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Abstract. Consider us the problem of time-varying parameter estimation. The most immediate and 
simple idea is to include a discounting procedure in an estimation algorithm i.e., a procedure for 
discarding (forgetting) old information. The most common way to do is to introduce an exponential 
forgetting factor (FF) into the corresponding estimation procedure (to see: Ljung and Gunnarson 
(1990)).  
 
In this paper, the authors going to describe a good enough estimator considering a system with 
nonstationary time variant properties with respect to input and output qualities. The techniques used 
are Instrumental Variable (IV) and Matrix Forgetting Factor (MFF). The results previously obtained 
by (Poznyak and Medel 1999a, 1999b) were the basis of this paper. The theoretical description 
illustrates the advantages with respect to others filters below cited. 
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1 INTRODUCTION 

In many papers used a constant scalar Forgetting Factor (FF) for to filter a non-stationary system 
in SISO case, for example:  
 
Marco Campiy (1994) exposed in his paper, that the systems with unknown time-varying 
parameters and subject to stochastic disturbances have a problem for tracking parameters because in 
each parameter evolution, resorting to a class of adaptive recursive least squares algorithms, 
equipped with variable FF. The basic assumption in the analysis is that the observation vector, the 
noise and the parameter drift are stochastic processes satisfying a mixing condition. Furthermore, 
the observation vector satisfies an excitation condition imposed on its minimum power. In this 
paper, the author shown that the algorithm estimates with bounded error whenever the so-called 
covariance matrix of the algorithm keeps bounded. Finally, the size of such a matrix by a suitable 
choice of the feasible range for FF is possible to control. 
 
George V. Moustakides (1997) investigated the convergence properties of the FF into RLS 
algorithm by stationary data environment. He used the settling time as a performance measure and 
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shown that the algorithm exhibits a variable performance depending to the particular combination 
of the initialization and noise level. Specifically when the observation noise level is low, the RLS 
had a matrix with small norm and it has an exceptional convergence, i.e., that the convergence 
speed decreases as we increase the norm of the initialization matrix. Now if the observation noise 
level is high, he shown that it is preferable to initialize the algorithm with a matrix of large norm. 
 
Xue and Liu (1991) shown that, when apply a FF to the past data, the convergence is bounded 
exponentially, and prediction coefficients fluctuate around the least squares estimates in the steady 
state, in probability sense.  
 
The studies carried out by us with small FF into standard least square algorithm, increases the 
convergence rate and the set of results have a larger fluctuation around of real values, and Guo, 
Ljung and Priouret (1992) developed the analytical results.  
 
Tsakalis and Limanond (1992) considered to apply the adaptive techniques for to smooth the 
trajectories of the space station setting in orbit with moving payload, and used an adaptive least 
square algorithm with adjustable FF. 
 
On the other hand, Bittanti and Campi (1994a) studied the performance of the recursive least 
squares method with constant FF for to estimate of time-varying parameters in a stochastic systems. 
 
Continuing with their studies Bittanti and Campi (1994b) exposed the properties of this class of 
estimator into stochastic system, showed that if use the standard least square method with a large 
enough FF for tracking, the error keeps bounded, and has in according to them “an interesting 
expression”. In addition, they conclude that the estimation error has two terms: One depending on 
the parameter drift and the other depending on the noises.  
 
The method suggested by Goto, Nakamura and Uosaki (1995) for to estimate on-line the set of 
parameter, considered a linear representation into recursive least squares estimation algorithm with 
ladder FF, and bounded it by the unit zone.  
 
Xue and Liu (1991b) evaluated the asymptotic convergence of the least squares algorithm with FF 
for stochastic inputs and concluding that the convergence is a function of input-output noises 
variance and observed that a small FF the rate of convergence is very “good”, in other case generate  
a set of fluctuations.  
 
In a nonlinear multiaxial thrust vectoring, Ward, Barren and Carley (1994) presented a prediction 
using a sequential least squares estimator and they observed a “good” results.  In a few moths later, 
they prove the sequential least squares estimator with FF and obtained the “best” results. 
 
Ting and Chiders (1990) described a recursive least-squares algorithm with a variable FF, and 
introduced for speech signal analysis. The variable FF was a function of the state changes of the 
estimator. Pahalawatha et al (1990) used to variable FF in the recursive least squares algorithm. 
Bittanti and Campi (1994a) worked a constant FF to parameter tracking with recursive least square 
algorithm in a fully stochastic framework. 
 
Avanzolini, Barbino, Cappello and Cevenini (1995) considered two algorithms: 
a. The least squares algorithm with variable FF: the variable FF is expressed as a function of 

covariance modifications related with to noise around of the system and the noise inside of it, and  



b.The least squares algorithm with constant FF previously selected by Monte Carlo Method.  
 
Park, Jun and Kim (1991) used to least squares algorithm with innovative variable FF into a unity 
zone. 
 
Poznyak and Medel (1999a 1999b) suggested a new approach based on the use of the recursive 
Instrumental Variable Method (IVM) with a constant Matrix FF (MFF) for input and output noises 
into the system, uncorrelated. This tool gave a two times better estimations with respect to previous 
results above cited.   
 
In addition, C. F. So and et. al. (2003) obtained a new variable FF recursive least-square adaptive 
algorithm. They showed that the theoretical analysis and the simulation results are close to each 
other. The adaptive FF use a function generated on the dynamic equation of the gradient of mean 
square error. Their results had compared with other types of variable FF algorithms, and their 
algorithm provides fast tracking and small mean square error, described it by second probability 
moment. 
 
 
2 MODEL DESCRIPTION AND STATEMENT PROBLEM 

Matrix ARMA-model of fixed order nd and noises of  ζτ of the Moving Average type with the same 
order, disturbing the state vector xτ∈RN described by time variant stochastic model: 
 

[ ][ ] ,x,...,xA,...,Ax T
n,1,n,1 dd τττττ ζ+=  

[ ][ ] .,...,D,...,D T
,n,1,n,0 de τττττ ξξζ =  (1) 

 
Where { } d

N
,i n,1i, =ℜ∈τξ  is a white noise vector, centered random variables with distribution and 

fourth bounded moments and { } d
NN

,i n,1i,D =ℜ∈ ×
τ , unknown and deterministic bounded matrices. All 

random sequences { }τξ ,i  are into a filtered probability space { }( )τΩ P,,, i ℑℑ  in agreement to Ash (1972), 
into interval measurable in symbolic form expressed by τ .  
 
Let us also assume that a linear algebraic relation gives the output model in discrete time, which 
also contains a white noise vector: { } d

M
,j n,1i, =ℜ∈τυ , disturbing in additive sense, the measured 

output signal vector My ℜ∈τ :  
 

ττττ υ+= xCy  (2) 
If we considering that NMC ×ℜ∈τ  is a known and has full rank matrix ( ) 0CC T >ττ . The state vector is 
described as: ( )ττττ υ−= + yCx , where ( ) 1T CC:C

−+ = τττ  is knowing as pseudoinverse matrix   (to see: Rao 
1965). Replacing τx  in (1):  
 

[ ][ ] ττττττ ζαα += T
,n,1,n,1 aa

,...,A,...,Ax ,  
with 

( )ττττ υα ,1,1,1,1 y)C( −= +  
M  
( )ττττ υα ,n,n,n,n dd1d
y)C( −= + . 

 



In addition, substituting this result into output signal vector expressed in (2):  
ττττττ νββ +++= ,n,n,1,1 dd

y...yy  (3) 
 
Considering that: { } d,i,i,i n,1i,)C(AC == +

ττττβ , and  ''the generalized noise-signal vector'' vτ   described 
as:  τττττ υΘζν +−= C  with ∑ ==

dn,1i ,i,i τττ υβΘ . 
 
The sequence τυ  has a moving average structure.  Throughout this paper use us the standard vector-
form; then, considering in (3) these properties, expressed in vector-form:  

ττττ ν+= zAy  , (4) 
Where are defined the vector dMnz ℜ∈τ  as ''generalized inputs'' and dMnMA ×ℜ∈τ  as the extended matrix 
of nonstationary parameters:  

[ ][ ]( )
dd n1

T
n

T
1

T y,,yC,,Cz −−−−= τττττ LL , 
[ ][ ]( )

dd n1
T

n
T

1
T A,,AC,,CA −−−−= τττττ LL . (5) 

To deal with nonstationary models (to see: 4) containing a nonstationary unknown matrix τA  as well 
as nonstationary random disturbances expressed in symbolic vector form by τν . Will be require to 
introduce: An exponential discounting mathematical expression knowing as Forgetting Factor  
Matrix (FFM) denoted as R  and defined positive; i.e.: R0 <  and dd MnMnTRR ×ℜ∈= , and Instrumental 
Variable Method (IVM) expressed in  vector  form as dMnℜ∈τϑ . Considering the experience of 
previous result of estimation of nonstationary systems and estimation of nonstationary unknown 
matrix parameters, we suggest to use both in combined form as a tool, with the next properties: 
 
Multiplying both sides of (4) by τ

τϑ −ℜ∈ dnT , exposed in (Poznyak and Medel 1999a), and averaging it 
in time ( )dn,1=τ :  

∑
∑
∑

=
−

=
−

=
−

+

=

d

d

d

d

d

d

n,1i
nT

n,1i
nT

n,1i
nT

R

RzA

Ry

τ
ττ

τ
τττ

τ
ττ

ϑν

ϑ

ϑ

 (6) 

Selecting the instrumental variable set { }τϑ  in such a way that: 

dd

d
n

s.a
n,1i

nT lR ⎯→⎯∑ =
−τ

ττϑν . (7) 
With  

dnl  as element of filtered probability space: 

{ }( )
d

d nn ,P,iΩ,l ℑℑ⊆   

The contraction a. s., significate: almost surely or with probability 1 with respect to the measure P  
(to see: Ash 1972). 
 
To define the parameter estimator matrix 

dnÂ  in the time nd with respect to the matrix d
d

MnM
nA ×ℜ∈  

and the perturbations around the process, previously expressed in (4): 
( )

ddd ndn,1 n
nT

n IRyÂ Γϑτ
τ

ττ∑ =
− −=  (8) 

Where the gain matrix 
dnΓ  has form:  

( )( ) 1

1n,1
)1n(TT

nnn RRzz
d

d
ddd

−

−=
−−∑+= τ
τ

ττϑϑΓ  (9) 
The expression (8) in recursive description, the gain matrix 

dnΓ :  

( )( ) 11
1n

T
nnn Rz

dddd

−−
−+= ΓϑΓ . (10) 



Applying the inversion matrix lemma (Ljung 1987 and Rao 1965), finally, the gain matrix 
dnΓ  has 

the form:  

ddd n1n
1

n SR −= −
− ΓΓ , (11) 

With 
dnS , to express as a quotient: 

( )( ) 1
1

1
1

1
1

1 1
−

−
−

−
−

−
− Γ+ΓΓ= dndn

T
dndn

T
dndndndn zRRzRS ϑϑ .  

Where the gain matrix 
dnΓ  is valid for any  

( ) ( ){ } ΩωΓτω ττττ ∈≠=≥ −
≥ ,0det:inf:nn 1

00d .  
In agreement to (7) the recursive form, and remembered that (6) has stationary conditions: 

T
dndn1dnll

dn ϑν+
−

≅ . (12) 

Taking into account that (to see: (10) in  
( )

ddddd n
T

nnn
1

1n zIR ΓϑΓΓ −=−
−   

The recurrent estimator, using the combined tool formed by IVM and MFF, and considering that 
matrix estimator described by (8) have stationary properties: 

( )
ddddddd n

T
nn1nn1nn zRÂ:Â ΓϑΨ −− −+=  (13) 

Where 
dnΨ   has the form:  

 
Remark 1. When (7) in almost surely tend to zero, the algorithm obtained was described by 
(Poznyak and Medel 1999a). 
 
Remark 2. In the partial case when 

dd nn z=ϑ  (we have a Least Squares Method) and R=ρI (a scalar 
forgetting factor). The system obtained  has been intensively studied from different points of view 
(see the list of references, for example, Poznyak 1980, Bittanti and Campi 1994, Guo, Ljung and 
Prioret 1993, Lindoff and Holst 1995a, Lindoff and Holst 1995b, Parkum, Poulsen and, Holst 1992, 
Porat 1995, Poznyak & Medel 1999a, and 999b and Medel & Poznyak 2001, etc.). 
 
The aim of this investigation is to describe the properties of this algorithm considering preselected a 
MFF R which minimizes the estimation error d

d
MnM

n RAÂ ×∈−  in some average probabilistic sense. 
 

3 ASYMPTOTIC ANALYSIS 

To analyze the properties of the estimation procedure of equation (13) let us introduce the matrix 
d

d
MnM

n R ×∈∆  characterizing the error of this estimating process:  
ddd nnn AÂ: −=∆  (14) 

The next lemma going to expose the analytical expression for the matrix 
dn∆  defined along the 

trajectories of the random process in equation (13). 
 
Theorem 1. For the matrix  

dn∆  defined by equation (14) for 0d nn ≥ , where the estimates are 
generated by equation (13), the following presentation holds: 

( )∑ =
−

−−+=
d dddd n,1i n

1
)1i(nin0n ππΛπ∆∆  (15) 

Where the matrix ,AA )1i(nini −−− −=Λ , and ,RR dndn
d

MM
n ×∈π : 

( ).zI:
dd n,1i i

T
iin ∏ = −= Γϑπ . (16) 

 
 



Proof (Theorem 1). Substituting (13) in (14) we derive:  
( )

dddddddd nn
T

nn1nn1nn zÂ ΛΓϑΨ∆∆ −−+= −−   
Using then expression (4) in the previous result:  

( )
dddddddd nn

T
nn1nn1nn z ΛΓϑ∆Λ∆∆ −−+= −−   

Reducing the previous expression:  
( )

dddd nn1nn ΕΛ∆∆ += −  (17) 
Denoting .R,zI dd

ddddd
MnMn

nn
T

nnn
×∈−= ΕΓϑΕ  

Considering that (17)  is described  as stationary process, then,  one interval before: 
( ) 1n1n2n1n dddd −−−− += ΕΛ∆∆   

And substituting this in (17)  
( )( )

dddddd nn1n1n2nn ΕΛΕΛ∆∆ ++= −−−   
This procedure is developed (nd -1) times. Describing the error matrix as:  

( )∏∑∏ −−=== ΕΛ−−Ε∆=∆
dnidnk knki idni indn ),1(,1,10   

Taking in to account that  
( )

dddd k n
1

inn),1i(nk n ππΕ −
−−−= =∏  (18) 

And finally, obtain us (15). ■ 
 

CONCLUSIONS 

In this paper, deal with the class of models with varaying parameters and subjected to random 
disturbances of the moving-average type. We suggested a general version of (Instrumental Variable 
Method) IVM with Matrix Forgetting Factor (MFF) in agreement to the dynamical properties of the 
real system. A recursive version of this procedure has a basic description. The main issue of this 
work is the combination of MFF with IVM for multimatrices. Observing that a Digital Filter can be 
implemented into embedded systems using micro controllers, DSP's, and others electronic 
technologies, considering a recursive structure.  
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