
Potential Programming Plan and Domain Concept
Detection Supported by Slicing Technique

Gustavo Villavicencio
Facultad de Matemática Aplicada

Universidad Católica de Santiago del Estero
4200 Campus de la UCSE, Santiago del Estero, Argentina

Abstract

Little has been written about the component provision problem (programming plans
and domain concepts) for the repositories of knowledge in program understanding systems
and reports that specifically address this issue are unknown. Model-driven and plan-driven
approaches use repositories where construction and evolution are informal and depend on
the experts. In domains where the expert is not available theonly valid source of infor-
mation is the source code. But, domain concept design and programming plans from the
source code by non-expert professionals is not a trivial task.

In this paper, a hybrid top-down/bottom-up approach based on algorithmic pattern
matching and slicing techniques has begun to be defined in order to provide plans or con-
cepts (termed activities in the model-driven approaches) to the knowledge base. Initially,
the exploration area is restricted by slicing techniques, and then, software inspection tools
are used to further limit the relevant areas. Finally, the initially hypothesized pattern is
matched with these segments.

Keywords:Program understanding, programming plans, program slicing, domain model,
constraint satisfaction problems, partial constraint satisfaction problems.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15779275?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

The construction and evolution of the knowledge repositories of the plan-driven [29, 7] and
model-driven [11, 12] approaches have always been dependent on the software engineer’s expe-
rience on the domain problem. Regarding this topic, [13] describes the problems in the model-
driven approach; and the situation isn’t much better in the plan-driven approach as it is argued
in [21].

So, both model-driven and plan-driven approaches have the same problem: their main
knowledge repository is constructed and evolves in an intuitive manner. Therefore, we have
a great problem in our hands: The main component of the systemunderstanding is constructed
and maintained in a deficient way; what can we expect on effectiveness, precision, etc.?. The
situation is even worse in areas where the expert is not available. Must we resign the use of
these technologies in those cases?

Here we are providing a more pragmatic approach to the potential programming plan (PPP
hereafter) detection problem than those in [25, 26]. It is a combination of those described briefly
in [21] and in [25, 26]. Besides, this technique has a strong automatic support that enormously
increases process agility.

The proposed technique allows engineers, maintainers, etc. to explore the source code for
detecting PPPs and domain concepts (DCs hereafter)1 in the domain. The scope of the source
code to analyze is reduced by applying slicing technique [28]. The detected PP instance pro-
vides the information to scale-up to the DC.

The present work is continuation of [25, 26] where slice-to-slice matching2 is performed
to design PPPs from the source code. However, the number of slices calculated in real-world
systems makes the technique very hard to apply. So, a more pragmatic approach is required.

On the other hand, [13] relate DCs toExecutable Concept Slicing(ECS). Essentially, the
information in the domain model is used to construct high level slicing criteria to obtain the
ECS (top-down approach).

The present work tries to combine both top-down and bottom-up approaches to program un-
derstanding. On one side, the imprecise knowledge of the domain problem and the applications
in it, is expressed as PPP (top-down). On the other side, a useful program slice is calculated
(bottom-up). The PPP is matched with the slice and, startingfrom here, the PPP is improved
and the involved DC detected. A graphical view is shown in fig.1.

The contributions of this paper are:

1. According to the bibliographical information available, no other technique has been pro-
posed to “feed” PPs and/oraction concepts(activities) [11, 12] to the repositories of
knowledge.

2. It is the first attempt of combining concept assignment andPPs with slicing technique.

3. Slicing techniques are used for a purpose they have never been used before.

4. In [20, 21] et al. a code-driven approach is presented as animprovement of the library-
driven approach [15] et al. The present technique, would lead a plan/slice-driven ap-
proachto recover programming plans and also action concepts.

1In our context DC will be synonymous to action concept [11, 12] or domain activities.
2The matching process is executed bypartial constraint satisfaction algorithms[27].

✬

✫

✩

✪(Top−down)
Harman et al.

Domain
concept

(Top−down/Bottom−up)

Conceptual
level

Implementation
level

Structural
level

Plan

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

SliceSlice

concept
Domain

This paper

Figure 1: Approaches to relate DCs to slices

The rest of this paper is organized as follows: Section 2 gives a very quick overview on
PP concepts and its relation to DC. Section 3 analyzes how theslicing technique is used in this
approach. The strategy is presented in section 4. Then, an example is developed in section 5.
Finally, future directions and conclusions are presented in sections 6 and 7 respectively.

2 Background

2.1 Plan Recognition

In general, there is a uniform criterion among the authors inthe program understanding area
about what concepts likecliché, PP, pattern, andprogram templatemean. So, in [19] a pattern
is defined as solutions to recurring problems at different levels of abstraction (e.g. code pattern,
design pattern, and architectural pattern). In [30], the clichés are defined as commonly used
data structures and algorithms that implement higher levelabstractions. In [8] a plan denotes
a description or representation of a computational structure that the designer has proposed as a
way of achieving some purpose or goal in a program. But, a planis not necessarily stereotypical
or repeatedly used; it may be novel or idiosyncratic [8].

Therefore, a PP represents a scheme in which a problem can usually be solved by compu-
tational means. The scheme is mainly represented in terms ofstructural information, data and
control flow. The PPs are stored in libraries. Pattern matching algorithms explore the libraries
in order to detect instances of PPs in the source code. A pattern can be structural if it is only
based on syntactical structure, or behavioral if its components have restrictions based on control
and data flow. Here we are interested in the last kind of PPs, i.e. based onconstrain satisfaction
algorithms[21, 20] et al.

In [5], Biggerstaff claims that programming plan technologies cannot be applied to real-
world systems. However, [20] claim the opposite.

2.2 PPs and DCs

[23] provides a domain concept definition focused on activities.

(. . .) Such concepts are encoded as plans, which are abstract representations em-
bodying the knowledge about program concept components andconstraints.

Based on this evidence, we can argue that the PPPs can supplystructural evidencefor the design
of concepts (activities) at the domain model. We also argue that, in order to scale-up to action
concepts, a great part of the information can be obtained from the detected PPP, or at most, from
the surrounding code (the slice).

But, can we include slicing technique in the previous context? We argue that it is possible.
On one side, [13] relate DCs to ECS. This is a refined idea of that presented in [7] which talks
aboutconceptual slices. On the other side, [25, 26] relate slicing technique to PPs.In this paper
we are trying to “close the circle” arguing that PPs provide structural evidence for constructing
a DC in a domain model. However, the same programming plan canbe shared by more than
one DC. Therefore, further analyses of the surrounding source code (the slice) would have to be
carried out to find the concept to which the plan is linked.

Thus, the importance of detecting a PP first is that it defines the surrounding source code
from which to obtain evidence to scale-up to the DC.

3 Slicing Technique Role

A static sliceis calculated with respect to aslicing criterionwhich includes a program location
(usualy a line number) and a variable of interest. Then, a sub-program is computed performing
a dependency analysis (data and control flow analyses). It includes all sentences to which the
variable in the slicing criterion is related. For an overview on this technique see [6] et al.

In our approach, we will try to exploit thereducing power of the slicing technique to limit the
space of the PPP search. To achieve this, the calculation of auseful slice will be necessary. But
[13], talking about how to detect the segment that executes the mortgage calculationconcept,
said

Unfortunately, pure slicing cannot help unless the engineer knows which variables
are important for this computation.

We agree that it is so, but we cannot ignore the informal information utility [2, 3, 4] et al. which
combined with astring pattern matchingtechnique, can quickly solve this problem. We must
also consider that a program understanding process cannot be possible without any pre-existing
knowledge on the subject program and domain problem as it is argued in [22].

4 Detecting PPPs and DCs

The strategy that will be described in this section has an important automatic support, not only
to inspect the source code but also the specifically calculated slice. The matching phase also has
automatic means.

Figure 2 shows the graphic to keep in mind during the description. For a more precise
illustration of the process SADT notation was used.

✬

✫

✩

✪

domain
of the

Knowledge

Source
code

Design
Tool Design

Tool

Design
ToolBrowser

Reduce

a plan
Hypothesize

scope

analysis
Dependency

Constraints

Slicer

Abstraction

plan

Concept

AbstractionBrowser

PPP

concept
domain
Design

Matcher
Plan

Browser Abstraction

string
Match Calculate

slice

Improve

Partially
match

BrowserString
pattern
matcher

Figure 2: The process in SADT format

4.1 Hypothesized Plan

When a DC is searched, the reverse engineer has in mind, amongother things, some kind of
abstract algorithmical morphology, which should be present in the concept. But if this ideal
representation does not have a concrete existence, its utility decreases.

Thus, based on the pre-existing knowledge of the domain and the applications in it, the
reverse engineer proposes a PPP related to the DC. This activity is similar to that proposed in
[21]. But in our case, the PPP leaves the programmer’s mind and has a real existence. This
plan expresses the imprecise knowledge the reverse engineer has regarding the pattern searched.
It will only be composed of basic components and some restrictions among them. In order
to adopt the terminology used in [21], the PPP designed here will be termedplan exampleor
hypothesized plan.

We use this kind of imprecise knowledge because we propose anautomatic support to handle
it: Algorithms ofpartial constraint satisfaction problems(PCSP) [10, 27].

4.2 String Matching

Based on the limited knowledge about the subject application, the reverse engineer searches for
significant character sequences in the source code. The aim here is to focus the reverse engi-
neer’s attention on the significant segments. The tools usedcan be diverse, simple likegrep
or more complex like ESPaRT [19]. Actually, this last tool can detect very complex syntactical
patterns. However,CodeSurfer[1] andProgram Slice Browser(PSB) [9] can also provide string
searching mechanisms.

Commonly, the request is focused on the data, but it will not always be so. Some cases will
require to explore comments; others will require typical sentences, procedure names, etc. These
alternative heuristic searches can be used to approximate us to the sentences we are interested
in and study the surrounding code. The aim is to gather evidence on a specific data item; that
which is the output of theplan example. This kind of variables are calledprincipal variables
in [13] where they are used to detect thekey statementsof the concept by slicing technique.
Similarly, here we are trying to detect the principal variables, and then, by means of slicing
technique, gather the sentences that instance a plan.

The fact that the data item is the output of theplan examplewill guarantee then that the
calculated slice will bring all the computations that are plan component instances.

4.3 Slicing

Once relevant data items are detected, a slice is calculatedbased on them. Obviously, the smaller
the slice, the better. So, it is important to specify theslicing criterionbased on correct data.

But several cases can happen when the data item in the slicingcriterion is not the required
one:

• Case 1: The specified data item has no relation with the data item it is looking for. So, the
calculated slice will not bring the plan instance we are interested in.

• Case 2: The computations on the specified data item request computations on the relevant
data item. Therefore, the calculated slice will be greater than necessary.

• Case 3: The computations on the specified data item request some computations on the
relevant data item. In this case, the calculated slice can only bring some or none instances
(computations) of the plan we are interested in.

★

✧

✥

✦
���
���
���

���
���
���

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

�
�
�
�

(Case 1) (Case 2) (Case 3)

Expected sliceCalculated slice

Figure 3: Relation between slices

Figure 3 depicts these situations. Obviously, the second case is the most usual and there are
different levels ofclosenessbetween calculated and expected slices. However, the thirdcase
(fig. 3) can also be successful but it depends on the presence of all the relevant computations in
the intersection region.

A slice is calculated at the end of the program because it is not possible to knowa priori in
which segments of the slice the hypothesized PP components are. They can also be delocalized
[16].

4.4 Reduced Scope

The main target of this phase is detecting those segments in the slice, usually procedures or
functions, where the presence of PP components is expected.In fact, this activity can be omit-
ted depending on the size of the calculated slice. If the slice has a moderate size, the next task
of Partial Matchingcan be executed successfully. At this point, what was previously said in
section 1 acquires importance. That is, the approach we havetaken can also be used to define a
plan/slice-driven approachbased on constraint satisfaction algorithms.

However, when the resulting slice is very large, it might contain more than one programming
plan; that in which we are interested as well as others. The calculated slice does not only recover

sentences that affect directly the data items in the slicingcriterion, but also those sentences that
modify variables that affect the items in the criterion and so on. Therefore, the calculated slice
can contain algorithmical structures indirectly related to the PP that has been searched, and,
consequently, are secondary for our purposes. Therefore, the next task ofPartial Matchingcan
have problems.

The slice inspection (orReduced Scopephase) can be driven by the informal information
in the source code. Thus, for example, the function or procedure names are very significant [2]
and can help us detect relevant segments. Obviously, here weare consideringinter-procedural
slicing [14], which, in our context, is related todelocalized PPs[16].

However, in other cases, the informal information is not sufficient and further analyses
would be needed to detect relevant segments. A heuristic to use in this situation is to obtain
those segments where the variables in the slicing criterionhave been assigned or printed (key
statementsin the context of [13]). Other segments where the variables are only used would be
less relevant because they would not have a direct relation with the components and restrictions
of the hypothesized PP. This task can be supported by a tool like The Finderin CodeSurfer.

Once these sentences are found, the relations with other sentences are analyzed. The tar-
get is to detect some clues of the components and restrictionof the hypothesized PP presence.
These observations must be confirmed afterward in thePartial Matchingphase.

Both,PSBandCodeSurferprovide tools for supporting this slice inspection task.
Up to a degree, during this phase, the reverse engineer obtains a detailed view of the com-

ponents and constraints present in the instance as described by [21] (recall section 1), but differ-
ently; here we have a slice in the background!.

4.5 Partial Matching

At this point, the source code obtained would have been reduced. Theplan examplewould
have been confronted with the critical areas selected in thepreviousReduced Scopeactivity.
The target of this phase is not “understanding” the slice segments obtained by reduction, but
“marking” the zone where there is evidence of the hypothesized PP presence.

Depending on the precision with which the hypothesized PP was described, algorithms of
constraint satisfaction problems(CSP) [20] et al. or PCSP can be applied. The first kind of
algorithms can be used when the reverse engineer relies on a highly accurate plan example.
However, the imprecision introduced during the hypothesizing phase can make the problem
insoluble by CSP algorithms. Therefore, a PCSP algorithm can also be applied. See a formal
description and application example of this last algorithmin [26].

We can say that at this phase we are trying out an “imprecise understanding” as suggested
by [21], but in an entirely different way.

4.6 Improving PP

Since the hypothesized PP is still incomplete, many components and restrictions which were
not considered before can become evident at this moment.

Here, the reverse engineer focuses his attention on algorithmical structures and tries to leave
aside the relations among them, and with those components that already exist in the hypothe-
sized PP. The exploration area in the slice is restricted to those identified in theReduced Scope
activity.

A browser combined with abstraction mechanisms supplied bya reverse engineer is in-
tensely used at this phase. Cross reference capacities are applied to detect the relations among
relevant sentences. In PSB also, irrelevant segments in theslice can be encapsulated in blocks to
reduce the information shown. Emphasizing the important components (sentences and relations
among them) and hiding the irrelevant ones would be very useful capacities at this phase.

4.7 Domain Concept Design

As in the previous activity, the search area for evidence hasbeen restricted by theReduced scope
activity.

Because the main target at this phase is to find action concepts, the reverse engineer’s atten-
tion would be focused on sentences. Specifically, the sentences that instance the PP where the
concept indicators are expected to be found. Usually, thereis an object on which the action is
performed. It would be extracted from the data items that handle the sentences that instance the
PPP. Again, the main “tool” at this phase is the reverse engineer’s abstraction.

These last two activities are entirely manual and there is not any way to replace the reverse
engineer’s abstraction capacity. In an approach as the one just described, technology can only
help to guide and focus the reverse engineer’s attention towards significant segments.

5 An Example

This case study has been achieved on a small, but real-world program. Due to lack of space, the
program source code is not listed. Only the calculated static slice is shown in appendix A. In
order to save space, all the calculated slice commentaries have been omitted.

Suppose, for instance, that we have some source code analyzing tools in the software doc-
umentation area. Specifically, we have a program that extracts and counts the number of com-
ments from C and C++ programs.

Let us suppose, in addition, that we are interested in the pattern thatextracts a C comment.
The final output of this PP would be a comment on the standard output. We suppose a vague
knowledge about the components of the PP and the relations among them. This knowledge can
be depicted as shown in fig. 4.

✬

✫

✩

✪

Extract−c−comment

Detect−begin Outputting−comment

Get−out−char Loop−through−commentRead−ch

putc loopRead−next−ch

getc

Check−ch

Decomposition

Specialization

test−eof’/’ ’*’

Figure 4: Vaguecomment extraction pattern

The main restrictions in the plan example are:

1. The OUTPUTTING-COMMENT component has a control dependency on the DETECT-
BEGIN component.

2. The GET-OUT-CHAR component has a control dependency on the LOOP-THROUGH-
COMMENT component.

3. The GET-OUT-CHAR component has a data dependency with READ-NEXT-CH compo-
nent.

4. The READ-NEXT-CHAR component has a data dependency on the TEST-EOF component.

Now, we will try to extract the slice related to this PP. First, we can execute some kind
of string pattern matching to detect those source code segments where the output variable of
the activity modeled by the PP is defined or used. However, we have no evidence on which
is the string to search on the data items. But, we know that twomacros may be applied on it:
putchar or putc. The search ofputchar by means ofgrep putchar GETCMT.C is negative.
But, positive result is obtained by means ofgrep putc GETCMT.C.

Specifically, analyzing the context of the sentence

putc(chi,stdout)

(executed sentences, comments, etc.) we conclude that thechi variable is the data item which
we are searching, the principal variable (recall section 4.2). Therefore, we use this variable
in the slicing criterion to calculate the slice where we hope to find an instance ofCOMMENT-
EXTRACTION pattern. At the end of this paper we show the calculated slice.

Although the slice has an acceptable size executingPartial Matchingsuccessfully, we as-
sumed it was not so, and achieved some detailed observations. If we were usingCodeSurfer
we would have many ways (using the System Dependency Graph, for instance) to see that both
putc sentences ininside c cmtshave a control dependency on thewhile() sentence (perhaps re-
striction 2). The secondgetc sentence has a data dependency on the conditional in thewhile()
sentence (perhaps restrictions 4). Theputc() sentence has a data dependency on bothgetc in the
while() sentence (perhaps restriction 3). All these sentences are executed becauseinside c cmt
is called byextract c cmtswhere there are sentences that detect the beginning of a comment
(perhaps restriction 1).

Based on this evidence, we can proposeextract c cmtsand inside c cmt as relevant seg-
ments on which to execute thePartial Matchingtask.

Once the exploration space is reduced, the process continues in thePartial Matching task.
Here, the hypothesized plan is confronted with the sentences inextract c cmtandinside c cmt.
The result of the matching is shown in fig. 5.

This is a nice view of the results obtained by the partial matching activity. However, in
larger slices this representation can be impractical. For solving this problem, those sentences
in the source code that instance a component in the plan can beannotated with the component
name.

Based on this evidence we can now improve theplan example. This is a completely manual
activity. Analyzing the surrounding source code to each detected instance, the reverse engineer
completes the hypothesized PP. In this case, the main contribution of these segments to the

✬

✫

✩

✪

Detect−begin

Read−ch Check−ch

Outputting−comment

Extract−comment

Get−out−char Loop−through−comment

LoopTest−eofRead−next−ch

 if(cht == EOF)

int extract_c_cmts()
 {
 register int chi, cht;
 chi = getc(infile);
 while(chi != EOF)
 {
 if (chi == ’/’)
 {
 cht = getc(infile);

 return();

 inside_c_cmt(cht);
 else
 ungetc(cht,infile);
 }

 }
 return;
 }

 }

 void inside_c_cmt(int ch)
 {
 register int chi, cht;
 if(ch == ’/’)
 ch = ’\n’;
 chi = getc(infile);
 while(chi != EOF)
 {
 if(chi == ch)
 {
 if(ch == ’\n’)
 return;
 cht = getc(infile);
 if(cht == ’/’)
 return;
 else
 {

 putc(chi, stdout);
 ungetc(cht, infile);

 chi = getc(infile);

 else

 }

 putc(chi, stdout);

 }
 return;
 }

 chi = getc(infile);

 if(cht == ’*’ || cht == ’/’)

Figure 5: Matching result of the program plan example and theselected segments in the slice

library in fig. 4, is that of providing evidence of a plan that extracts C++ comments. Therefore,
the library must be reestructured to introduce thisspecialisation. At the same time, there are
algorithmical components that are shared by both programming plans that must also be modeled
in the library. The final result is depicted in fig. 6.

Finally, based on the structural evidence provided by the PP, plus the detailed information
in the surrounding source code, we design the correspondingsegment of the domain model as
shown in fig. 7. The notation used in this fig. was taken from [13].

Like theplan exampleimprovement task, the design of concepts is also a manual activity.
The reverse engineer must observe, detect, and abstract from the surrounding code the elements
composing the concepts and how they will be arranged in the library.

Therefore, from the instance of the PP components the reverse engineer obtains theindica-
tors 3 which are evidence of the presence of a concept (action concept in this case) in the source
code. The detected specialisation ofCommentconcept inC-commentandC++-commentis a
typical result of an abstraction task executed consideringthe surrounding source code.

This is a small example. But, a more complex PPP and DC can be designed from a medium-
large COBOL slice as shown in [25].

3Following the terminology used by [11, 12, 13].

✬

✫

✩

✪

Outputting−c−comm

Detect−begin−c−comm Get−out−ch

Outputting−c++−comm

Read−next−ch

Check−prev−ch−begin Check−act−ch−begin Check−prev−ch Check−act−ch

Detect−end−comm Detect−begin−c++−comm Detect−end−c++−comm

Loop

’*’’/’

’\n’

Extract−comment

putc getc

Loop−through−comm

Test−eof

Figure 6: Improvedhypothesized plan

✬

✫

✩

✪

Comment

Extract Comment

C++−CommentC−Comment

"/*" "*/" "//"

"putc""while()""getc"

Extract

Figure 7: Domain model fragment designed from the detected PP and surrounding source code

6 Future Work

The construction of repositories of knowledge for program understanding systems (plan-driven
and model-driven approaches) from the source code is not a trivial activity. The critical ques-
tion: where to begin this process, has not been treated here.And we do not have any answer
either. However, some clues on where to follow once a plan is detected are provided. In [25]
it has already been suggested that the closeness of the plansin the libraries has relation to the
proximity of the data items used to specify the slicing criterion 4. Thus,cluster analysis tech-

4That is, if two slices are calculated on two related data items, and each slice has a programming plan instance,
then these plans are related in the library.

niques[18, 24] can be applied to detect the related PPs. We have no experimental results about
this. However, [13] also propose the use of cluster analysisto detect related concepts.

On the other hand, the combinational explosion that occurs when the constraint satisfaction
algorithms are applied on real source code, has limited the plan-driven technology to the lab-
oratory environment. But, the doubt imposed by Biggerstaffet al. on the applicability of this
technology to real software systems, and partially clearedby [20], could be definitely solved
by a variation of the present approach. In [15] et al. a library-driven approach is taken to plan
recognition. In [21, 20] et al. a code-driven approach is used to detect concepts. This just pre-
sented technique can become the base to a more complex one: The plan/slice-driven approach
to plan recognition. In this context, a string analysis as suggested by [2, 3] for instance, would
be performed. Based on this analysis, acatalog of slicing criteriawould be constructed. Thus,
the matching process would be carried out selecting a slicing criterion from the catalog and a
plan from the library. In this way, the matching algorithms search for plan instances on specific
areas in the source code, in contrast to the whole source codeas up to now. Maybe this research
path is the most exciting finding of this paper.

It would also be very interesting to compare the previously described approach with that in
[17], where the plan library is pruned using a signature-based technique to reduce the search
area.

7 Summary and Conclusions

Up to date, the construction of PP libraries or concept libraries in a knowledge-based concept
assignment approach has been made by domain experts. But, wedo not have any solution for
domains where the expert is not available, nor any techniqueto help the expert provide compo-
nents to the library. So, the construction and maintenance of these libraries is rather erratic [13].

We have outlined a technique that allows to detect plans for plan-driven approaches and/or
provide structural evidence to model activities (action conceptsin [11] et al.) in model-driven
approaches. The theoretic support for the approach is basedon [25, 26] (a slice can implement a
PP) and [13] (a slice can implement a DC). Therefore, the key activity underlying this technique
is program slicing. Its reducing power is applied to limit the search space. A set of automatic
tools is used throughout the process to reduce the set of domain values (slice sentences) that
instance the variables (PP components).

A key component of the strategy is the use of the PCSP algorithms which allow an impre-
cise understanding from where to scale up during theImprovement PlanandDesign Domain
Conceptphases.

A Calculated slice

#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>
#include <string.h>

#define LOOKS_GREAT 1
#define LESS_FILLING 0

int extract_c_cmts(void);
void inside_c_cmt(int);

FILE *infile = stdin;
int show_nos = 0;

main(int argc, char *argv[])
{
register int i;
const char *hype =

"\nGETCMT v1.1 -
GET CoMmenTs\nby Byte_Magic Software\n";

const char *oops =
"\a*** GETCMT - Can’t open input file ";

fputs(hype, stderr);

if (1 < argc)
{
for (i = 1; i < argc; ++i)
{
if (’/’ == *argv[i])
{
if (’l’ == tolower(argv[i][1]))
else
{
int ercode;
ercode = (’?’ == argv[i][1]) ? 0 : -1;
if (ercode)

putc(’\a’, stderr);
return(ercode);

}
}

else
{
infile = fopen(argv[i], "r");
if (!infile)
{
fputs(oops, stderr);
fputs(argv[i], stderr);

}
}

}
}
i = extract_c_cmts();
putc(’\n’, stdout);
return(i);

}

int extract_c_cmts()
{

register int chi, cht;
chi = getc(infile);
while(chi != EOF)
{

if(chi == ’/’)
{

cht = getc(infile);
if(cht == EOF)

return();
if(cht == ’*’ || cht == ’/’)
{

inside_c_cmt(cht);
}
else

ungetc(cht, infile);
}
chi = getc(infile);

}
return();

}

void inside_c_cmt(int ch)
{

register int chi, cht;
if(ch == ’/’)

ch = ’\n’;
chi = getc(infile);
while(chi != EOF)
{

if(chi == ch)
{

if(ch == ’\n’)
return;

cht = getc(infile);
if(cht == ’/’)

return;
else
{

ungetc(cht, infile);
putc(chi, stdout);

}
}
else

putc(chi, stdout);
chi = getc(infile);

}
return;

}

References

[1] P. Anderson and T. Teitelbaum. Software inspection using codesurfer. In1st Workshop on
Inspection in Software Engineering, Paris, France, Jul. 2001.

[2] N. Anquetil. Characterizing the informal knowledge contained in systems. InWorking
Conference on Reverse Engineering, Stuttgart, Germany, October 2-5 2001. IEEE CS
Press.

[3] N. Anquetil and T. Lethbridge. Assessing the relevance of identifier names in a legacy
software system. InCASCON’98, Toronto, Canada, 1998.

[4] N. Anquetil and T. Lethbridge. Recovering software architecture from the names of source
files. Journal of Software Maintenance: Research and Practice, 11:201–221, 1999.

[5] T. J. Biggerstaff, B. Mitbander, and D. Webster. The concept assignment problem in pro-
gram understanding. In15th International Conference on Software Engineering, Balti-
more, Maryland, May 1993. IEEE CS Press.

[6] D. Binkley and M. Harman. A survey of empirical results onprogram slicing.Advances
in Computers, 2004. To appear.

[7] David Ching and Alex Quilici. Decode: A cooperative program understanding environ-
ment.Journal of Software Maintenance, 8(1):3–34, 1996.

[8] Richard Clayton, Spencer Rugaber, and Linda Wills. On the knowledge required to under-
stand a program. InFifth IEEE Working Conference on Reverse Engineering, Honolulu,
Hawaii, October 1998.

[9] Yungo Deng, Suraj Kothari, and Yogy Namara. Program slice browser. In9th IEEE
International Workshop on Program Comprehension, Toronto, Canada, May 12-13 2001.

[10] E. Freuder and R. Wallace. Partial constraint satisfaction. In Proceedings of the Eleventh
International Joint Conference on Artificial Intelligence, Detroit, Michigan, USA, 1994.

[11] N. Gold. Hypothesis-Based Concept Assignment to Support Software Maintenance. PhD
thesis, Department of Computer Science, University of Durham, 2000.

[12] N. Gold. Hypothesis-based concept assignment to support software maintenance. InIEEE
International Conference on Software Maintenance (ICSM’01), pages 545–548, Florence,
Italy, November 2001. IEEE CS Press, Los Alamitos, California, USA.

[13] Mark Harman, Nicolas Gold, Rob Hierons, and David Binkley. Code extraction algorithms
which unify slicing and concept assignment. InIEEE Working Conference on Reverse
Engineering, Richmond, Virginia, USA, October 2002.

[14] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence graphs.
ACM Transactions on Programming Languages and Systems, 12(1):26–61, 1990.

[15] V. Kozaczynski and J. Ning. Automated program understanding by concept recognition.
Automated Software Engineering 1, 1:61–78, March 1994.

[16] S. Letovsky and E. Soloway. Delocalized plans and program comprehension.IEEE Soft-
ware, May 1986.

[17] Y. Limpiyakorn and I. Burnstain. Applaying the signature concept to plan-based program
understanding. InIEEE International Conference on Software Maintenance, Amsterdam,
The Netherlands, September 22-26 2003. IEEE Press.

[18] S. Mancoridis, B. Mitchell, C. Rorres, and Y. Chen. Using automatic clustering to produce
high-level system organization of source code. InInternational Workshop on Program
Comprehension, Ischia, Italy, June 1998.

[19] Martin Pinzger and Harald Gall. Pattern-supported architecture recovery. In10th Interna-
tional Workshop on Program Comprehension, pages 53–61, IEEE CS Press, Paris, France,
June 2002.

[20] Alex Quilici, Steven Woods, and Yongjun Zhang. Programplan matching: Experiments
with a constraint-based approach.Science of Computer Programming, 36:285–302, 2000.

[21] Alex Quilici, Qiang Yang, and Steven Woods. Applying plan recognition algorithms to
program understanding.Journal of Automated Software Engineering, 5(3):347–372, 1998.

[22] Václav Rajlich and Norman Wilde. The role of concepts in program comprehension. In
International Workshop on Program Comprehension, pages 271–278, Paris, France, June
2002.

[23] P. Tonella, R. Fiutem, G. Antoniol, and E. Merlo. Augmenting pattern-based architec-
tural recovery with flow analysis. InThird Working Conference on Reverse Engineering,
Monterrey, California, USA, November 8-10 1996.

[24] Arie van Deursen and Tobias Kuipers. Identifying objects using cluster and concept anal-
ysis. ICSE’99, ACM, 1999.

[25] G. Villavicencio. Program analysis for the construction of libraries of programming plans
applying slicing. InXIV Brazilian Symposium on Software Engineering, João Pessoa,
Paraı́ba, Brasil, October 2000.

[26] G. Villavicencio. Program analysis for the automatic detection of programming plans ap-
plying slicing. In5th European Conference on Software Maintenance and Reengineering.
IEEE CS Press, Lisbon, Portugal, March 2001.

[27] C. Voudouris and E. Tsang. The tunneling algorithm for partial csps and combinatorial
optimization problems. Technical report, University of Essex, September 1994.

[28] Mark Weiser. Program slicing. InFifth International Conference on Software Engineering,
San Diego, California, March 1981.

[29] L. Wills. Automated Program Recognition by Graph Parsing. PhD thesis, AI Lab, Mas-
sachesetts Institute of Technology, 1992.

[30] Linda Wills and Charles Rich. Recognizing a program design: A graph parsing approach.
IEEE Software, pages 82–89, Jun. 1990.

