
A Comparison of Different Recombination Operators for
the 2-Dimensional Strip Packing Problem

Carolina Salto
Facultad de Ingeniera, Universidad Nacional de La Pampa

Calle 110 esq. 9, General Pico, La Pampa (6360), Argentina
saltoc@ing.unlpam.edu.ar

and

Enrique Alba - Juan M. Molina
E.T.S.I. Informática, Universidad de Málaga

29071 Málaga, España
{eat,jmmb}@lcc.uma.es

Abstract

In this paper, the three-stage two-dimensional rectangular strip packing problem is tackled using
genetic algorithms. A new problem dependent recombination operator, called best inherited levels
recombination (BIL), is introduced. A comparison of its performance is carried out with respect
to four classical recombination operators. A complete study of the influence of the recombination
operators on the genetic search, including the trade-off between exploration and exploitation in the
search process, is presented. The results show that the use of our specialized BIL recombination
outperforms the others more generic on all problem instances for all the metrics tested.

Keywords: Strip Packing, Recombination, Genetic Algorithms.

1126

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15779395?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 INTRODUCTION

The two-dimensional strip packing problem (2SPP) is present in many real-world applications
such as in the paper or textil industries, and each of them can impose different constraints and
objectives. Typically, the 2SPP consists of a set of M rectangular pieces, each defined by a
width wi and a height hi, with i = 1...M , wich have to be packed in a larger rectangle with a
fixed width W plus an unlimited length, designated as the strip. The search is for a layout of
all the pieces in the strip that minimizes the required strip length and, where necessary, takes
additional constraints into account. This problem is similar to the one of cutting the pieces out
of the strip minimizing the consumed strip.

In the layout, the pieces have to be packed with their vertical edges parallel to the verti-
cal edge of the strip (corresponding to orthogonal cuts). Additionally, another constraint is
included in the problem: guillotine cuts, i.e. the pieces have to be cut going from one border
straight to the opposite side. The packing pattern is created by recursively bi-partitioning the
strip with straight lined: guillotineable cuts. Each of these cuts splits a rectangular area within
the strip into two rectangular pieces. Additional to this constraint n-staged guillotine cuts can
be imposed in some cases. Here there are a limitation in the number n of stages in which
the cuts are made. Each stage is only able to perform either horizontal or vertical cuts but
not both, and pieces having passed a stage may not be put back to a previous stage. These
conditions limit the nesting of horizontal and vertical cuts. The corresponding packing is built
as a series of levels, each piece being placed so that its bottom rests on one of these levels. The
first level is simply the bottom of the strip. Each subsequent level is defined by a horizontal
line drawn through the top of the tallest piece on the previous level. Particularly in this work,
we focus on three-stage cuts. In the first stage, horizontal cuts (parallel to horizontal edge
of the strip) are performed to the strip producing an arbitrary number of levels (stripes). In
the second stage, those levels are processed by vertical cuts generating an arbitrary number
of so-called stacks. The third stage produces the final elements (and waste) from the stacks
performing only horizontal cuts.

The 2SPP is NP-hard (see the work of Hopper and Turton [11]). A few exact approaches
for this problem are known. Martello et al. [17] developed a branch-and-bound method while
Fekete and Schepers [6] proposed a general framework for the exact solution of more-dimensional
packing problems.

Regarding surveys of meta-heuristics in the literature, Hopper and Turton [9, 11] review
the existing approaches to solve 2D packing problems. The focus is hereby on the analysis
of the methods involving genetic algorithms, simulated annealing (SA), tabu search (TS), and
artificial neural networks are also used although. The authors give a structured overview
regarding regular and irregular packing, guillotine and non-guillotine packing. They conclude
that evolutionary algorithms are the most widely investigated meta-heuristics in the area of
cutting and packing. Also, due to the lack of benchmarking, it is difficult to decide which
method is better suited to approach packing problems. Lodi et. al [16] in their work consider
the two dimensional strip packing problem, discussing mathematical models. Moreover the
authors survey lower bounds, classical approximation algorithms, recent heuristic and meta-
heuristic methods and exact enumerative approaches. The relevant special cases where the
items have to be packed into rows forming levels are also discussed in detail.

Studies found in the literature applying meta-heuristics to deal with the SPP are described
in Table 1. The emphasis is placed in the constraints optionally included in the problem such
as: guillotine constraint (guillotine (G) or non-guillotine (NG) cuts), the orientation constraint

1127



Table 1: Overview of papers dealing with 2D strip packing problem.
Papers Problem Characteristics Meta- Observations

cuts orientation placement routine heuristic

Bortfeldt [4] G-NG O-R level packing algo-
rithms

GA No encoding of solutions: fully
defined layouts are manipu-
lated by means of specific op-
erators. Heuristic for post-
optimizing of layouts (move
pieces in a layer into an adja-
cent layer and to use previously
free space). Includes a ompar-
ison with many works.

M-Valenzuela et al.
[19]

G R level packing al-
gorithms and the
Split algorithm

GA Normalised postfix representa-
tion. Standard genetic opera-
tors. Data sets of various sizes
with a variety of characteris-
tics.

Hopper and Turton
[10]

NG R botton left algo-
rithm

GA, SA
and näıve
evolution

Packing pattern represented by
a permutation. Traditional BL
algorithm and an improved BL
capable of filling existing gaps.

Liu and Teng [15] NG R improved BL-
algorithm

GA Packing pattern represented by
a permutation.

Jakobs [13] NG R botton left algo-
rithm

GA Permutation representation.
The algorithm is improved by
combination with determinis-
tic methods.

Kröger [14] G R GA (se-
quential
and paral-
lel verions)

Slicing tree. structure. Hill
climbing as special operator.

Hwang et al. [12] G R 3 GAs Polish representation plus spe-
cial operators; the bin width is
incorporated as a penalty func-
tion. Ordered list of items and
different packing algorithm: a
level oriented first-fit algorithm
and a level oriented best-fit al-
gorithm.

(fix orientation (O) or the pieces can be rotated (R)). Also the kind of meta-heuristic used, the
placement routine to decode a solution to a complete layout (if necessary) and some additional
observations (such as the representation adopted to encode a packing pattern) are detailed.

From all the previous approaches we will use in this article evolutionary algorithms [2, 18],
in particular genetic algorithms (GAs), as the general driving force to locate the region in which
a solution of minimum length is located. GAs deal with a population of tentative solutions,
each of them encodes a problem solution on which genetic operators (such recombination of
partial solutions) are applied in an iterative manner to progressively compute new solutions of
higher quality.

In this paper a hybrid approach is used to solve the two-dimensional strip packing: a GA
is combined with a heuristic placement routine. The GA is used to determine the sequence in
which the pieces are to be cut. Then a second algorithm is necessary which determines the layout
of the pieces onto the object (placement heuristic), respecting guillotine cuts and 3-stage level
packing. Moreover, the algorithm uses a special built-in recombination incorporating problem
specific knowledge such as information of the pieces layout. The main goal of this paper is to find
an effective operator to solve larger problems than the ones found in the literature at present,
and to quantify the effects of including these operations into the algorithms. Furthermore,
we perform an empirical study where we compare the performance of the new recombination
operator with four other classical recombination operators.

1128



The organization of this paper is as follows. The components of the evolutionary approach
are described in Section 2. In Section 3 we review the studied recombination operators and
present a detail description of the new recombination operator. In section 4, we explain the
parameter settings of the algorithms used in the experimentation. Section 5 reports on the
algorithm performances, and finally, in Section 6, we give some conclusions and analyze future
search directions.

2 GENETIC ALGORITHM FOR THE 2SPP

In this section we present a GA for solving the two-dimensional strip packing problem used
in this work. In Algorithm 1 we can see the structure of a GA in which we will now explain
the steps for solving our cutting tasks. The algorithm creates an initial population P (0) of
µ solutions to the cutting problem in a random way, and then evaluates these solutions. The
evaluation uses a placement (ad hoc or heuristic) algorithm to arrange the pieces into sheets
to construct a feasible cutting pattern. After that, the population goes into a cycle where it
undertakes evolution, which means the application of recombination and mutation operators,
to create λ offspring. Finally, each iteration ends by selecting µ individuals to build up the
new population from the set of µ + λ existing ones. In this study, the stopping criterion for
the cycle is to reach a maximum number of evaluations (max evaluations). The best solution
is identified as the best individual ever found which minimizes the number of needed sheets.
Details of implementation are explained in following subsections.

Algorithm 1 Genetic algorithm
GA
t = 0; {current generation}
initialize(P (t));
evaluate(P (t));
while (not max evaluations) do

P ′(t) = evolve(P (t)); {recombination and mutation}
evaluate (P ′(t));
P (t + 1) = select new population from P ′(t) ∪ P (t);
t = t + 1;

end while

2.1 Representation

In order to develop a GA for this problem the first step is to develop an adequate encoding of
the cutting patterns that will represent a solution to the problem. We encode a cutting pattern
in a chromosome as a sequence of pieces that defines the input for a layout algorithm, and
pieces are represented by natural numbers. Therefore, a chromosome will be a permutation
π = (π1, π2, ..., πM) of M natural numbers. For example, let us consider the following problem
with eight pieces (M = 8), and a strip of width W and an unlimited length. A possible cutting
pattern is π = (2 4 1 5 6 3 8 7), where 2 stands for piece 2, 4 for piece 4, 1 for piece 1, and
so on. The chromosome gives an order for considering the pieces, which is used afterwards by
a layout algorithm. This algorithm will arrange the pieces to be cut on the strip to build a
cutting pattern (see Figure 1). The GA will devise the best possible permutation so that the
layout algorithm finds an optimal cutting pattern, which minimizes the required length of the
strip.

1129



2 4 1 5 6 3 8 7

GA encoded solutuion

3
6

7
8

Waste

Pieces

Level 1

Level 2

Level 3

1

2

4
5

Stack 1
of level 1

Stack 2
of level 1

Stack 3
of level 1

Unused
space

Figure 1: Cutting pattern for the permutation (2 4 1 5 6 3 8 7).

Algorithm 2 MNFH assignment process.
MNFH(π: vector, M:integer, W:integer)
initialize counters:

i = 1; {piece to be placed}
initialize strip:

strip.length = 0;
while (i ≤M) do

initialize level(πi, l);
strip.length = strip.length + l.length;
while (i ≤ M and feasible πi in l) do

initialize stack(πi, s, l);
while (i ≤M and feasible πi in s) do

push stack(πi, s, l);
s.length = s.length + length(πi);
l.waste = l.waste - area(πi);
i = i + 1;

end while
end while

end while
set l to be the last level;
return strip.lenght, l;

initialize level(πi:piece, l: level)
l.length = length(πi);
l.remWidth = W ;
l.waste = strip.area;

initialize stack(πi:piece s: stack, l:level)
s.width = width(πi);
s.length = 0;
l.remWidth = l.remWidth − width(πi);

push stack(πi :piece, s: stack, l: level)
if l.length < s.length + length(πi) then

waste = l.waste + (s.length + length(πi) − l.length) × W ;
if (waste−area(πi) ≤ l.waste) then

l.waste = waste;
l.length = s.length + length(πi);
strip.length = strip.length + (s.length + length(πi)−

l.length);
end if

end if

2.2 Heuristic for Placing Pieces

In order to generate a solution to the three-stage two-dimensional strip packing problem, a
modified next-fit decreasing height heuristic (NFDH) is used here (in the following referred as
MNFH) like the one used in [21, 22]. This heuristic gets an ordered list of all the pieces as its
input. Its pseudocode is given in Algorithm 2. The cutting pattern is constructed level by level
in a greedy way, i.e., once a new level is started, previous levels are never reconsidered. The
same policy is applied to stacks.

The algorithm starts with the first piece π1 of the given vector π = (π1, π2, ..., πM ), where
M is the number of pieces. Variable strip represents the strip, variable l stands for the current
level, and variable s stands for the current stack. The strip is initialized as well as its first level
with length l.length = lenght(π1), and the first stack inside that level with width s.width =
width(π1). Once a level is initialized, the next piece, πi, of π starts the second stack of the
current level if the following conditions are met: (a) length(πi) does not exceed the length
of the level, l.length, (b) width(πi) does not exceed the current remaining width of the level,
l.remWidth. If the following pieces have width equal to width(πi) they are stacked one under

1130



2
1 3

2
1Level

3

Figure 2: Level example.

2
1Level

Level extention

33
3

Figure 3: Level extension.

the other as long as the length of the stack, s.length, does not exceed l.length. If the width
of the next piece πj is different from width(πi) or l.length is exceeded by s.lenght then a new
stack is started with πj if widht(πj) ≤ level.remWidth, else a new level is started with πj.
This process is repeated until no pieces remain in the vector π.

Our version of the NFDH heuristic also allows stacked elements to extend a level’s length
if the total waste of the level decreases. Let us consider the example shown in Figure 2 with
a level (the grey area represents the waste) and a piece to be arranged. The new piece can be
placed into the current level if the area of the new piece is greater or equal than the area of
the waste produced by the enlargement of the level (represented by a the rectangle with dotted
lines in Figure 3).

2.3 Fitness Function

GAs are guided by the values computed by an objective function for each tentative solution until
an optimum or an acceptable solution is found. In our problem, the objective is to minimize
the strip length (strip.length) needed to build the layout corresponding to a given solution π.
But two packing patterns can have the same length —so their fitness values will be equal—
although, from the point of view of reusing the trim loss, one of them can be actually better
because the trim loss in the last level (which still connects with the remainder of the strip)
is greater than the one present in last level in the other layout. Therefore we are using the
following, more accurate, fitness function:

F (π) = strip.length − 1

l.waste
(1)

where strip.length is the length of the packing pattern corresponding to the permutation π
and l.waste is the area of reusable trim loss in the last level of the packing pattern.

2.4 Genetic Operators

In this section we will describe the operators applied in all our algorithms. On the one hand,
recombination of two tentative solutions will allow to intensify the search in the regions of
the fitness landscape defined by the two parents (operator with arity 2). On the other hand,
mutation will allow for the diversification of one solution (unary operator) that will hopefully
allow to scape from local optima and also to enter new genetic diversity into the population
since it will be gracefully exhausted by the algorithm as it converges during the search.

Several of this operators work in terms of the filling rates of the levels belonging to the
parent solutions. This rate is calculated as follows for a given level l:

fr(l) =
n∑

i=1

width(πi) × length(πi)

W × l.length
(2)

where π1, ..., πn are the pieces in l, width(πi) and length(πi) are the piece dimensions, and W
and l.length the level dimensions.

1131



A new dedicated recombination operator, called Best Inherited Level recombination (BIL),
take into consideration the pieces layout into their procedure. In section 4, several classical re-
combination operators are presented (PMX, OX, CX and EX), including a complete description
of the the new BIL recombination operator for the 2SPP.

The idea behind the mutation operator used, named as Best and Worst Stripe Exchange
(BW SE), is to change the location of the pieces so that the final trim loss is reduced. In
BW SE, the best and the worst level are always moved. The pieces of the best level (the one
with highest filling rate) are allocated in the first positions of the new cutting pattern while the
pieces of the worst level are assigned to the last positions. The middle positions are filled with
the remaining pieces in the order they appeared in the original cutting pattern. In BW SE, the
movements can help to the involved levels or their neighbors to take pieces from neighboring
levels improving their overall trim loss.

3 RECOMBINATION OPERATORS

In this section we will describe the five recombination operators studied. The first four operators
have been proposed for permutation representation to solve the travelling salesman problem.
These operators focus on combining order or adjacency information from the two parents.
Operators such as Partial-Mapped Crossover (PMX), Order Crossover (OX), Cycle Crossover
(CX) take into account the position and order of the pieces as opposed to edges (i.e., links
between pieces). While the general idea behind the Edge Recombination (ER) is to preserve
the linkage of a piece with other pieces. Finally, the fifth new operator, BIL, incorporates some
problem-specific knowledge into their mechanism in order to improve the trim loss. We will
now discuss all of them.

• Partial Mapped Crossover (PMX). This operator was proposed by Goldberg and Lingle
[7]. It builds an offspring by choosing a subsequence of a cutting pattern form one parent
and preserving the order and position of as many pieces as possible from the other parent.
PMX can be viewed as an extension of two-point crossover for binary string to permutation
representation. It uses a special repairing procedure to resolve the illegitimacy caused by
the simple two-point crossover. Thus, in essence, PMX is a simple two-point crossover
plus a repairing procedure.

• Order Crossover (OX). OX was proposed by Davis [5]. Since partial cuttings residing
inside a solution seem to be the natural building blocks in this problem, our intention
is that the recombination transmits these building blocks from parents to offspring. For
this, two points are randomly selected from a parent, thus defining a crossover region.
This region is transmitted directly to the offspring; meanwhile, the remaining positions
are filled with the elements that do no belong to that region in the order that they appear
in the second parent. It can be viewed as a kind of variation of PMX using a different
repairing procedure.

• Cycle Crossover (CX). CX was proposed by Oliver et al. [20]. It takes some pieces
(and their positions) from one parent which define a cycle according to the corresponding
positions between parents. The remaining pieces are selected from the other parent.

• Edge Recombination (EX). EX was developed by Whitley et al. [26] and further enhanced
in [24]. This operator transfers edges (relations between pieces) present in both parents.
This is done with the help of an edge list created from both parents, which provides, for
each piece i, all other pieces next to the piece i in at least one of the parents.

1132



1

6 0 8 4 5 9 12 15 1 3 10 17 13 11 18 2 19 14 7 16

parent2

0 10 7 9 3 18 16 12 19 14 1 15 2 4 6 13 17 11 5 8

1 2 3

0.8 0.73 0.78

levels

parent1

0 10 7 9 3 18 16 12 6 8 4 5 15 1 17 13 11 2 19 14
Child

filling
rate

Figure 4: Example of BIL recombination.

• Best Inherited Level Recombination (BIL). This operator transmits the best levels of the
parent to the child, i.e. those with the highest filling rate or, equivalently, with the least
trim loss. In this way, the inherited levels can be kept or readjusted if one of them takes
some pieces from the following level. This depends on how compacts the levels are: if
they are very compact the levels should possibly be kept up and do not take pieces out
of its neighboring level. The actual recombination works as follows. In the first step the
filling rate of all levels from one parent, parent1, is calculated. After that, a selection
probability for each level l proportional to the filling rate is determined. A number k of
levels are selected from parent1 regarding proportional selection according to the filling
rate. The pieces πi belonging to the inherited levels are placed in the first positions of the
child. Meanwhile, the remaining positions are filled with the pieces which do not belong
to that levels in the order they appear in the other parent parent2. Figure 4 gives an
example for the level transfer in the course of a recombination operation and also the
filling process of the remaining positions.

4 IMPLEMENTATION

Let us discuss in this section the actual implementation of the algorithms to ensure that this
work is replicable in the future, a capital issue in research that is not always dealt with in
the literature. As we said from the beginning, a sequential steady state GA will be here
evaluated for a set of selected instances of the packing problem, in order to better know on their
algorithmic effectiveness. The GA approach will be tested with different combinations of the
presented recombinations (OX, PMX, BIL, EX and OX) and the mutation operator (BW SE).
The algorithm runs in MALLBA [1], a C++ software library fostering rapid prototyping of
hybrid and parallel algorithms. All the algorithms were run until a maximum number of
evaluations (216) is reached.

We considered here five classes of randomly generated problems with M equal to 100, 150,
200, 250 and 300 pieces. The instances were obtained by an own implementation of a data set
generator following the ideas proposed in [25].

The steady state GA uses a binary tournament selection for each parent, and the new
generated individual replace the worst individual in the population only if it is fitter. The
population size for GA is set to 512 individuals. The initial population is randomly generated.
The maximum number of evaluations is 216. The recombination operators are applied with a
probability of 0.8, while the mutation probability was set to 0.1. Parameters (population size,
stop criterium, probabilities, etc) were not chosen at random, but rather by an examination of
values previously used with success (see [23] for example). Our machines have the following
characteristics: Pentium 4 at 2.4 GHz and 512 MB RAM linked by Fast Ethernet. The operating
system used is SuSE Linux with 2.4.19-4GB kernel version. See Table 2 for a summary of the
parameters.

1133



Table 2: Parameters used for the different GAs.
Parameter GA

population size 512
recombination PMX, OX, BIL, EX and CX

mutation BW SE
recombination probability 0.8

mutation probability 0.1
replacement strategy (µ + 1)

stop criterion 216 evaluations

Table 3: Experimental results for the GA with all recombination operators.
Inst PMX OX BIL EX CX

best avg±σ best avg±σ best avg±σ best avg±σ best avg±σ

100.00 265.00 284.04 ± 8.67 251.00 268.93 ± 9.31 238.00 249.39 ± 5.30 270.99 304.41 ± 14.90 314.00 338.71 ± 7.87

150.00 300.00 330.83 ± 13.49 283.00 301.05 ± 8.15 240.00 254.85 ± 6.79 310.00 351.46 ± 22.11 390.00 421.51 ± 10.80

200.00 300.00 326.52 ± 14.35 274.00 297.85 ± 8.98 248.00 257.78 ± 4.94 317.00 352.83 ± 18.43 386.00 411.11 ± 9.49

250.00 324.00 349.04 ± 13.70 303.00 314.09 ± 7.05 245.00 256.79 ± 5.23 332.00 386.09 ± 18.59 396.00 418.60 ± 9.25

300.00 326.00 363.54 ± 16.31 308.00 331.65 ± 10.00 255.00 266.52 ± 7.68 358.00 400.33 ± 23.93 426.00 455.15 ± 11.08

Mean 303.00 330.80 283.80 302.72 245.20 257.07 317.60 359.02 382.40 409.02

5 COMPUTATIONAL ANALYSIS

In this section we will summarize the results of using the proposed algorithm with its variants
(recombination operators) on all the problem instances. For each algorithm we have performed
90 independent runs per instance using the parameter values summarized in Table 2. Our aim
is to offer meaningful results from a statistical point of view. Also the evaluation considers
two important issues for the whole search process: the capacity to generate new potentially
promising individuals and the quickly progress in the surroundings of the best found solution.
Hence, we considered the average fitness values for the first criterion and the entropy measure
(as proposed in [8]) for the second one, which is computed as follows:

entropy =

∑M
i=1

∑M
i=1(

nij

µ
) ln(nij

µ
)

M ln M
(3)

where nij represents the number of times the piece i is set into the position j in the population
of size µ. This function takes values in [0..1] and a value of 0 indicates that all the individuals
in the population are identical.

Table 3 summarizes the results obtained for the GA when they apply all the considered
recombination operators for each instance. The most relevant aspects measured in this com-
parison are the following ones: the best found feasible solutions (column best) and the average
objective values of the best found feasible solutions along with their standard deviations (col-
umn avg±σ). The last row in Table 3 shows average results over all the instances obtained by
each algorithm just as a summary of the trends. The minimum best values are printed in bold.

The results clearly show that the GA applying the BIL operator outperform significantly the
GA using any other recombination in terms of solution quality in all instances, and the difference
is more evident as the instance dimension (regarding the number of pieces M) increases (see
Figure 5 for more details). The reason for the outperforming is based on the improvement
in the pieces layout obtained by the application of BIL, i.e. this operator is specific for this
problem since it incorporates some knowledge of the problem inside their mechanism. Using
the test of multiple comparisons of Bonferroni [3], we verified that the differences among the
results are significant.

Figure 6 illustrates the behavior of the studied operators over all instances regarding av-
erage number of evaluations to reach the best value. In this Figure the X axis represents the

1134



200

250

300

350

400

450

100 150 200 250 300

Instances

fi
tn

e
ss

PMX OX BIL EX CX

Figure 5: Best value for each algorithm and instance.

0

10000

20000

30000

40000

50000

60000

70000

100 150 200 250 300

Instances

e
v

a
lu

a
ti

o
n

s

PMX OX BIL EX CX

Figure 6: Mean number of evaluations to
reach the best value for each algorithm and
instance.

0

100

200

300

400

500

100 150 200 250 300

Instances

t[
s
]

PMX OX BIL EX CX

Figure 7: Mean spent time for each algo-
rithm and instance.

different instances, while the Y axis indicates the average number of evaluations. CX reaches
the best values using less average number of evaluations, but this algorithm presents the worst
results regarding accuracy. A good performance is obtained for the algorithm applying the BIL
operator and the difference in number of evaluations is significantly lower in comparison with
GA plus OX. To confirm these results, we used the test of multiple comparisons of Bonferroni,
which indicates that the difference among the algorithms are significant under this metric.

On the other hand, Figure 7 shows the time spent in the search (in seconds) for the algo-
rithms applying the studied operators over all instances. The X axis represents the different
instances, while the Y axis indicates the average time for each algorithm. The fastest approach
is when applying OX, due to its simplistic mechanism to generate the offspring. Meanwhile the
slowest one is the GA using EX; the reason is the complex procedure to find the linkage among
pieces. Algorithms using BIL, OX and PMX spend very similar times in the search process;
but a difference between BIL and the other two are observed as M increases. This is due to
the search of the best levels to transmit and principally to the time incurred in the search of
the pieces that not belong to the k levels which do not transmitted already. Using the test of
multiple comparisons of Bonferroni, we verified that OX and CX present very similar execution
times while the differences among the other recombination operators are significant.

In order to analyze the trade-off between exploration and exploitation, the behavior of the
studied operators is illustrated over the instance with M=200 (similar results are obtained with
the rest of the instances), in function of the evolution of average population fitness and entropy.
Figure 8 presents the evolution of the population entropy (Y axis) with respect to the number
of generations (X axis) while Figure 9 plots the average population fitness (Y axis). We can
observe that the best trade-off between exploration and exploitation is obtained by the BIL
operator, because it presents the lowest average population fitness together with high entropy
values and a quick convergence.

1135



0

0.2

0.4

0.6

0.8

1

0 6700 13400 20200 27000 33800 40600 47400 54200 61000

evaluations

e
n

tr
o

p
y

PMX

OX

BIL

EX

CX

Figure 8: Population entropy for all the
algorithms (instance with M=200).

200

250

300

350

400

450

500

0 7100 14200 21400 28600 35800 43000 50200 57400 64600

evaluations

fi
tn

e
ss

PMX

OX

BIL

EX

CX

Figure 9: Average population fitness for all
algorithms (instance with M=200).

To summarize the findings of this section, it is clear that the GA using the BIL operator,
a problem-specific mechanism, computes very good average values regarding all the metrics
analyzed in this work, and, moreover it presents the best trade-off between exploration and
exploitation.

6 CONCLUSIONS

In this paper we intend to design better algorithms to solve the 2SPP. The selected research
line is that of hybridization. For that we compare different recombination operators against
the best inherited level recombination (BIL), included all of them in the basic search template
of a GA. The study validates results from a statistical point of view, as well as analyzes the
capacity of the recombination operators to generate new potentially promising individuals and
the ability to keep a diversified population.

Our results show that our new recombination operator incorporating specific knowledge from
the problem works properly. It provides a good sampling of the search space in all instances
and also exhibits a satisfactory trade-off between exploration and exploitation of the search
space.

We noticed that the used problem representation is maybe decoupling the search of the
algorithms from the actual problem. In the future we will investigate non-permutation repre-
sentations and a direct mapping to the final disposition of the pieces.

ACKNOWLEDGEMENTS

This work has been partially funded by the Spanish Ministry of Education and the European
FEDER under contract TIN2005-08818-C04-01 (the OPLINK project, http://oplink.lcc.uma.es).
We also acknowledge the Universidad Nacional de La Pampa, and the ANPCYT in Argentina
from which we received continuous support.

REFERENCES

[1] E. Alba, J. Luna, L.M. Moreno, C. Pablos, J. Petit, A. Rojas, F. Xhafa, F. Almeida, M.J. Blesa,
J. Cabeza, C. Cotta, M. Dı́az, I. Dorta, J. Gabarró, and C. León. MALLBA: A Library of
Skeletons for Combinatorial Optimisation, volume 2400 of LNCS, pages 927–932. Springer, 2002.

1136



[2] T. Bäck, D. Fogel, and Z. Michalewicz. Handbook of evolutionary computation. Oxford University
Press, New York, 1997.

[3] C.E. Bonferroni. Teoria statistica delle classi e calcolo delle probabilitá. Pubblicazioni del R
Istituto Superiore di Scienze Economiche e Commerciali di Firenze, 8:3–62, 1936.

[4] A. Bortfeldt. A genetic algorithm for the two-dimensional strip packing problem with rectangular
pieces. European Journal of Operational Research (article in press), 2005.

[5] L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold, 1991.

[6] S.P. Fekete and J. Schepers. On more-dimensional packing III: Exact algorithm. Technical
Report ZPR97-290, Mathematisches Institut, Universität zu Köln, available from the first author
at Department of Mathematics, 1997.

[7] D.E. Goldberg and R. Lingle. Alleles, loci, and the tsp. Grefenstette, J.J., (editor), Proceedings
of the First International Conference on Genetic Algorithms, pages 154–159, 1985.

[8] J.J. Grefenstette. Genetic Algorithms and Simulated Annealing, chapter Incorporating problem
specific knowledge into genetic algorithms, pages 42–60. Morgan Kaufmann Publishers, 1987.

[9] E. Hopper. Two-dimensional packing utilising evolutionary algorithms and other meta-heuristic
methods. PhD thesis, University of Wales, Cardiff, U.K., 2000.

[10] E. Hopper and B. Turton. An empirical investigation of meta-heuristic and heuristic algorithms
for a 2d packing problem. European Journal of Operational Research, 128(1):4–57, 2000.

[11] E. Hopper and B. Turton. A review of the application of meta-heuristic algorithms to 2d strip
packing problems. Artificial Intelligence Review, 16:257–300, 2001.

[12] S. Hwang, C. Kao, and J. Horng. On solving rectangle bin packing problems using genetic
algorithms. IEEE International Conference on Systems, Man, and Cybernetics - Humans, Infor-
mation and Technology, 2:1583–1590, 1994.

[13] S. Jakobs. On genetic algorithms for the packing of polygons. European Journal of Operational
Research, 88:165–181, 1996.

[14] B. Kroger. Guillotineable bin-packing: a genetic approach. European Journal of Operational
Research, 84:645–661, 1995.

[15] D. Liu and H. Teng. An improved BL-algorithm for genetic algorithm of the orthogonal packing
of rectangles. European Journal of Operational Research, 112:413–420, 1999.

[16] A. Lodi, S. Martello, and M. Monaci. Two-dimensional packing problems: a survey. European
Journal of Operational Research, 141:241–252, 2002.

[17] S. Martello, S. Monaci, and D. Vigo. An exact approach to the strip-packing problem. Informs
Journal on Computing, 15:310–319, 2003.

[18] M. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Springer, third
revised edition, 1996.

[19] C.L. Mumford-Valenzuela, J. Vick, and P.Y. Wang. Metaheuristics: Computer Decision-Making,
chapter Heuristics for large strip packing problems with guillotine patterns: An empirical study,
pages 501–522. Kluwer Academic Publishers BV, 2003.

1137



[20] I.M. Oliver, D.J. Smith, and J.R.C. Holland. A study of permutation crossover operators on the
traveling salesman problem. Grefenstette, J.J., (editor), Proceedings of the Second International
Conference on Genetic Algorithms, pages 224–230, 1987.

[21] J. Puchinger, G.R. Raidl, and G. Koller. Solving a Real-World Glass Cutting Problem, volume
3004 of LNCS, pages 162–173. Springer, 2004.

[22] C. Salto, J.M. Molina, and E. Alba. Sequential versus distributed evolutionary approaches for the
two-dimensional guillotine cutting problem. Proceedings of International Conference on Industrial
Logistics (ICIL 2005), pages 291–300, 2005.

[23] C. Salto, J.M. Molina, and E. Alba. Analysis of distributed genetic algorithms for solving cutting
problems. to appear in International Transactions in Operational Research, 2006.

[24] T. Starkweather, S. McDaniel, K. Mathias, C. Whitley, and D. Whitley. A comparison of genetic
sequencing operators. R. Belew and L. Booker (editors), Proceedings of the Fourth International
Conference on Genetic Algorithms, pages 69–76, 1991.

[25] P.Y. Wang and C.L. Valenzuela. Data set generation for rectangular placement problems. EJOR,
134:378–391, 2001.

[26] D. Whitley, T. Starkweather, and D. Fuquay. Scheduling problems and traveling salesmen: the
genetic edge recombination operator. J. Schaffer (editor), Proceedings of the Third International
Conference on Genetic Algorithms, pages 133–140, 1989.

1138


