of its own sub-argument structures, this relation may become sym-
metric, and as such, might not be able to tell appart successful attacks from those that are not. Thus, it
must be further refined with the aid of an argument comparison criterion ‘�’. By doing so, two types
of attacks can be distinguished:

Definition 5. (proper defeater) [6]
Let 〈A1, h1〉 and〈A2, h2〉 be two argument structures. We say that〈A1, h1〉 is aproper defeaterfor
〈A2, h2〉 at the literalh if, and only if, there exists a sub-argument structure〈A, h〉 of 〈A2, h2〉, such
that〈A1, h1〉 counter-argues〈A2, h2〉 at h, and also〈A1, h1〉 � 〈A, h〉 (i.e., 〈A, h〉 is preferred over
〈A1, h1〉). �

Definition 6. (blocking defeat) [6]
Let 〈A1, h1〉 and〈A2, h2〉 be two argument structures. We say that〈A1, h1〉 is ablocking defeaterfor
〈A2, h2〉 at the literalh if, and only if, there exists a sub-argument structure〈A, h〉 of 〈A2, h2〉, such
that〈A1, h1〉 counter-argues〈A2, h2〉 ath, and neither〈A1, h1〉 � 〈A, h〉 nor 〈A, h〉 � 〈A1, h1〉 (i.e.,
〈A, h〉 and〈A1, h1〉 are unrelated according�). �

This distintion between defeaters will play a role in the upcoming dialectical analysis. In a sense,
a proper defeat denotes a more straightforward form of defeat than a blocking one. When required, we
say that an argument structuredefeatsanother when the former is either a proper or blocking defeater
of the latter.

Regarding the argument-comparison criterion,DeLPprovides a modular design where the knowl-
edge engineer can also specify which criterion is better suited for the domain at hand. Not whitstand-
ing, many attractive results have been achieved using a particular criterion calledspecificity, initially
introduced by Poole [13], later adapted forDeLPuse as follows:

Definition 7. (generalized specificity) [6]
Let P = (Π, ∆) be ade.l.p, and letΠG be the set of all the strict rules inΠ. Also, letF be the
set of all the literals that have a defeasible derivation fromP (i.e., F is a set of facts). Finally, let
〈A1, h1〉 and〈A2, h2〉 be two argument structures obtained fromP. We say that〈A1, h1〉 is strictly
more specificthan〈A2, h2〉 if, and only if, the following conditions hold:

1. For allH ⊆ F , wheneverΠG∪H ∪A1 |∼ h1 (i.e., H activatesh1) andΠG∪H 6|∼ h1 (i.e., a non
trivial activation), then it must be the case thatΠG ∪H ∪ A2 |∼ h2 (i.e., H also activatesh2).
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2. There must exist aH ′ ⊆ F , such thatΠG∪H ′∪A2 |∼ h2 (i.e., H ′ activatesh2) andΠG∪H ′ 6|∼ h2

(i.e., a non trivial activation) , whereΠG ∪H ′ ∪ A1 6|∼ h1 (i.e., H ′ does not activateh1).

�

This criterion essentially reconciles two principles: on the one hand, it favors those argument
structures that are more informed, and on the other hand, it also favors those argument structures
involving shorter defeasible derivations.

Example 2. Let us consider thede.l.p P2 = (Π2, ∆2), where:

Π2 ∆2

bird(X) <- penguin(X) flies(X) -< bird(X)
∼penguin(X) <- ∼bird(X) ∼flies(X) -< weak(X)

bird(tweety) ∼flies(X) -< penguin(X)

weak(tweety)

penguin(pengo)

In the context ofP2, it is possible to formulate the following argument structures:

〈A1, f lies(pengo)〉, whereA1 = {flies(pengo) −≺ bird(pengo)}.

〈A2, ∼flies(pengo)〉, whereA2 = {∼flies(pengo) −≺ penguin(pengo)}.

〈A3, f lies(tweety)〉, whereA3 = {flies(tweety) −≺ bird(tweety)}.

〈A4, ∼flies(tweety)〉, whereA4 = {∼flies(tweety) −≺ weak(tweety)}.

Using generalized specificity as the argument-comparison criterion,〈A2, ∼flies(pengo)〉 becomes a
proper defeater of〈A1, f lies(pengo)〉, since the former is strictly more specific then the latter. Also,
〈A3, f lies(tweety)〉 and〈A4, ∼flies(tweety)〉 block each other, since these argument structures are
unrelated under the chosen criterion.

In this formalism, a given literal is deemed warranted if we are able to find an argument structure
for it that remains undefeated after considering all its potential defeaters. Now, since defeaters are
in turn argument structures as well, there may exists defeaters for these defeaters, and so on. This
sequence of argument structures, each one defeating the previous one, is called in this contextargu-
mentation line, in the sense that this exchange of reasons seems to be exploring a given aspect of the
controversy.

Definition 8. (argumentation line) [6]
Let P = (Π, ∆) be ade.l.p and let〈A0, h0〉 be an argument structure. We say that the sequence
of argument structures[〈A0, h0〉, 〈A1, h1〉, . . . , 〈An, hn〉, . . .] constitutes anargumentation linefor
〈A0, h0〉, notedΛ〈A0,h0〉, if, and only if, every argument structure〈Ai, hi〉, i ≥ 1, in Λ〈A0,h0〉 is such
that it defeats its immediate predecessor〈Ai−1, hi−1〉. �

According to this definition, argumentation lines may be infinite. This concern is addressed re-
stricting the argumentation lines that may appear during the dialectical analysis of a certain claim,
considering that not every exchange of arguments actually constitutes a valid pattern of reasoning. For
instance, circular argumentation is a particular case offallacious reasoningwhich should be avoided
at all cost. The occurrence of these undesired situations is prevented imposing a set of conditions over
the potential argumentation lines, distinguishing those that do not incur in any sort of fallacious rea-
soning as beingacceptable. In order to do so, we must be able to tell appart those argument structures
supporting the initial claim from those that instead interfere with it.
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Definition 9. (support, interference) [6]
Let Λ〈A0,h0〉 = [〈A0, h0〉, 〈A1, h1〉, . . . , 〈An, hn〉, . . .] be an argumentation line for〈A0, h0〉. We say
that the argument structures occupying the odd positions inΛ〈A0,h0〉 constitute theset of supporting
argument structuresof Λ〈A0,h0〉, notedΛ

〈A0,h0〉
S , and that the argument structures occupying the even

positions inΛ〈A0,h0〉 constitute theset of interfering argument structuresof Λ〈A0,h0〉, notedΛ
〈A0,h0〉
I �

Another concept required to formally define what constitute an acceptable argumentation line is
the notion ofconcordance, a generalization of the notion of being consistent with the strict knowledge.

Definition 10. (concordance) [6]
LetP = (Π, ∆) be ade.l.p andS = {〈A1, h1〉, . . . , 〈An, hn〉} be a set of argument structures obtained
fromP. We say thatS is concordantif, and only if, the set(

⋃n
i=1Ai) ∪ Π is non-contradictory. �

All these notions are orchestrated together in the formal definition of what constitutes an accept-
able argumentation line:

Definition 11. (acceptable argumentation line) [6]
Let Λ〈A0,h0〉 = [〈A0, h0〉, 〈A1, h1〉, . . . , 〈An, hn〉, . . .] be an argumentation line for〈A0, h0〉. We say
that Λ〈A0,h0〉 constitutes anacceptable argumentation lineif, and only if, the following conditions
hold:

1. Λ〈A0,h0〉 is finite.

2. The setsΛ〈A0,h0〉
S of supporting argument structures andΛ

〈A0,h0〉
I of interference argument struc-

tures are concordant.

3. No argument structure〈Ai, hi〉 ∈ Λ〈A0,h0〉 is a sub-argument structure of a previous argument
structure〈Aj, hj〉, with j < i.

4. If 〈Ai, hi〉, i ≥ 2, is a blocking defeater of〈Ai−1, hi−1〉, then〈Ai−1, hi−1〉 must be a proper
defeater of〈Ai−2, hi−2〉.

�

Each argumentation line only explores a particular aspect of the controversy about the final state
of the initial claim. The complete dialectical analysis, which encompasses multiple argumentation
lines, is structured as a tree by virtue of the following recursive characterization:

Definition 12. (dialectical tree) [6]
Let 〈A0, h0〉 be an argument structure abouth0. We say that thedialectical treefor 〈A0, h0〉, noted
T〈A0,h0〉, can be obtained as follows:

1. The root node must be labelled〈A0, h0〉.

2. Let [〈A0, h0〉, 〈A1, h1〉, . . . , 〈An, hn〉] be the sequence of labels along a certain branch from
the root of the tree up to a node labelled〈An, hn〉, an let〈B1, q1〉, 〈B2, q2〉, . . . , 〈Bk, qk〉 be all
the defeaters of〈An, hn〉. Then, for every defeater〈Bi, qi〉 of 〈An, hn〉, 1 ≤ i ≤ k, such that
[〈A0, h0〉, 〈A1, h1〉, . . . , 〈An, hn〉, 〈Bi, qi〉] happens to be an acceptable argumentation line for
〈A0, h0〉, a new node labelled〈Bi, qi〉must be added as a child of the node labelled〈An, hn〉.

�
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Finally, we can resort to the following bottom-up marking to determine the outcome of the dialec-
tical analysis just structured as a tree:

Definition 13. (marking of a dialectical tree) [6]
Let 〈A, h〉 be an argument structure andT〈A,h〉 its corresponding dialectical tree. Themarkingof
T〈A,h〉, notedT ?

〈A,h〉, can be obtained as follows:

• All the leaves ofT〈A,h〉 are markedU in T ?
〈A,h〉.

• Let N be a inner node ofT〈A,h〉. This node should be markedU if, and only if, all its children
nodes are markedD. If that is not the case, it should be markedU.

�

At last, this marking allows us to characterize the set of literals sanctioned by a givende.l.p, which
constitutes the semantics of this formalism.

Definition 14. (warrant) [6]
Let P = (Π, ∆) be ade.l.p, and leth be a literal. We say thath is warrantedif, and only if, there
exists an argument structure〈A, h〉 for h, such that the root of its marked dialectical treeT ?

〈A,h〉 bears
the markU. �

After this succinct overview ofDeLP, the next section develops the proposed methodology for
putting this framework to a good use.

3 A METHODOLOGY FOR KNOWLEDGE REPRESENTATION

This section proposes a set of guidelines describing how different situations can be modeled within
DeLP. We begin by addressing the representation of monotonic knowledge in Sect. 3.1, to then con-
sider non-monotonic knowledge in Sect. 3.2.

3.1 Representing Monotonic Knowledge

Monotonic reasoning has been under study for hundreds, even thousands of years. Hence, its cor-
responding knowledge representation is also well understood. In what follows, we consider in de-
tail those aspects of monotonic knowledge representation which can be straightforwardly expressed
within DeLP.

3.1.1 Relational Databases

To begin with, the most essential form of symbolic knowledge one may want to represent is a set
atomic formulas, where in turn each formula states that a certain relation holds over a given tuple
of objects. This kind of knowledge can be represented inDeLP as a set of facts, much in the same
way this knowledge was represented inPROLOG. Bear in mind that the nature of these relations, or
the origin of the objects they relate cannot be inspected: it should be determined by the knowledge
engineer for each concrete scenario.

Remark 1. Letr be a finite relation over a certain domain. This relation can be modeled inde.l.p by
adding a new factr(X) for everyX ∈ r.
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The reader might notice only finite relations can be modelled following this approach. Then again,
the same holds for relational databases andPROLOG programs.

Example 3. The following de.l.p models the relation ‘weekend day’ defined over the days of the
week:

Π ∆
weekend(saturday)

weekend(sunday)

3.1.2 Class Inclusion

Another important piece of monotonic knowledge usually worth modeling is the inclusion of con-
cepts or categories. From Aristotle’s syllogisms to modern day inheritance hierarchies, being able to
represent class inclusion has always been deemed crucial. The classical approach consists in mod-
elling the inclusion of a conceptA into the conceptB with a material implicationA(X) → B(X),
denoting that all the instances of the former are also instances of the latter. We can follow a simmilar
approach inDeLP, as long as we take into consideration thatDeLPdoes not have material implication
but inference rules (meta-relations between set of formulas to be precise). That is to say:

Remark 2. LetA andB be two concepts, already modelled as relations among objects, such thatA
is included inB. This knowledge can be expressed in ade.l.p by adding the strict rulesb(X)← a(X)
and∼a(X)← ∼b(X).

Much to our surprise, this result made us aware that all this time we have been modelling class in-
clusion the wrong way. Considering that this formalism is a refinement of Simari-Loui’s system [15],
where strict rules were material implications, we incorrectly kept modelling this notion with the first
rule alone, when in fact two rules were actually required.

Example 4. The followingde.l.p models the fact that humans are mammals.

Π ∆
mammal(X) <- human(X)
∼human(X) <- ∼mammal(X)

3.1.3 Logic Programming

The paradigm of logic programming has been throughly explored as a tool for knowledge represen-
tation almost since its initial conception. Many attractive expert systems have been developed in
PROLOG, the most well-known exponent of this paradigm. In these systems, the knowledge is rep-
resented through a standardPROLOG program. These programs, by extending a finite set of facts
with general rules, allow the representation of infinite relations, something not possible using stan-
dard relational databases. These kind of knowledge can also be expresed inDeLP, since any standard
PROLOG program can be reformulated as ade.l.p as follows:

Remark 3. LetP be a definitePROLOG program. The knowledge represented by the programP can
be expressed as ade.l.p by virtue of the same set of facts and (strict) rules.

The previous remark rests upon the following proposition, relating the answers a givenPROLOG

program returns withDeLP’s notion of warranted literals.
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Proposition. Let P be a definitePROLOG program. Then,q is a ground query entailed fromP in
PROLOG if, and only if,q is a warranted literal from(Π, ∆), whereΠ = P and∆ = ∅.

Proof. (⇒)
If q is entailed fromP , there must exist a SLD-derivation ofq from P . Let L1, L2, . . . , Ln = q be
the sequence of literals compossing that SLD-derivation. Observe that this same sequence can also
be used to construct a strict derivation ofq from P , provided the same restrictions apply to both
notions.1 Therefore,〈∅, q〉 is a valid argument structure forq, if we take into account thatq can be
defeasibly derived fromP ∪ ∅, P ∪ ∅ is non-contradictory sincePROLOG program cannot express
negative information, and that there are no subsets of∅. This kind of argument structures (those based
on strict derivations) are quite particular. For instance, no other argument structure can defeat them,
no matter the argument-comparison criterion considered (this follows from Prop. 3.1 in [6]). That is
to say, its corresponding dialectical treeT〈∅,q〉 has only one node labelled〈∅, q〉 and markedU, which
in turn means thatq is a warranted literal of thisde.l.p.

(⇐)
If q is a warranted literal fromP , there must exist an argument structure〈A, q〉 for q. According
to Def. 2,A ⊂ ∆, whereas∆ = ∅. Therefore,A = ∅, which means that there must exist a strict
derivation ofq from P . Let L1, L2, . . . , Ln = q be the sequence of literals compossing that strict
derivation. Once again, this same sequence can also be used to construct a SLD-derivation ofq from
P . Finally, since there exists a SLD-derivation ofq from P , q must be entailed fromP . �

3.1.4 Negative Information

So far, only positive information was considered. Even though positive information is our preferred
source of knowledge, sometimes negative information constitutes a valid source of additional knowl-
edge. Both relational databases andPROLOG adopt some sort of Closed-World Assumption (CWA)
in order to represent this kind of information, but, by doing so, a subtle aspect is lost in the process:
CWA does not distinguish between not knowing whether a certain relation holds over some objects,
and knowing that this relation in fact does not hold over those objects. This issue has been addressed
in PROLOGgiving birth toextended logic programming[7], a formalism that extendsPROLOGallowing
the explicit representation of negative information. Following a simmilar approach,DeLPalso allows
the representation of this kind of knowledge.

Remark 4. Let r be a relation andX a set of objects such that we have witnessed thatX /∈ r. This
knowledge can be expressed in ade.l.p by adding a new fact∼r(X).

3.1.5 Strong Conflicts

The conflict arising from complementary literals, calledexplicit conflict(for instance, “being alive”
and “not being alive”), is a situation thatDeLP’s inference engine captures by itself. However, some-
times the conflict existing between a set of situations is more subtle (or less syntactic), and does not
involve complementary concepts (for instance, “being alive” and “being dead”). In a sense, this con-
flict represents a set of situations that cannot happen all at the same time. Let us call this kind of
conflictstrong.

Remark 5. Let S1, S2, . . . , Sn be all the situations characterizing a strong conflict. This knowledge
can be expressed in ade.l.p by addingn new strict rules of the form∼Si ← S1, . . . , Si−1, Si+1, . . . , Sn,
for everySi, 1 ≤ i ≤ n.

1the formal demonstration of this statement, by virtue of structural induction, is trivial.
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Example 5. The followingde.l.p captures the strong conflict between the notions of being alive and
being dead.

Π ∆
∼dead(X) <- alive(X)
∼alive(X) <- dead(X)

3.2 Representing Non-Monotonic Knowledge

Nonmonotic reasoning is a recent phenomenon [14, 8, 9], hence the representation of non-monotonic
knowledge is a topic still under exploration. Not withstanding, the comunity appear to be reaching
an initial agreement on some of its fundamental tenets. In what follows, we consider in detail some
classical aspects of the process of representing non-monotonic knowledge inDeLP.

3.2.1 Defaults

When it comes to make the case for non-monotic reasoning, most formal theories resort to argue that
there is a feature of common-sense reasoning which cannot be captured using monotonic theories:
defaults. A default establishes a connection between concepts weaker than class inclusion, yet rel-
evant enough as to require to be made explicit. Put the other way around, defaults can be used to
modelrelations with exceptions. The classical example in Artificial Intelligence is “birds usually fly”.
Observe that this relation cannot be expressed as class inclusion (e.g., “birds fly”), because it becomes
inconsistent with the fact that some birds do not fly (e.g., penguins, ostriches, kiwis, etc.), nor it can
be expressed as a rule with explicit exceptions (e.g., “birds that are not penguins, kiwis, . . . fly”),
because all the exception to this relation must be known beforehand (an inconvenience known as the
qualification problem). It is in this particular regard thatDeLP really shines. Its representation of
defaults is quite natural, and even more straightforward than the representantion of defaults in Default
Logic or other nonmonotonic theories.

Remark 6. Let A andB be two situations such that whenA occurs,B usually also occurs (that is
to say, ifA, then by defaultB). This knowledge can be expressed in ade.l.p simply by adding a new
defeasible ruleB −≺ A.

3.2.2 Weak Conflicts

Sometimes, explicit conflicts (i.e., those arising from complementary situations), or strong conflicts
(i.e., those involving two or more situations that cannot happen at the same time), are not enough to
capture all the conflicts worth modelling in a given scenario. For instance, there is a weaker form of
conflict not covered so far, which we will callweak conflict. This kind of conflict reflects that two
or more situationsusuallycannot occur at the same time, butexceptionally, they may. Even though
neither explicit conflicts nor strong conflicts can capture this situation, a variation of the previous
solution can be used to model weak conflicts.

Remark 7. LetS1, S2, . . . , Sn be all the situations characterizing a weak conflict. This knowledge can
be expressed in ade.l.p by addingn new defeasible rules of the form∼Si −≺ S1, . . . , Si−1, Si+1, . . . , Sn,
for everySi, 1 ≤ i ≤ n.

Note that it is entirely possible to conceive a scenario were all these situations are met at the same
time, considering the weak nature of this conflict, whereas strong conflicts make such a scenario
outright impossible. It is the existence of this exceptional scenario what distinguishes weak from
strong conflits.
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Example 6. The followingde.l.p captures the weak conflict between a sunny day and the fact that it
is raining.

Π ∆
∼sunny -< rainy
∼rainy -< sunny

3.2.3 Assumptions

Some theories incorporate nonmonotonic features by allowing the reasoner to make tentative assump-
tions. This possibility alone gives rise to nonmonotonic reasoning, since an assumption compatible
under certain state of the world may become unfeasible with the addition of new information. For ex-
ample, Bondarenkoet al. [2] developed a formalisms built around abductive reasoning following this
approach. Although the nonmonotic features inDeLPare the consequence of the dialectical analysis
performed to determine if a conclusion is warranted, there is a particular kind of assumption, called
presumption, which can also be modelled in this formalism. Bluntly put, a presumption is adefault
fact. This notion, first mentioned by Nute in his Defeasible Logic [11], allow the knowledge engineer
to define a set of assumptions or suppositions which may be freely used as long as no other reasons
are raised against them.

Remark 8. LetA be an assumption worth being modeled. This knowledge can be captured in ade.l.p
by adding a new factF , for a literal F not appearing in thatde.l.p, and a new defeasible rule of the
formA −≺ F .

Example 7. Consider the followingde.l.p:

Π ∆
bird(X) <- chicken(X) flies(X) -< bird(X)
∼chicken(X) <- ∼bird(X) ∼flies(X) -< chicken(X)

chicken(coco) flies(X) -< chicken(X), scared(X)

assumption scared(coco) -< assumption

According to thisde.l.p, flies(coco) is warranted (a conclusion reached under the assumption that
coco was scared). Observe how the addition of the factassumption and the corresponding defeasible
rule captured the essence of the assumption thatcoco was scared.

4 CONCLUSIONS

Defeasible Logic Programming constitutes an attractive framework for representing incomplete and
potentially contradictory information, a cornerstone of many real-world problems. As such, the task
of representing the knowledge required to reason upon these problems is not trivial. To that end, in
this article we have developed a methodology for representing knowledge inDeLP, essentially a set of
guidelines covering the major challenges knowledge engineers usually encounter during this phase.
This methodology encompasses two distinctive forms of knowledge representation: first monotonic
knowledge, and then non-monotonic knowledge. For each of them, we have shown how to represented
some prototypical situations usingDeLP’s language.

As a future work, we plan to extend this methodology to cover other forms of monotonic and non-
monotic knowledge representation. For instance, we would like to further investigate the different
ways of modelling priorities among defaults, and also take into account other variants ofDeLPsuch
asODeLP[3] or DeLP∅ [4].
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[6] Alejandro J. Garćıa and Guillermo R. Simari. Defeasible Logic Programming: An Argumenta-
tive Approach.Theory and Practice of Logic Programming, 4(1):95–138, 2004.

[7] Michael Gelfond and Vladimir Lifschitz. Logic Programs with Classical Negation. In David
H. D. Warren and Perter Szeredi, editors,Proceedings of the 7th International Conference on
Logic Programming, pages 579–597, 1990.

[8] John L. McCarthy. Circumscription—A Form of Non-Monotonic Reasoning.Artificial Intelli-
gence, 13(1–2):27–39, 1980.

[9] Drew V. McDermott and Jon Doyle. Non-monotonic logic I.Artificial Intelligence, 13(1–2):41–
72, 1980.

[10] Allen Newell and Herbert Simon. Computer Science as Empirical Inquiry. InACM Turing
Award Lectures, pages 287–387. Addison-Wesley, 1987.

[11] Donald Nute. Defeasible Reasoning. InProceedings of the XX Annual Hawaii International
Conference on System Sciences, pages 470–477, 1987.

[12] Roger Penrose.The Emperor’s New Mind. Oxford University Press, 1989.

[13] David L. Poole. On the Comparison of Theories: Preferring the Most Specific Explanation. In
Proceedings of the 9th International Joint Conference on Artificial Intelligence, pages 144–147,
1985.

[14] Raymond Reiter. A Logic for Default Reasoning.Artificial Intelligence, 13(1–2):81–132, 1980.

[15] Guillermo R. Simari and Ronald P. Loui. A Mathematical Treatment of Defeasible Reasoning
and its Implementation.Artificial Intelligence, 53(1–2):125–157, 1992.

1150


