
Timed Consistency: Unifying Model of

Consistency Protocols in Distributed Systems

Francisco J. Torres-Rojas1 and Esteban Meneses2

1 Centro de Investigaciones en Computación e Informática Avanzada (CIenCIA) and
Instituto Tecnológico de Costa Rica {torres@ic-itcr.ac.cr}

2 Centro de Investigaciones en Computación (CIC) and Instituto Tecnológico de
Costa Rica {emeneses@ic-itcr.ac.cr}

Abstract. Ordering and timeliness are two different aspects of consis-
tency of shared objects in distributed systems. Timed consistency [12] is
an approach that considers simultaneously these two elements according
to the needs of the system. Hence, most of well known consistency proto-
cols are candidates to be unified under the Timed consistency approach,
just by changing some of the time or order parameters.

Key words: timed consistency, consistency protocols, distributed systems.

1 Introduction

A distributed application is built up from processes executed at different nodes
from possibly distant locations. One important problem arises when we want
to maintain the consistency of the state shared by such processes. This task
cannot be considered trivial, given the failures in the system and delays in the
communication architecture. When conceiving a protocol that guarantees the
consistency in distributed systems, two important elements must be faced: or-
dering and timeliness [3, 12]. The ordering aspect defines the possible orders in
which operations can be executed and perceived by the participant sites, while
the timeliness defines how soon the effects of a operation in some process are
known by the other processes.

Many distributed applications are built over distributed systems that use
shared information through caching and replication of data. Objects are gener-
ally cached at user sites to enhance reliability or to improve performance. Thus,
one of the major problems is keeping all the copies of the same object consistent.
This means, for instance, that if one user update a copy of some object, we need
to ensure that the other copies are consistent. However, many users could be
changing objects concurrently and these operations induce some causal relation-
ships among them. Timed consistency [12] is a model where both issues, ordering
and timeliness, are addressed. These two elements can be set independently, giv-
ing different arrangements for different requirements. This paper presents this
model as a unifying vision of most of consistency protocols in distributed sys-
tems.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15779337?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The idea behind the unification of consistency protocols consists in locating
each protocol in some point for the different axes: time and order. Consider,
for example, two popular consitency protocols: linearizability([5]) and sequen-
tial consistency([8]). Intuitively, linearizability requires that a read operation
returns the value written by the last preceeding write event in real-time occur-
rence order. On the other side, sequential consistency states that a multiprocess
program exectues correctly if its results could have been produced by executing
that program on a single processor system. Timed consistency([12]) requires that
∆ time units after some write is produced its effects should be visible for all the
rest of sites in the distributed system. Timed consistency unify the former two
protocols by changing the value for ∆ from ∆ = 0 for linearizability and ∆ = ∞
for sequential consistency.

Some fundamental concepts of consistency models in distributed systems are
reviewed in Section 2. The timed consistency model for distributed objects is
presented in Section 3. In Section 4, we explore the timed consistency approach
as a unifying model for different protocols. The paper is concluded in Section 5.

2 Consistency revisited

A distributed system consists of N user processes and a distributed data storage.
Because of caching and replication, several, possibly different, copies of the same
data objects might coexist at different sites of the system. Thus, a consistency
model, understood as a contract between processes and the data storage, must
be provided. There are multiple consistency models [1–3, 5, 8, 11, 12].

The global history H of a distributed system is the partially ordered set of all
operations occurring at all sites of the system. Hi is the sequence of operations
that are executed on site i and it is a totally ordered set. If a occurs before b in
Hi we say that a precedes b in program order. In order to simplify, we assume
that all operations are either read or write, and that each value written is
unique. These operations take a finite, non-zero time to execute, so there is a
time elapsed from the instant when a read or write “starts” to the moment
when such operation “finishes”. Nevertheless, for the purposes of this paper, we
associate an instant to each operation, called the effective time of the operation.
We will say that a is executed at time t if the effective time of a is t.

If D is a set of operations, then a serialization of D is a linear sequence S
containing exactly all the operations of D such that each read operation to a
particular object returns the value written by the most recent (in the order of
S) write operation to the same object. If ≺ is an arbitrary partially ordered
relation over D, we say that serialization S respects ≺ if ∀ a, b ∈ D such that a
≺ b then a precedes b in S .

Intuitively, one would like that any read on a data item X returns a value
corresponding to the results of the most recent write on X. In a groupware editing
system this could mean that any change to some section of the document must
be seen for every other user as soon as it is required. Assuming the existence of

absolute global time, this behavior can be modeled with linearizability [5] (also
called atomic consistency, [9]):

Definition 1. History H satisfies linearizability (LIN) if there is a serialization
S of H that respects the order induced by the effective times of the operations.

A weaker, but more efficient, model of consistency is sequential consistency
as defined by Lamport in [8]:

Definition 2. History H satisfies sequential consistency (SC) if there is a se-
rialization S of H that respects the program order for every site in the system.

SC does not guarantee that a read operation returns the most recent value
with respect to real-time, but just that the result of any execution is the same as
if the operations of all sites were executed in some sequential order, and the oper-
ations of each individual site appear in this sequence in the order specified by its
program. For instance, History H presented in 1.a) is sequentially consistent, be-
cause 1.b) shows the required serialization S . Although SC can be implemented
in a more efficient way than LIN and it is a programmer-friendly model, it has
been shown that SC has performance problems [1, 11]. An efficiency-based com-
parison between SC and LIN has been made in [4]. On the other side, a SC
induction protocol from a LIN perspective appears in [10].

Site 3

Site 0

Site 4

Site 2

Site 1

r 0(A)9 r 0()5Bw0(B)4 w0(C)6

122
207

274
340

523
707

403
301

78 144
14

91 572
436

155

r 1(B)2 r 1(A)0 w1(A)9 r 1(B)5 r 1(C)7

w2(C)3 r 2(A)0 w2(B)5 w2(C)7 w2(A)8 w2(A)10

r 3(B)0 w3(B)1 r 3(B)5r 3(B)2r 3(A)0

r 4(C)0 r 4(C)3 r 4(C)6 r 4(C)7w4(B)2

r 4(C)0 r 3(B)0 w0(B)4 w2(C)3 r 2(A)0 w3(B)1 r 3(A)0 w4(B)2 r 4(C)3 r 3(B)2 r 1(B)2 r 1(A)0 w0(C)6 w1(A)9 r 0(A)9 w2(B)5 r 1(B)5 r 0()5B

r 3(B)5 r 4(C)6 w2(C)7 r 4(C)7 r 1(C)7 w2(A)8 w2(A)10

b) Serialization that respects program order

a) Sequentially Consistent Execution

767
669

338
211

861
680

526
250

188

9

Time

Fig. 1. Distributed history compliant with sequential consistency

An even weaker model of consistency is causal consistency [2]. First, let Hi+w
be the set of all the operations in Hi plus all the write operations in H. Second,

we modify the happens-before relationship “→” for message passing systems as
defined in [7] to order the operations of H. Let a,b and c ∈ H, we say that a →
b, i.e., a happens-before (or causally precedes) b, if one of the following holds:

1. a and b are executed on the same site and a is executed before b.

2. b reads an object value written by a.

3. a → c and c → b.

Two distinct operations a and b are concurrent if none of these conditions
hold between them.

Definition 3. History H satisfies causal consistency (CC) if for each site i
there is a serialization Si of the set Hi+w that respects causal order “→”.

Thus, if a,b and c ∈ H are such that a writes value v in object X, c reads
the same value v from object X, and b writes value v’ into object X, it is never
the case that a → b → c. CC requires that all causally related operations be
seen in the same order by all sites, while different sites could perceive concurrent
operations in different orders. CC is a model of consistency weaker than SC,
but it can be implemented efficiently [2, 11].

3 Timed Consistency Model

In neither SC nor CC real-time is explicitly captured, i.e., in the serializations
of H or Hi+w operations may appear out of order in relation to their effective
times. For instance, in Figure 1 the serialization in part b) shows event r1(B)5
occurring before w2(A)8, but the latter event occurred at time 523, while the
former occurred at time 680. In CC, each site can see concurrent write opera-
tions in different orders. On the other hand, LIN requires that the operations be
observed in their real-time ordering. Ordering and time are two different aspects
of consistency. One avoids conflicts between operations, the other addresses how
quickly the effects of an operation are perceived by the rest of the system.

Timed consistency (TC) as proposed in [12] requires that if the effective
time of a write is t, the value written by this operation must be visible to all
sites in the distributed system by time t + ∆, where ∆ is a parameter of the
execution. It can be seen that when ∆ = 0, then TC becomes LIN. So, TC can
be considered as a generalization or weakening of LIN.

The execution showed in Figure 2 satisfies SC and CC. Up to the second
operation of Site 1, the execution satisfies TC for the value of ∆ presented in
this figure, but, by that same instant, LIN is no longer satisfied. After this point,
the execution is not even timed because there are read operations in Site 1 that
start more than ∆ units of real-time after Site 0 writes the value 7 into object
X and these read operations do not return this value.

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

Site 0

Site 1

Time

r(X)1r(X)1r(X)1r(X)1w(X)1

w(X)7

∆

Fig. 2. A non-timed sequentially consistent execution

3.1 Reading on Time

In timed models, the set of values that a read may return is restricted by the
amount of time that has elapsed since the preceding writes. A read occurs on
time if it does not return stale values when there are more recent values that
have been available for more than ∆ units of time. This definition depends on the
properties of the underlying clock used to assign timestamps to the operations
in the execution. Let T (a) be the real-time instant corresponding to the effective
time of operation a.

Definition 4. Let D ⊆ H be a set of operations and S a serialization of D.
Let w, r ∈ D be such that w writes a value into object X that is later read by r,
i.e., w is the closest write operation into object X that appears to the left of r
in serialization S. We define the set Wr, associated with r, as: Wr={w’ ∈ D |
(w’ writes a value into object X) ∧ (T(w) < T(w’) < T(r) - ∆)}. We say
that operation r occurs or reads on time in serialization S, if Wr = ∅. S is
timed if every read operation in S occurs on time.

Figure 3 illustrates Definition 4, presenting a possible arrangement of read
and write operations over the same object. Operation r reads a value previously
written by operation w. Since operation w1 was executed before w, it has no
effect on whether r is reading on time or not. Similarly, although w4 is more
recent than w, the interval ∆ has not elapsed yet when r is executed, and, thus,
it is acceptable that r does not observe the value written by w4. On the other
hand, operations w2 and w3 occur after w, and the values written by then have
been available in the system for more than ∆ units of time when r is executed.
Thus, w2 and w3 are in Wr, and, therefore, operation r does not occur on time.
The area between T (w) and T (r)-∆ represents the interval of time associated
with the set Wr, which according to definition 4 must be empty if r reads on
time (i.e. no write operation to the same object read by r can occur in this
interval).

∆

�����������
�����������
�����������

�����������
�����������
�����������

Time

4321 wwww

T(r)∆T(r) −T(w)

rW

Fig. 3. Operation r does not read on time

3.2 Timed Sequential Consistency and Timed Causal Consistency

Now, we combine the requirements of well-known consistency models such as
SC and CC with the requirement of reading on time.

Definition 5. History H satisfies timed sequential consistency (TSC) if there
is a timed serialization S of H that respects the program order for each site in
the system.

Definition 6. History H satisfies timed causal consistency (TCC) if for each
site i there is a timed serialization Si of Hi+w that respects causal order “→”.

Figure 4 presents a hierarchy of different consistency models. Every sequen-
tially consistent execution is also linearizable, but the opposite is not necessarily
true. Similarly, every causally consistent execution is sequentially consistent,
while the contrary is not always true. The proofs for these results and some
implementation details can be found in [12]. The idea behind these definitions is
to show how it is possible to offer flexibility for the consistency protocol in our
model; without losing the real-time considerations, consistency aspects can be
relaxed, passing from SC to CC.

SC

TSC

LIN
TCC

CC

Fig. 4. Hierarchy of consistency models

4 Unifying Model

Timed consistency offers the flexibility of changing two aspects for characterizing
a consistency protocol for distributed systems. This feature permits many pro-
tocols to be included inside the timed consistency framework. It can be analyzed
the effect of modifying the parameters in each of these dimensions.

Firstly, the order dimension can be set according to the different set of dis-
tributed histories the system is able to admit. So, this parameter can be set to
be LIN, SC, CC or any other ([6]). In figure 5 it is presented different values for
the order dimension. We can see that linearizability is the most restrictive order
value. Then sequential consistency is more weaker, but still harder than TSO
(total store ordering, [6]). CC is still weaker than TSO as well as PC (processor
consistency,[6]). However, there is no inclusion relation between CC and PC.
The weakest order protocol is PRAM (pipelined RAM,[6]).

CC

PRAM

PC

TSO

SC

LIN

Fig. 5. Different order protocols

On the other side, the time dimension is dominated by the value of ∆. Setting
different values for this parameter will produce different protocols. In figure 6 it
can be seen the effects of changing the value for ∆. Firstly, for a zero value of
∆ it is obtained linearizability. This is clear, as LIN requires that any effect of
some write operation is seen immediately in the rest of sites of the system. Any
other value for ∆ will produce a different TSC protocol.

However, the assignment ∆ = ∞ will produce SC as the effects of some
write are not needed to be perceived by the rest of sites even for a large value
of ∆. So, it can be assumed that the time elapsed since the execution of some
event to the receipt of that change could be infinity. This last observation is
related with some convergence notion explored in [13]. Intuitively, SC doesn’t
offer convergence in the sense that SC doesn’t guarantee that at some specified

time t all processor will agree in the value for some distributed shared object.
Such time t cannot be stablished by SC.

LIN

(∆ > β, ∀ β)SC

TSC (∆ > 0)

(∆ = 0)

Fig. 6. Varying the value of ∆

5 Conclusions

In this paper, we have presented a consistency model from the distributed com-
puting perspective to be considered as unifying principle for consistency proto-
cols in distributed systems.

Timed consistency models examine interesting temporal relationships be-
tween objects and sites that form a distributed system, and are able to capture
requirements that are not easily expressed by standard consistency models such
as SC and CC.

A timed consistency model defines a maximum acceptable threshold of time
(i.e., parameter ∆) after which the effects of a write operation must be avail-
able to the entire distributed system. By combining the requirements of timed
consistency and those of a consistency criteria such as SC and CC, we propose
TSC and TCC.

The value of ∆ is the result of a trade-off between the need of perceiving
changes to shared objects in a timely fashion and the availability of resources in
the system. Small values of ∆ require more communication overhead and may
decrease the scalability of the system (e.g., in extreme cases, local caches become
useless), while large values of ∆ require less expensive methods but reduce the
timeliness of the information and the actual sharing of information by the sites.

References

1. Adve, S. and Gharachorloo, K. Shared Memory Consistency Models: A Tutorial.
Western Research Laboratory, Research Report 95/7, 1995.

2. Ahamad, M. et al. Causal memory: definitions, implementation and programming.
Distributed Computing. September, 1995.

3. Ahamad, M. and Raynal, M. Ordering and Timeliness: Two Facets of Consis-

tency?, Future Directions in Distributed Computing, 2003.

4. Attiya H. and Welch J.L.. Sequential Consistency versus Linearizability. ACM
TOCS, 1994.

5. Herlihy, M. and Wing, J. Linearizability: A Correctness Condition for Concurrent

Objects. ACM Transactions on Programming Languages and Systems. Vol 12(3),
July 1990.

6. Kohli, Prince, Neiger, G. and Ahamad, M. A Characterization of Scalable Shared

Memories. Technical Report GIT-CC-93/04, College of Computing, Georgia Insti-
tute of Technology, 1993.

7. Lamport, L. Time, Clocks and the Ordering of Events is a Distributed System.
Communications of the ACM, vol 21, July, 1978.

8. Lamport, L. How to make a Multiprocessor Computer that correctly executes Mul-

tiprocess Programs. IEEE Transactions on Computer Systems, C-28(9), 1979.
9. Misra J. Axioms for Memory Access in Asynchronous Hardware Systems. ACM

TOPLAS, 8(1), 1986.
10. Raynal, M. Sequential Consistency as Lazy Linearizability. SPAA’02, Winnipeg,

Manitoba, Canada, 2002.
11. Torres-Rojas, F. J., Ahamad, M. and Raynal, M. Lifetime Based Consistency Pro-

tocols for Distributed Objects. Proc. 12th International Symposium on Distributed
Computing, DISC’98, Andros, Greece, September 1998.

12. Torres-Rojas, F. J., Ahamad, M. and Raynal, M. Timed Consistency for Shared

Distributed Objects. Annual ACM Symposium on Principles of Distributed Com-
puting PODC’99, Atlanta, Georgia, 1999.

13. Torres-Rojas, F. J. and Meneses, E. Analyzing Convergence in Consistency Proto-

cols for Distributed Systems. Technical Report. Center for Research in Computing,
Costa Rica Institute of Technology, 2004.

