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Abstract 

Information extracted from biological specimens is inherently three-dimensional.  Though it is sometimes hard to 
handle, three-dimensional (3D) data provides greater understanding of biological structures and events than its bi-
dimensional (2D) projections.  This explains why optical-sectioning techniques are currently being explored and 
enhanced.  The main objective of the present work was to evaluate the relevance of image-treatment algorithms, 
which included preprocessing (such as image-averaging, background correction and normalization of intensities) 
and processing (deblurring and restoration deconvolution) methods.  This was done by implementing a 
quantification algorithm based on the Laplacian and a bright-point detector.  Algorithms were applied to a 3D 
cell-adhesion skin model, based upon a specimen commonly used by our research group.  Results indicated that 
certain preprocessing methods are required to enhance the performance of processing algorithms, while others 
must not be applied in order to ensure an adequate and precise quantification. 

Keywords: Optical sectioning, quantification, three-dimensional image preprocessing and processing. 

Resumen 

La información extraída de especimenes biológicos es inherentemente tridimensional.  Los datos tridimensionales 
(3D) permiten un mejor entendimiento de las estructuras y los eventos biológicos, comparados con sus 
proyecciones bidimensionales (2D), aunque a veces son más difíciles de manejar.  Esto explica porqué 
actualmente se están investigando y mejorando las técnicas de seccionamiento óptico.  El principal objetivo del 
presente trabajo fue evaluar la relevancia de algoritmos de tratamiento de imágenes, los cuales incluyen métodos 
de preprocesamiento (tales como promediación de imágenes, corrección de background y normalización de 
intensidades) y procesamiento (desconvolución de desborroneo y de restauración).  Esto se realizó mediante la 
implementación de un algoritmo de cuantificación basado en el Laplaciano y un detector de puntos brillantes.  Los 
algoritmos se aplicaron a un modelo 3D de adhesión celular en piel, basado en un espécimen comúnmente 
utilizado por nuestro grupo de investigación.  Los resultados indican que ciertos métodos de preprocesamiento son 
requeridos para mejorar el rendimiento de los algoritmos de procesamiento, mientras que otros no deben ser 
aplicados para asegurar una adecuada y precisa cuantificación. 

Palabras clave: Seccionamiento óptico, cuantificación, preprocesamiento y procesamiento de imágenes 
tridimensionales. 
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1. INTRODUCTION 

A 3D representation of an object can be obtained employing either physical-sectioning or optical-
sectioning techniques [4].  The former uses a microtome to produce several thin slices of a given 
specimen which are viewed, imaged and treated separately.  On the other hand, in the case of 
optical-sectioning techniques (which include confocal [6], two-photon [10] and digital 
deconvolution microscopy [15]), several different in-focus images may be taken from within a thick 
specimen (one which is thicker than 15 μ m ).  By taking images at regular intervals, a stack of them 
is produced; 3D projection softwares use these images to visualize the complete specimen as a 3D 
object. 

In digital deconvolution microscopy, each image acquired contains information of the in-focus 
plane as well as out-of-focus data and noise; this is why they appear blurred and/or distorted.  
Images must be preprocessed to reduce the impact of random fluctuations and to prepare them for 
the processing algorithms (digital deconvolution per se). 

Commonly used preprocessing approaches include image-averaging, background correction and 
intensity normalization.  In the image-averaging process [4][14] two or more pictures of the same 
focus plane are averaged in a pixel by pixel basis; this means analogous pixels from the images that 
will be averaged are added together and then divided by the total amount of pixels considered.  This 
procedure diminishes the impact of random noise yet it increases the amount of photobleaching 
[3][17] to which the biological specimen is exposed.  Alternatively, background correction [4][14] 
aims to eliminate unwanted background intensities; this may be done by thresholding or by 
background subtraction.  In the former a threshold or pixel-intensity limit is determined; any pixel 
with an intensity level equal to or below the threshold will be assigned the value zero (no intensity).  
Instead, background subtraction is a technique in which a background image is subtracted pixel-
wise from the raw image.  Since these methods eliminate information, they must be used 
judiciously so as not to erase useful data, especially when dealing with quantification.  Lastly, we 
must consider that the integrated intensity of each image taken at different focal depths in wide-
field microscopy should be approximately the same, though the distribution of pixel-intensity may 
vary from one image to the next. This is theoretically true, though it does not always occur due to 
oscillations in the intensity of excitation light, fluctuations in the power supply or other reasons.  
Normalization of intensities per plane (which is one type of intensity normalization) attempts to 
solve this. 

In order to apply digital deconvolution algorithms, a thorough understanding of the image formation 
process is needed.  This is modeled by equation (1),  

     zyxPSFzyxozyxi ,,,,,,     (1) 

where (x,y,z) are spatial coordinates, i(x,y,z) is the image stack which is formed by the 3D 
convolution (denoted by  ) of the original object o(x,y,z) and the 3D Point Spread Function 
PSF(x,y,z) [5].  The PSF represents the behavior of the optical arrangement since it is the system ’s 
response to a unitary impulse input [4].  Deconvolution algorithms are employed to estimate the 
solution of equation (1), that is to say, to estimate o(x,y,z).  There are basically two categories in 
which these may be classified: non-iterative (deblurring) and iterative (restoration) algorithms [18].  
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The former are fast and do not require a great amount of computer resources (RAM, processor 
speed, etc) but they eliminate useful information; the latter, on the contrary, take longer and require 
a greater amount of computer resources, yet they tend to restore the out-of-focus intensity-
information contained in each image of the stack to its correct spatial position. 

The main objective of this work is to evaluate the relevance of preprocessing and deconvolution 
algorithms applied to a 3D model under study, which is based on a specimen commonly used by 
our research group (Bufo arenarum embryos).  The model consists on E-cadherin expression; this is 
a protein which forms adherens junctions that help hold similar skin cells together [12].  Even 
though E-cadherin is present all around the circumference of the cell, it is found in denser clusters 
where more than two cells meet.  When this protein is immunolabeled with a fluorophore (such as 
FITC) [16], these clusters look brighter than the circumferential ring for it contains more molecules 
per unit of length; these are given the name of puncta (singular: punctum) [1][9]. 

In order to perform the mentioned evaluation, quantification of the distribution of E-cadherin was 
done with the aid of a Laplacian and a bright-point detector algorithm. The former emphasizes 
sharp changes in voxel (volume-element, the 3D equivalent of the 2D pixel) intensity, therefore 
detecting cell borders and puncta where E-cadherin was expressed.  The Laplace operator is 
denoted by Δ  or  2 and it is applied to any function f as shown below, 
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where f depends on x, y and z, so it may be written as f(x,y,z). When dealing with image stacks, a 
3D Laplace kernel is convolved with the images. 

2. MATERIALS AND METHODS 

2.1 Hardware and Software 

Digital images were obtained using an Olympus BX50 Upright microscope, equipped with a white-
light source for transmitted microscopy and a mercury UV-lamp used for epi-fluorescence 
microscopy.  Images were taken with a cooled monochromatic Apogee CCD camera of 14 bits of 
resolution, 768x512 pixel2 sensor size, 9x9 μ m 2 pixel size, mounted to the microscope by a mount 
C lens (0.5X). 

A stepping motor (RS 440-436) attached to the fine adjustment knob of the microscope, moved the 
stage up and down.  It could move in steps of multiples of 5 nm [2] and was controlled via parallel 
port by a personal computer with an Intel 486 (100 MHz) processor, 16 MB of RAM and 4 GB of 
hard-disc space.  Another computer (Intel Pentium IV 1.4 MHz with 640 MB of RAM and 30 GB 
of hard-disc space) was used to process the images which were transferred through Ethernet. 

The CCD camera and stepping motor were controlled by special software which also included 
deconvolution algorithms [7] and a 3D visualization interface; it was designed in Object Pascal 
language [8].  Optical sectioning was automatically done by this tool after loading some basic 
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parameters which included file name, image width and height, time of exposure, distance between 
in-focus planes and motor speed (which determined the stage speed).  Images were saved in TIFF 8 
bit format and stacks were visualized with the aid of an algorithm which enabled Maximum 
Intensity Projection (MIP), implemented in OpenGL. 

2.2 Optical Sectioning 

The work area was chosen using a low magnification lens and white light (transmitted) which does 
not excite the fluorophore and therefore prevents photobleaching.  When switching to UV 
illumination, the micrometric screw was adjusted to focus using a 20X lens (NA 0.7), determining a 
0.9 μ m  xy resolution and voxels of 0.9x0.9x1 μ m 3.  Then, the stage was moved upwards a distance 
equal to half the total depth of the future stack and the stepping motor was programmed to move it 
dow nw ards in step of 1 μ m .  The final stack was made up of 16 slices of 128x128 pixel2. 

2.3 Image Preprocessing and Processing 

Raw images were preprocessed to normalize intensities per plane (we will refer to these as second 
raw images).  First, the integrated intensity of each plane was calculated by adding the intensity of 
the individual pixels of each plane.  Then, the average integrated intensity value was determined.  
Finally, each pixel of every plane was multiplied by the average value obtained and divided by that 
plane’s previous integrated intensity, therefore ensuring that each plane would have the same 
integrated intensity by the end of the process. Intensity normalization was the only preprocessing 
method employed because we intended to prevent information loss (such would be the case of 
background correction) and because we aimed to reduce photobleaching to a minimum, therefore 
discarding image-averaging (data not shown). 

Both raw and second raw images were deconvolved with a constrained iterative method of 
deconvolution, using an experimental PSF [7]; the former will be referred to as raw deconvolved 
while the latter will be called “second deconvolved”. 

2.4 Quantification Algorithm 

The Laplacian was used to detect high-frequencies in Fourier space, which correspond to edges and 
points in the images.  It was applied using a 3x3x3 pixel3 kernel with unit gain.  Then, the bright-
point detector algorithm was implemented in calculus software to evaluate voxel intensity in the 
following manner.  A threshold or pixel-intensity limit was set; any pixel with intensity equal to or 
greater than the threshold was considered as a bright point and its spatial position was stored.  
Though the procedure is similar to background correction by thresholding, the concept behind it is 
entirely different.  In this way, bright points were counted and their location was recorded. 

2.5 Biological Specimens 

Bufo arenarum embryos, stage 19 (Gosner, 1960), were treated to study the E-cadherin expression 
pattern following the classical protocols [11][13].  They were fixed in Carnoy, washed in PBS 1X at 
room temperature and then treated with Triton X-100 (SIGMA) 0.1% in PBS during 30 minutes at 
room temperature.  They were then incubated in goat normal serum 1:20 for 35 minutes followed 
by the primary monoclonal anti-E-cadherin antibody (rat antibody; Transduction Laboratories, 
Lexintong USA) 1:50 at 37°C for 75 minutes.  After incubation, embryos were washed in PBS 1X 
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and incubated with the secondary antibody (IgG-FITC, SIGMA) 1:64 at room temperature for 105 
minutes and then washed again with PBS 1X; finally, they were mounted in Vectashield Mounting 
medium (Vector Laboratories) to prevent fluorescent decay. 

2.6 Summarizing Flowchart 

In order to facilitate the understanding of the experiments described in the next section, we have 
summarized all of the steps involved in the flowchart shown below. 

Specimen preparation

Optical –  sectioning process

Raw Image Stack Image Preprocessing
(Normalization of intensities per plane)

Image Processing
(Deconvolution)

Image Processing
(Deconvolution)

Quantification
(Laplacian and bright-point detector)

 

3. RESULTS 

The experiment consisted of two different experiences.  The first was carried out to compare 
preprocessed and processed images without the quantification algorithm, while the second 
employed the mentioned algorithm. 

3.1 First Experience: Image Preprocessing and Processing Algorithms 

Firstly, normalization of intensities per plane was evaluated.  Figure 1 displays raw and second raw 
image stacks in two different views; the former look blurry and noisy compared to the latter in both 
projections.  Secondly, deconvolution was analyzed; stacks which correspond to the deconvolution 
of the images presented in Figure 1 are shown in Figure 2.  As described previously with non-
deconvolved, raw deconvolved present more noise and have less definition than second 
deconvolved. 
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3.2 Second Experience: Quantification Algorithm 

We used all sets of images mentioned earlier together with the Laplacian (to detect the presence of 
E-cadherin in the cell contour) and bright-point detector algorithms.  Figure 3 and 4 show image 
stacks after the Laplacian was applied. The former shows saturated Laplacian raw stacks which 
have much more noise than Laplacian second raw images.  Figure 4, instead, does not account for 
such a big difference between both sets of stacks.  After applying the bright-point detector, a single 
image containing the location of bright points was selected from a stack; it is displayed, together 
with its analogues from each stack, in Figure 5 and 6.   Four different threshold levels are shown, 

Figure 1 –  Comparison between non-deconvolved 
images before the Laplacian.  Left column (A): raw 

pictures.  Right column (B): second raw 
(preprocessed) images.  Top row (I): xy projection.  

Bottom row (II): tilted view. 

Figure 2 –  Comparison between deconvolved images 
before the Laplacian.  Left column (A): raw 

deconvolved pictures.  Right column (B): second 
deconvolved images.  Top row (I): xy projection.  

Bottom row (II): tilted view. 

Figure 3 –  Comparison between non-deconvolved 
images after the Laplacian.  Left column (A): raw 

pictures.  Right column (B): second raw 
(preprocessed) images.  Top row (I): xy projection.  

Bottom row (II): tilted view. 

Figure 4 –  Comparison between deconvolved images 
after the Laplacian.  Left column (A): raw 

deconvolved pictures.  Right column (B): second 
deconvolved images.  Top row (I): xy projection.  

Bottom row (II): tilted view. 
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two for non-deconvolved images (raw and second raw) and two for deconvolved (raw deconvolved 
and second deconvolved).  The total amount of bright points was calculated (see Table 1).  The 
figures and table show that the amount of bright points detected increases as threshold levels 
decrease; furthermore, deconvolved stacks present a greater amount of these compared to their 
corresponding non-deconvolved pictures.  The total amount of time needed to calculate the 
Laplacian kernel, apply it to an image stack, find bright points and store their spatial position is 
shown in Table 2. 

Figure 7 –  Co-localization of a non-deconvolved 
image.  Bright points were co-localized with raw 

pictures (left column, A) and second raw 
(preprocessed) images (right column, B).  Different 

threshold levels are shown: 35% (top row, I) and 
40% (bottom row, II) of maximum intensity. 

Figure 8 –  Co-localization of a deconvolved image.  
Bright points were co-localized with raw 

deconvolved pictures (left column, A) and second 
deconvolved images (right column, B).  Different 
threshold levels are shown: 80% (top row, I) and 

85% (bottom row, II) of maximum intensity. 

Figure 6 –  Bright points of a deconvolved image at 
different threshold levels.  Thresholds were set as a 

percentage of the maximum intensity level. Top row 
(I) and bottom row (II) show 80% and 85% 

thresholds, respectively. Left column (A): raw 
deconvolved pictures.  Right column (B): second 

deconvolved images. 
 

Figure 5 –  Bright points of a non-deconvolved image 
at different threshold levels.  Thresholds were set as 
a percentage of the maximum intensity level. Top 
row (I) and bottom row (II) show 35% and 40% 
thresholds, respectively. Left column (A): raw 

pictures.  Right column (B): second raw 
(preprocessed) images. 
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Additionally, images from Figure 5 and 6 were co-localized with their corresponding pictures 
before the Laplacian was applied (see Figure 7 and 8).  The latter are shown in green while bright 
points are seen as red dots; when both are located in the same place, the pixel is colored in shades of 
yellow or orange (depending on the pixel intensity of the images before the Laplacian was applied). 

   
 Type of image stack Total amount of bright points per threshold level  

35 % of 
maximum 

40 % of 
maximum 

80 % of 
maximum 

85 % of 
maximum 

Raw 2716 914 3 3 
Second raw 5564 1910 2 2 
Raw deconvolved 255154 246651 2910 1665 
Second deconvolved 252256 238263 2855 1499 

   
Table 1 –  Amount of bright points at different threshold levels. 

 
   
 Type of image stack Time taken per threshold level (seconds)  

35 % of 
maximum 

40 % of 
maximum 

80 % of 
maximum 

85 % of 
maximum 

Raw 0.6094 0.5469 0.6563 0.6406 
Second raw 0.6250 0.6406 0.5313 0.7031 
Raw deconvolved 1.0469 0.9688 0.6250 0.5625 
Second deconvolved 0.8750 0.8594 0.5938 0.5469 

   
Table 2 –  Time taken to calculate the Laplacian kernel, apply it to an image stack, 
find bright points and store their location, according to different threshold levels. 

 

4. DISCUSSION AND CONCLUSIONS 

In the present work, normalization of intensities per plane was the only preprocessing algorithm 
employed for two main reasons: first, we did not want to eliminate information contained in the raw 
images (as would happen when using background correction) and second, we aimed to reduce 
photobleaching to a minimum (discarding image-averaging).  This normalization process weights 
the integrated intensity of each plane relative to the corresponding mean integrated-intensity value; 
it therefore prevents sharp changes of intensity between successive planes which would saturate the 
Laplacian images (Figure 3, column A), thus interfering with quantification.  Moreover, it favors 
the visualization of stacks since it improves contrast and definition (Figure 1 and 2). 

Deblurring methods eliminate useful information, making the quantification process inaccurate.  
Consequently, we implemented a restoration algorithm which reassigns out-of-focus data to its 
correct spatial position; this is evidenced in Figure 2 since the haze of the non-deconvolved images 
is diminished.  However, raw deconvolved stacks show saturated zones; this may be so because the 
deconvolution algorithm expects normalized images since the PSF presents this property (Figure 2, 
column A). 

Considering the Laplace operator detects high frequencies, it is obvious that edges will be spot 
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together with unwanted noise.  In Figure 3, the second raw stack does not account for the same 
amount of noise as the raw one does, which would indicate that the noisy appearance of the latter is 
due in part to factors beside random noise (such as variation of intensities between successive 
planes).  This confirms that the Laplace operator must be applied to normalized stacks.  On the 
other hand, in Figure 4, even though there are differences between raw deconvolved and second 
deconvolved, these are less significant than those between non-deconvolved stacks.  Comparing the 
right columns of Figure 3 and 4, we might expect to obtain better results from second raw since 
those images look better.  Nevertheless, this is not supported by the quantitative study. 

The main hypothesis to consider when using the bright-point detector algorithm is that puncta can 
be modeled as bright spots.  This may be regarded as a true statement because the FITC complex is 
smaller than the actual xy resolution and z resolution, which determine the dimensions of each 
voxel.  Different threshold levels are shown in figures 5 through 8 with the purpose of ratifying the 
difference between non-deconvolved and deconvolved stacks in a threshold-independent manner.  
Deconvolved images present a greater amount of bright dots than the non-deconvolved do, at any 
given threshold value.  This can be attributed to the fact that when deconvolution reassigns 
intensities, high-frequency zones are enhanced while low-frequency areas are depleted (process 
modulated by the PSF).  Moreover, non-deconvolved bright points look more disperse than 
deconvolved bright dots and it is also more difficult to outline the cells when looking at non-
deconvolved puncta (Figure 5 and 6).  

Additionally, the co-localized representations (Figure 7 and 8) support the fact that puncta are 
located where more than two cells come together.  These also confirm that puncta contain a denser 
population of E-cadherin than planes where two cells meet.  Besides, it demonstrates that the 
application of the Laplacian may be used to spot edges and puncta (which correspond to high-
frequencies in Fourier space), since bright points had the same location as the puncta.  Based upon 
all the results shown above, the correct stack to work with when dealing with quantification is the 
second deconvolved one. 

Another significant matter to take into account is the total amount of time taken to do all the 
procedures mentioned above; only the time taken to perform a fraction of these is presented in 
Table 2.  Time is an important issue to consider, especially when dealing with many and/or large 
stacks.  It is interesting to notice that it took about a second or less to calculate the Laplacian kernel, 
apply it to a set of images, find bright points and store their spatial position, using a 128x128x16  
pixel3 stack. 

In conclusion, we demonstrated that knowledge about preprocessing and processing methods is 
important when dealing with quantification.  Intensity normalization is an important preprocess 
since the deconvolution algorithm employed expects normalized stacks to perform optimally.  
Furthermore, deconvolved images ensure quantification will provide accurate and representative 
data. 
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