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Context-Dependent Sensitivity to Losses: Range and Skew Manipulations
Lukasz Walasek and Neil Stewart

University of Warwick

The assumption that losses loom larger than gains is widely used to explain many behavioral phenomena in
judgment and decision-making. It is also generally accepted that loss aversion is a stable, traitlike individual
difference characterizing people’s sensitivity to gains and losses. This interpretation was recently challenged
by Walasek and Stewart (2015), who showed that by manipulating the range of the gains and losses used in
the accept�reject task it is possible to find loss aversion, loss neutrality, and a reversal of loss aversion. Here,
we reexamined the claim that these context effects arise as a result of people being sensitive to the rank
position of a given gain among other gains and the rank position of a loss among other losses. We used skewed
distributions of outcomes to manipulate the rank position of gains and losses while keeping the range of
possible outcomes constant. We found a small but robust effect of skew on the propensity to accept mixed
gambles. We compared the sizes of skew and range effects and found that they are of similar magnitude but
that the range effects are smaller than those reported by Walasek and Stewart. We were able to attenuate loss
aversion, but we were not able to replicate Walasek and Stewart’s reversal of loss aversion. We conclude that
rank effects are, at least in part, responsible for the loss aversion seen in the accept�reject task.

Keywords: loss aversion, decision by sampling, context, range effect, skew effect

Under the loss aversion hypothesis, the hedonic impact of losses is
considerably higher than the hedonic impact of equivalent gains. The
assumption that losses loom larger than gains remains one of the more
important theoretical contributions in behavioral sciences, used to
explain people’s choices and valuations in both risky and riskless
contexts (Camerer, 2005). Loss aversion is also an important compo-
nent of the prospect theory (Kahneman & Tversky, 1979) and was
included in the model to explain why people tend to reject a fair
offering of a 50/50 chance to win $X or lose $X. Early experiments
on risky choice estimated the value of loss aversion at � � 2.25,
which reflects the widespread belief that the disutility of a loss is just
over twice as high as the utility of an equivalent gain (Tversky &
Kahneman, 1992).

Many existing models of choice behavior incorporate loss aversion
as a primitive that represents a hardwired feature of people’s prefer-

ences (e.g., Kőszegi & Rabin, 2006; Usher & McClelland, 2004).
Indeed, it has been shown that various biological systems might
underlie the gain�loss asymmetry. Existing work has found that
people’s overweighting of losses is reflected in their genotype (Fry-
dman, Camerer, Bossaerts, & Rangel, 2011; Zhong, Chark, Ebstein,
& Chew, 2012) and hormone production (Chumbley et al., 2014) and
directly in activation of brain regions related to processing of emo-
tions (Chib, De Martino, Shimojo, & O’Doherty, 2012; De Martino,
Camerer, & Adolphs, 2010; Sokol-Hessner, Camerer, & Phelps,
2013) and rewards (Tom, Fox, Trepel, & Poldrack, 2007). The as-
sumption of traitlike loss aversion is also prevalent in studies inves-
tigating how the gain�loss asymmetry varies as a function of age
(Wolf, Wright, Kilford, Dolan, & Blakemore, 2013), ethnography
(Tanaka, Camerer, & Nguyen, 2010; Tanaka & Munro, 2014), or
education (Hjorth & Fosgerau, 2011).

There are some challenges to the notion that loss aversion is a
stable individual characteristic of an individual decision maker. A
growing number of studies have found no evidence of behavioral loss
aversion in risky choice. Yechiam and Hochman (2013b) reported
that out of 11 studies in which the effect of losses was examined using
symmetric lotteries, only four found evidence of loss aversion. In
studies where probabilities and outcomes were not explicitly provided
to the participants but had to be learned through repeated sampling
(i.e., the decision from experience paradigm; Hertwig, Barron, Weber,
& Erev, 2004), no evidence of loss aversion was found in 13 unique
studies. Additionally, behavior inconsistent with loss aversion was
observed in experiments that used small monetary payoffs or when
the safe options were framed as the status quo (see Ert & Erev, 2011,
for a review). Taken together, the fact that loss aversion is highly
dependent on the features of the elicitation procedure suggests that
overweighting of losses in risky choice may not be a stable property
of people’s preferences.

In an attempt to explain why estimates of loss aversion seem so
malleable, Walasek and Stewart (2015) tested whether some of the
context dependency of loss aversion could be explained by the
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decision by sampling (DbS) model (Noguchi & Stewart, 2014;
Stewart, Chater, & Brown, 2006; Stewart, Reimers, & Harris,
2015; Stewart & Simpson, 2008). In this framework, choices are
driven by accumulating the outcomes of multiple comparisons
between the attributes of the alternatives on offer. The alternative
chosen is the one whose attributes win the most comparisons.
Because the comparisons are ordinal, what matters is the rank
position of an attribute value within the set of attributes being
compared. The rank position determines the fraction of compari-
sons that will favor the target attribute. The worst ranking attribute
will not win any comparisons. The best ranking attribute will win
all of the comparisons. Next we explain how DbS predicted loss
aversion and its elimination and reversal in advance for a series of
experiments run by Walasek and Stewart (2015) and revisit some
of their claims about whether DbS offers an accurate account of
the origins of loss aversion.

In four experiments, Walasek and Stewart (2015) presented their
participants with a series of mixed 50/50 gambles. For example,
would you accept or reject the opportunity to play a 50/50 gamble
where you can gain $10 or lose $5? A loss-averse person with a
� � 2 would be indifferent concerning whether to accept or reject
this gamble. A � of 2 means that losses are weighted twice as
heavily as gains, so a loss of $5 matches a gain of $10 in subjective
value. In Walasek and Stewart’s experiments, the range of the
distributions of gains and losses in the series of gambles varied
between the experimental conditions. Consider the two asymmet-
ric ranges of gains (Gs) and losses (Ls) presented in the left panel
of Figure 1. In the GWide � LNarrow condition (left panel, top) the

range of gains is wider ($0�$40) than the range of losses
($0�$20), whereas the opposite is true in the GNarrow � LWide

condition, with a narrower range of losses ($0�$20) and wider
range of gains ($0�$40; left panel, bottom). This means that any
given sum of money will have a different position in the range of
gains compared to the range of losses. For example, consider a
gamble that occurs in both conditions and offers 50% chance of
winning $17 and 50% chance of losing $17 (see the dashed lines).
In the GWide � LNarrow condition, according to the DbS, this
gamble will be less attractive and therefore less likely to be
accepted. In this condition, the gain of $17 ranks as fifth out of 10
among other gains, whereas the $17 loss ranks as ninth out of 10
among other losses. A midranking gain paired with one of the very
worst losses does not seem very attractive. These ranks are re-
versed in the GNarrow � LWide condition, where the same gamble
should be much more likely to be accepted. A midranking loss
paired with one of the very best gains seems very attractive. Thus
one finds the prediction of loss aversion in the GWide � LNarrow

condition and the reverse of loss aversion in the GNarrow � LWide

condition according to DbS. The results presented by Walasek and
Stewart were consistent with these predictions, showing a dramatic
change in observed loss aversion between the conditions. When
the range of gains exceeded the range of losses, the aggregate loss
aversion coefficient was about 2, as is often observed. But when
the range of losses exceeded the range of gains, the aggregate loss
aversion coefficient was lower than 1, showing the expected re-
versal of loss-averse behavior.

Figure 1. Left panel: Example stimuli with asymmetric uniform distributions of gains and losses (the
manipulation used by Walasek & Stewart, 2015). At the top, gains span a wider ranger than do losses
(GWide – LNarrow). At the bottom, losses span a wider range than do gains (GNarrow – LWide). The dashed lines
highlight values that are common in the two conditions (�$17 or �$17). Right panel: The distributions of gains
and losses used in this article. The top row shows symmetrical, uniform distributions of gains and losses
(GUni – LUni). The middle row shows a positively skewed distribution of losses and a negatively skewed
distribution of gains (GNeg – LPos). This asymmetry is reversed in the bottom row (GPos – LNeg). Dashed lines
indicate a common value shared across distributions (�$16 or �$16). G � gain; L � loss; Uni � uniform;
Neg � negative; Pos � positive.
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Despite observing strong context effects in loss aversion, the design
used by Walasek and Stewart (2015) does not isolate rank position as
the cause. Because the distribution of gains and losses was always
uniform, the rank position and position within the range were con-
founded. One might expect range and rank to play separate roles, an
idea instantiated in the range frequency theory of the evaluation of
magnitudes (Parducci, 1965). In the present work, we set out to
determine whether people are truly sensitive to the rank position of a
gain among other gains and a rank position of a loss among other
losses. This approach allowed us to determine whether DbS offers an
accurate model of context-dependent loss aversion.

In the following three experiments, we manipulated the skew-
ness of distributions of gains and losses while controlling (i.e.,
keeping constant) their range. If people respond to the rank posi-
tion of gains and losses, then this manipulation should influence
the magnitude of loss aversion in a manner consistent with DbS.
This design is illustrated in the right panel of Figure 1. Consider
common values of gaining and losing $16 (see the dashed lines).
In the condition with negatively skewed distribution of gains
and a positively skewed distribution of losses (GNegative (Neg) –
LPositive (Pos); middle line) $16 ranks fifth out of seven within the
losses but only third out of seven within the gains, which should lead
to the gamble being rejected. But in the condition with a positively
skewed gains and negatively skewed losses (GPos – LNeg; bottom line)
the ranks are reversed, which should lead to the gamble’s being
accepted. Rates of acceptance should fall in between these two
conditions, where gains and losses are uniformly distributed
(GUniform(Uni) – LUni; top line), where the gain of $16 and the loss of
$16 both rank fourth out of seven in their respective distributions. We
tested these predictions in the following three experiments.

Experiment 1

Method

Design. Participants were randomly allocated to one of three
conditions: GPos – LNeg; GNeg – LPos; or GUni – LUni. Figure 1
displays all gains and losses (but here in British pound sterling)
that were used to construct 49 unique gambles for each condition
(see the table in Appendix A for a list of the outcomes used). The
participants’ task was to simply indicate whether they would be
willing to accept and play each gamble, answering with buttons
marked Strongly Reject, Weakly Reject, Weakly Accept, and
Strongly Accept.

According to DbS, the subjective value of gambles arises from
ordinal comparisons within a person’s memory. We therefore

included a memory test to determine whether our participants
could remember gains and losses to which they were exposed
during the lottery task. In the two conditions where the skew of the
distribution was manipulated, the list included 20 gains and losses
that were present in the gamble task, as well as 22 that either did
not occur or occurred but with a different sign (e.g., �£3
[US$4.02] present, £3 not present). In the condition where the
same uniform distributions were used for gains and losses, 28 of
the presented values did in fact occur in the gamble task, and 14
did not. This unavoidable asymmetry in task design allowed us to
make meaningful comparison between only conditions with
skewed distributions.

Participants. We recruited 275 participants from the crowd-
sourcing platform Prolific Academic (https://prolificacademic.co
.uk/) in exchange for £1.00 (US$1.34). We chose the sample size
to be comparable to the one used by Walasek and Stewart (2015),
who found large effects with cell sizes of about 100 participants.
All experiments were approved by the institutional research ethics
committee.

Procedure. Participants were informed that they would be
presented with a series of lotteries and required to evaluate
whether they would like to play the lottery or not. They were also
shown an example of a lottery offering a 50% chance of gaining
£31 (US$41.54; maximum gain in all conditions) and losing £31
(maximum loss in all conditions). The payouts mechanism was
explained using a coin-tossing analogy. Participants were then
presented with 49 lotteries, one after the other, in a different
random order for each participant. They were given unlimited time
to accept or reject them. Figure 2 displays a screenshot of an
accept�reject trial.

Next, in the memory task, participants were presented with indi-
vidual gains and losses and required to indicate whether they had
featured in the lottery task by pressing Yes and No buttons. The left
and right position of these buttons was counterbalanced across par-
ticipants.

Modeling approach. We used the commonly used version of
the prospect theory, in which the value function is parameterized
as

v(x) � x�, if x � 0

v(x) � �� |x | �, if x � 0
(1)

where � controls the relative slope of the gain�loss portions of the
value function, � controls the curvature of the gains part of the
value function, and � controls the curvature of the loss part of
the value function. Following the recommendation made by

Figure 2. Screenshot of an accept�reject trial from Experiments 1 and 2.
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Nilsson, Rieskamp, and Wagenmakers (2011), we set � � � to
improve the recoverability of � (see also Stewart, Scheibehenne, &
Pachur, 2018).

We then used the exponentiated Luce’s choice rule, according to
which the probability of accepting a mixed gamble is given by

P�accept� �
ebiase�w�1

2�gain��
ebiase�w�1

2�gain�� 	 e� w�1
2�� loss��

� 1

1 	 e��bias	w�1
2�gain�� w�1

2�� loss��
(2)

Here, w(1/2)gain� is the subjective value of the gain part of the
gamble and, as such, is the evidence for accepting the gamble. On
the other hand, �w(1/2)�loss� is the subjective value of the loss
part of the gambles and, as such, is the evidence for rejecting the
gamble. The bias parameter simply controls for the participants’
propensity to accept gambles regardless of their outcomes (Stewart
et al., 2015). We used the Nelder-Mead algorithm to estimate
maximum likelihood values for �, �, and w(1/2). For all parame-
ters, we report condition median values along with their boot-
strapped 95% confidence intervals (CIs). We also report results
from fitting a more complex version of the prospect theory, in
which � and � are allowed to differ, in the table in Appendix B.

All responses were recoded into accept or reject categories. We
decided in advance to exclude the 5% of participants with the
poorest model fit based on Nagelkerke’s R2 (see also Walasek &
Stewart, 2015), with the objective of removing participants who
responded most randomly and inconsistently.

Results and Discussion

Figure 3 shows raw data from a random sample of participants
(seven per condition). Each point in the two-dimensional gain-
�loss space corresponds to one gamble. Quite sensibly, partici-
pants tended to accept gambles in the southeast corner of the space,
with high gains and low losses, and reject gambles in the northwest
corner of the space, with low gains and high losses. By setting
P(Accept) � 1/2 in Equation 2, we could derive the curve upon
which people will be indifferent concerning accepting and reject-
ing:

loss � �� bias

w�1
2�

	 gain��� 1
� (3)

The black lines in Figure 3 are the best fitting indifference
curves. It is clear that the model provides an exceptionally good fit
to the data, with all lines visibly separating the accept and reject
regions.

In Table 1 we list aggregate parameter values along with their
bootstrapped 95% confidence intervals. We found no difference in
the loss aversion � but found that participants in the GPos – LNeg

condition were more risk-averse than in the GNeg – LPos condition
(median � difference � .683, 95% CI [.108, 1.312]). However,
results are sensitive to the model specification. In the table in
Appendix B, we report all parameter estimates with the addition of
the � parameter. Here, we no longer observed any effect on � but
instead found a difference in the bias parameter, with people’s
being much more likely to accept gains in the GPos – LNeg

condition than in the GNeg – LPos condition (median bias differ-
ence � .759, 95% CI [.287, 1.311]).

Although the two models we chose are commonly used in the
literature, we argue that both versions of the prospect theory are
simply too complex for the type of data that we obtained for each
participant in the accept�reject task. The parameters could trade off
against one another. Others have argued that it is difficult, if not
entirely impossible, to estimate all three parameters (�, �, �) simul-
taneously from choice data because of the parameter trade-offs (see
also Nilsson et al., 2011; Pachur & Kellen, 2013; Stewart et al., 2018).
Indeed, we observed strong parameter correlations in log space (see
the figure in Appendix C). Over and above these issues, in our own
work (Walasek & Stewart, 2018; see also Spektor & Kellen, 2018),
we recently showed that � cannot be reliably recovered from re-
sponses from the (frequently used) accept�reject task.

To avoid problems of parameter recoverability under different
model specifications, we took a different approach to quantifying
the behavioral effect of skew manipulation. We used the area
under the indifference curve, which is the fraction of gain�loss

Figure 3. Examples of model fits to 21 randomly selected individual data
from Experiment 1. Each column represents a condition, showing seven
participants ordered vertically by the area under the curve. The black lines
depict the best fitting indifference curves for each individual. G � gain;
L � loss; Pos � positive; Neg � negative; Uni � uniform.
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space in which participants are more likely than not to accept
gambles. Walasek and Stewart (2018) showed that even when the
indifference curve is governed by all of the estimated parameters,
and even if these parameters trade off against one other, the area
under the curve (AUC) can be reliably estimated and is an unbi-
ased estimate of the overall propensity to accept and reject mixed
gambles in the accept�reject task. In short, the AUC is the fraction
of the gain�loss space in which people accept and can therefore be
interpreted as the magnitude of loss aversion.

Under the assumption that participants’ working memory con-
tains information from only the immediate context (i.e., the exper-
imental setting), DbS makes clear predictions about the AUC and
the difference in AUCs between the skew conditions. For the two
asymmetric conditions, GPos – LNeg and GNeg – LPos, these are
plotted in the left panel of Figure 4. The DbS indifference curves
simply join gambles where the rank position of the gain among

gains is equal to the rank position of the loss among losses. DbS
predicts that the difference in AUCs between the GPos – LNeg

condition and the GNeg – LPos condition will be .544. Visually, in
Figure 4 the .544 is represented by the difference between the light
grey and the dark grey areas.

To compute the AUC from prospect theory parameter values, we
simply integrated the function in Equation 3. Aggregate values of the
AUC based on the four-parameter version of the prospect theory are
listed in the rightmost column of Table 1 and are also plotted in the
left panel of Figure 5. The table in Appendix B also lists AUC scores
obtained from the five-parameter version of the prospect theory.

It is clear that the direction of the effect is consistent with the
predictions of DbS. However, the difference in AUCs between the
GPos – LNeg condition and the GNeg – LPos condition is .079 (95%
CI [.018, .143]) for the more complex version of the model and
.080 (95% CI [.005, .149]) for the simpler version. The effect is

Table 1
Median Parameter Estimates Using the Four-Parameter Version of Prospect Theory for Experiments 1–3

Experiment and condition � [95% CI] � [95% CI] Bias [95% CI] w(1/2) [95% CI] AUC [95% CI]

Experiment 1

GNeg – LPos .557 [.378, .712] 1.327 [1.126, 1.495] 1.093 [�.819, 2.616] 3.747 [.926, 5.814] .346 [.295, .399]
GUni – LUni .671 [.430, .891] 1.287 [1.123, 1.420] 1.265 [.282, 2.111] 2.877 [1.691, 4.603] .424 [.389, .467]
GPos – NNeg 1.24 [.677, 1.833] 1.473 [1.187, 1.728] 2.823 [�.128, 4.941] 4.417 [.953, 7.692] .426 [.373, .475]
Skew diff .683 [.108, 1.312] .146 [�.183, .477] 1.73 [�1.550, 4.566] .671 [�3.221, 5.125] .08 [.005, .149]

Experiment 2

GNeg – LPos .457 [.285, .594] 1.419 [1.204, 1.569] 1.536 [�.000, 3.164] 3.726 [.683, 5.672] .277 [.245, .310]
GPos – LNeg .819 [.515, 1.094] 1.556 [1.189, 1.882] 1.365 [.426, 2.374] 2.702 [.475, 4.961] .391 [.365, .425]
Skew diff .361 [.036, .694] .136 [�.245, .542] �.171 [�2.034, 1.671] �1.023 [�3.846, 2.927] .115 [.073, .162]
GNarrow – LWide 1.075 [.584, 1.589] 1.344 [1.064, 1.587] .465 [.029, .824] 1.715 [1.270, 2.177] .383 [.307, .431]
GWide – LNarrow .655 [.527, .805] 1.583 [1.428, 1.735] 1.242 [�.321, 2.529] 2.163 [1.333, 3.316] .306 [.266, .342]
Range diff .419 [�.103, .944] �.239 [�.559, .047] �.777 [�2.150, .796] �.448 [�1.686, .485] .077 [�.007, .137]

Experiment 3

GNeg – LPos .501 [.142, .774] 1.302 [1.082, 1.458] 2.224 [.693, 4.356] 14.309 [7.891, 22.572] .353 [.320, .395]
GPos – LNeg 1.243 [.768, 1.636] 1.391 [.986, 1.784] 2.355 [�.150, 4.042] 7.753 [6.548, 9.624] .426 [.370, .497]
Skew diff .742 [.203, 1.284] .089 [�.326, .557] .13 [�3.348, 2.191] �6.556 [�14.664, .374] .074 [.002, .149]

Note. AUC � area under the curve; G � gain; L � loss; Neg � negative; Pos � positive; Uni � uniform; Diff � difference.

Figure 4. Decision by sampling predictions for differences in area under the curve in groups where the skew
(left panel) and range (right panel) of gains and losses were manipulated. G � gain; L � loss; Pos � positive;
Neg � negative.
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smaller than predicted by the DbS. We return to the size of the
effect predicted by DbS in the General Discussion.

Finally, we computed memory scores for all participants, sum-
ming the number of times they correctly recognized a gain or a
loss in a memory task. We correlated memory performance with
AUC scores in all three conditions. The correlations were weak in
all groups: r(87) � �.039, 95% CI [�.245, .171], in the GPos –
LNeg group; r(86) � �.024, 95% CI [�.232, .187], in the GNeg –
LPos group; and r(82) � �.036, 95% CI [�.248, .748], in the
GUni – LUni group. Thus, memory of gains and losses was only
weakly associated with the tendency to accept mixed gambles.

Overall, we found no evidence of context effects induced by the
skew manipulation when we measured loss aversion in terms of
the prospect theory’s parameters �, �, and � because these param-
eters cannot be reliably recovered from the accept�reject task.
Using an alternative measure that captures the overall propensity
to accept or reject gambles, we found a small effect of the skew of
the distributions of gains and losses on loss aversion.

Experiment 2

The objective of Experiment 2 was to replicate the results of
Experiment 1 with a new sample of participants. Additionally, we also
included manipulations of the range of gains and losses in an effort to
replicate the findings of Walasek and Stewart (2015). By including
manipulations of range and skew in the same experiment we could
compare their effect sizes using the same model and the same mea-
surements.

Method

Design. The two skew conditions were identical to those in
Experiment 1. We also introduced two conditions with range
manipulation: GWide – LNarrow and GNarrow – LWide. The table in
Appendix A lists values used to form these distributions. The two
range manipulations mimic the design used by Walasek and Stew-
art (2015; see also Tom et al., 2007). As predicted by the DbS
model and described in the introduction, we expected that when

Figure 5. Condition median area under the curve scores (dots) for all three experiments. Error bars represent
95% bootstrapped confidence intervals around the group medians. The dashed line represents loss neutrality,
with loss averse responding below the line and the opposite above the line. Neg � negative; Pos � positive;
Uni � uniform.
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the range of gains is larger than the range of losses (GWide –
LNarrow), people will be loss averse (i.e., � � 1). When the
asymmetry is reversed (GNarrow – LWide), one should observe the
reversal of loss aversion (i.e., � 	 1).

Participants. A total of 405 participants on Prolific Academic
completed the experiment in exchange for £1.00. We chose the
sample size so that we would have at least 100 participants per
condition. Participants were randomly allocated to one of the four
conditions.

Procedure. Participants were presented with the instructions
and an example lottery in exactly the same way as in Experiment
1. We did not include the memory task from Experiment 1.

Results and Discussion

We used the same modeling approach as in Experiment 1 and
removed the top 5% of poorest fits, as planned in advance. Median
parameter values are listed in Table 1. Consistent with the results
of Experiment 1, we found no differences in median � between the
GPos – LNeg and GNeg – LPos conditions. Also consistent with
Experiment 1, we did observe a significant difference in the �
parameter between the two asymmetric skew conditions. In the
case of more complex versions of the prospect theory, we found no
differences in �, �, � and bias (see the table in Appendix B).

Using the AUC measure, we found small effects, such that partic-
ipants in the GPos – LNeg condition were willing to accept more mixed
gambles than were participants in the GNeg – LPos condition. The
difference in AUCs between the skew conditions was .115 (95% CI
[.073, .162]) and .103 (95% CI [.062, .160]) for the model with
different � and � parameters. This effect is visible in the middle panel
of Figure 5, where the confidence intervals of the two treatment
groups do not overlap. As in Experiment 1, the direction of the
difference in loss aversion is consistent with the DbS predictions.
However, both conditions show an overall level of loss aversion, and
we return to this issue in the General Discussion.

We now turn to the analysis of the conditions with range
manipulation. Here, we used the same model as before (see Equa-
tion 2) to estimate parameters of the prospect theory. Our results
depart considerably from both predictions of the DbS and the
results reported by Walasek and Stewart (2015). Here, we found
that people are slightly loss-averse in both the GWide – LNarrow

(� � 1.583, 95% CI [1.428, 1.735]) and the GNarrow – LWide (� �
1.344, 95% CI [1.064, 1.587]) conditions. The difference is small,
and confidence intervals encompass 0: difference in � �.239 (95%
CI [�.559, .047]). This is also true for the model with � and � free
to vary, in which the difference in � �.064 (95% CI [�.257,
.153]). The discrepancy between our findings and those reported
by Walasek and Stewart is most likely due to the parameter
trade-off discussed earlier.

We also used the AUC measure for the range manipulation. DbS
predictions for the two conditions with asymmetric ranges are
shown in the right panel of Figure 4. Here, the model predicts a
difference in the AUC of exactly .5. By our design, DbS predicts
almost the same size effect in terms of the AUC for the range and
skew manipulations used in our experiments. Using the AUC, we
found a small difference between the groups, with asymmetric
ranges of gains and losses of .077 (95% CI [�.007, .137]) and .093
(95% CI [.006, .167] in the more complex model. Thus, the

difference is similar in magnitude to that of the skew in Experi-
ments 1 (.08) and 2 (.115).

Taken together, we found that neither range nor skew manipu-
lations exert strong effect on people’s preferences. We found weak
and similar-sized effects of skew and range on people’s overall
tendency to accept and reject mixed lotteries.

Experiment 3

In Experiment 2, we were able to replicate the small effect of
skew manipulation on the probability to accept mixed gambles
observed in Experiments 1 and 2. In Experiment 3, we explored
whether the small effect of skew on the displayed level of loss
aversion could be due to the low salience of the skews in the
distributions of experienced gains and losses. To enhance our skew
manipulation, in Experiment 3 we made the distributions of gains
and losses visible to our participants. This is a heavy-handed
manipulation, and if the effect of skew remained small we could be
confident it was indeed a relatively small effect.

Method

Design. Participants were randomly allocated to one of two
conditions, either the GPos – LNeg or GNeg – LPos condition. The
possible monetary values in these conditions were the same as in
previous experiments (see the table in Appendix A) with the
exception that all outcomes were in U.S. dollars. We made one
change to the display format of the lottery task. On each trial,
participants saw a lottery together with two-strip displays of pos-
sible gains and losses. Amounts on offer for a given lottery were
highlighted as seen in Figure 6, with the intention of making rank
position particularly salient.

Participants. This time, 188 participants from the crowd-
sourcing platform Amazon Mechanical Turk completed the exper-
iment in exchange for $1.00. We aimed for approximately 90
participants per condition.

Procedure. Participants were presented with the instructions
and an example lottery in exactly the same way as in Experiments
1 and 2. The only exception was that the instructions included the
display of the possible distributions of gains and losses. Partici-
pants were also informed that these values were all possible
outcomes and that on each trial a gain and a loss would be drawn
at random from these sets.

Results and Discussion

Following our exclusion criteria, as we planned in advance, we
removed the top 5% of highest deviance scores (10 participants).
Median parameters of our model fitting are listed in Table 1, and
median AUC scores are plotted in Figure 5. The results closely
replicate the findings in Experiments 1 and 2, showing a larger
AUC (i.e., less loss aversion) in the GPos – LNeg condition than in
the GNeg – LPos condition. The difference in AUCs between the
conditions was small, with a median difference of .074 (95% CI
[.002, .149]) and .068 (95% CI [�.005, .140]) in the more complex
version of the prospect theory.

General Discussion

In three experiments, we reexamined the claim that the distri-
bution of gains and losses used in the elicitation procedure influ-
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ences how likely people are to accept 50/50 gambles for simple
gains and losses. More specifically, we manipulated the skew of
the distribution of gains and losses to test whether DbS offers an
accurate model of the origin of loss aversion. According to DbS,
the subjective value of a mixed gamble is based on the rank
position of the gain among other gains and the loss among other
losses. We found that people are more likely to choose to play a
given gain�loss pair gamble when gains are positively skewed
and losses are negatively skewed. This is the prediction that DbS
makes: A given gain looks better when most of the other gains
being offered are smaller (as in a positively skewed distribution)
and a given loss looks better when most of the other losses being
offered are larger (as in a negatively skewed distribution). We
replicated this finding across three experiments. These effects of
skew lead us to conclude that rank effects are responsible, at least
in part, for the loss aversion seen in the accept�reject task.

We found difficulty in estimating prospect theory parameters
from the accept�reject task data. Recently, this model recovery
problem has been identified and is now well understood (Nilsson
et al., 2011; Pachur & Kellen, 2013; Spektor & Kellen, 2018;
Walasek & Stewart, 2018). What this means is that we could not
draw conclusions about how prospect theory parameters change
with range and skew manipulations in the accept�reject task,
because prospect theory parameters cannot be reliably identified
using accept�reject task data. Our solution was to use a more
robust area-under-the-curve (AUC) measure, which captures the
fraction of gain�loss space in which people are more likely than
not to accept the gamble.

We also compared the size of the effects of manipulating skew
with the size of the effects of manipulating range. Using the AUC
measure, we found similar-sized effects. The effects of range and
skew were reasonably small, and they were smaller than the effects
that DbS predicts under the assumption that the only gains and
losses in memory are those from the experiment. Why was the
observed effect of skew smaller than expected? In DbS, compar-
isons between attribute values can involve intraexperiment com-
parisons (as in Stewart et al., 2015) but also comparisons to
distributions of attribute values from outside the experimental
context (as in Stewart et al., 2006). Given our experimental effects
are small compared to the pure within-experiment comparison-
only predictions (see Figure 4), it could be that comparisons to a
set of attribute values from outside the experiment play a signifi-
cant role. Without knowing what the distribution of extraexperi-
ment attribute values in memory is, DbS makes predictions for

only the direction of the difference between conditions (see Stew-
art et al., 2015, pp. 692–693). For the small effects of skew and
range to be consistent with DbS, we would have had to assume that
the effect of intraexperiment gains and losses had been diluted by
the (unmeasured) extraexperiment gains and losses.

We also found, in Experiment 1, that people’s memory of gains and
losses does not correlate strongly with sensitivity to losses. DbS
predicts that context effects should be stronger in people who show a
better memory for the context. To enhance people’s awareness of the
skewed distributions, we explicitly showed them to participants in
Experiment 3. This, however, did not enhance the overall size of the
effect of skew on the probability of accepting lotteries.

We also reanalyzed data from all four experiments reported by
Walasek and Stewart (2015) using the new AUC measure. First we
comment on the difference between the conditions and then com-
ment on whether we observed a reversal of loss aversion in the
GNarrow – LWide condition. As we outlined earlier, because of the
difficulties in estimating prospect theory parameters from accept�
reject task data, we did not compare the � values from our range
manipulation in Experiment 2 with the � values from Walasek and
Stewart. Using the AUC measure, in all four of Walasek and
Stewart’s experiments, the effect of range was replicated. Table 2
shows that in every experiment the AUC was larger in the GWide –
LNarrow condition than in the GNarrow – LWide condition. This is
the pattern that we saw here in Experiment 2’s range condition (the
only experiment with a range manipulation). In summary, the
effects of range, which is what DbS predicts, were robust and well
replicated.

The effect of range in Walasek and Stewart’s (2015) data is
about half of what DbS predicts, assuming only intraexperiment
comparisons, and the effect in the range conditions of Experiment
2 is only about one quarter of the size of the effect that DbS
predicts, assuming only intraexperiment comparisons.

A core claim in the original article (Walasek & Stewart, 2015) was
that loss aversion could be reversed. In the original � analysis, they
saw reversal and elimination of loss aversion in three out four exper-
iments. In the new AUC reanalysis, the reversal occurred in only one
of them (Experiment 1b). One can still see the reversal of loss
aversion in one experiment but not in the others. We know of at least
one other lab that replicated the reversal of loss aversion using the
same paradigm (M. Jung, personal communication, April 17, 2018).

Apart from the central role played by rank in the DbS, DbS’s
account of loss aversion rests on the assumption that gains and losses
are evaluated separately. Without separate evaluation, there would be

Figure 6. Screenshot of an accept�reject trial from Experiment 3.
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no effects of range or skew. It is commonly assumed that when people
evaluate positive and negative outcomes or events, they engage
mainly in within-domain comparisons (McGraw, Larsen, Kahneman,
& Schkade, 2010). But allowing cross-domain comparisons, so that
the magnitudes of gains are sometimes compared with losses, and
vice versa, would also act to reduce the size of the range and rank
effects we measured here (see also Noguchi & Stewart, in press, for
an example of cross-dimension comparisons in a DbS account
of multiattribute choice). Other accounts posit that the reference
group for evaluating different outcomes may incorporate both
gains and losses. For example, lotteries tend to be rated as more
attractive when they include a low chance of a small loss. For
example, the gamble 95% chance of $20 or 5% chance of $0 is
made more attractive by swapping the $0 for a tiny �9-cent loss
because, according to Slovic, Finucane, Peters, and MacGregor
(2007; Yechiam & Hochman, 2013a), people do not spontane-
ously consider losses when they evaluate a lottery in the gain
domain only. However, once losses are involved, the compar-
ison sample can include both gains and losses, which makes the
available positive outcomes seem more attractive in compari-
son. If people engage in across-domain comparisons, one would
not observe any context effects when the range and skewness
are manipulated. So, as with comparisons to distributions of
gains and losses outside the experimental context described
earlier, cross-domain comparisons are also a possible account
of the smaller size of range and rank effects.

Conclusion

This work extends the understanding of the processes underly-
ing context effects in elicited loss aversion. We found small but

robust effects of the manipulation of the skew of the distributions
of gains and losses upon loss aversion. This means that the rank
hypothesis embodied in range-frequency theory and decision by
sampling is responsible, at least in part, for loss aversion in the
accept�reject task. Our findings offer insights on the limits of the
context sensitivity of loss aversion (Ert & Erev, 2011).
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Appendix A

The Distributions of Gains and Losses Used in the Experiments

Distribution and domain Distribution of outcomes

GPos – LNeg

Gains 1, 2, 4, 10, 16, 23, 31
Losses �1, �9, �16, �22, �27, �30, �31

GNeg – LPos

Gains 1, 9, 16, 22, 27, 30, 31
Losses �1, �2, �4, �10, �16, �23, �31

GUni – LUni

Gains 1, 6, 11, 16, 21, 26, 31
Losses �1, �6, �11, �16, �21, �26, �31

GWide – LNarrow

Gains 2, 12, 22, 32, 42, 52, 62
Losses �1, �6, �11, �16, �21, �26, �31

GNarrow – LWide

Gains 1, 6, 11, 16, 21, 26, 31
Losses �2, �12, �22, �32, �42, �52, �62

Note. G � gain; L � loss; Pos � positive; Neg � negative; Uni � uniform.
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Appendix B

Median Parameter Estimates in Every Condition in Experiments 1, 2, and 3 Using the Five-Parameter Version of
the Prospect Theory

Experiment and
condition � [95% CI] � [95% CI] � [95% CI] bias [95% CI] w(1/2) [95% CI] AUC [95% CI]

Experiment 1

GNeg – LPos .836 [.674, .959] .910 [.816, 1.053] 1.486 [1.300, 1.693] .003 [�.044, .030] 1.004 [.465, 1.367] .339 [.294, .380]
GUni – LUni .868 [.687, 1.033] .838 [.715, .959] 1.416 [1.216, 1.692] .067 [�.395, .361] 1.58 [.817, 2.457] .426 [.387, .488]
GPos – NNeg 1.115 [.643, 1.624] 1.263 [.585, 1.788] 1.272 [.957, 1.573] .763 [.281, 1.302] 1.436 [.137, 2.388] .418 [.372, .464]
Skew diff .280 [�.194, .827] .353 [�.361, .864] �.215 [�.595, .132] .759 [.287, 1.311] .432 [�.870, 1.563] .079 [.019, .144]

Experiment 2

GNeg – LPos .693 [.564, .793] .855 [.681, 1.050] 1.489 [1.299, 1.708] .075 [�.269, .313] 1.530 [1.033, 2.000] .287 [.252, .321]
GPos – LNeg .879 [.591, 1.073] 1.056 [.635, 1.393] 1.430 [1.107, 1.807] .247 [�.162, .524] 1.395 [.693, 1.981] .390 [.362, .433]
Skew diff .185 [�.113, .420] .201 [�.271, .568] �.059 [�.455, .360] .172 [�.295, .612] �.135 [�.986, .627] .103 [.062, .160]
GNarrow – LWide .965 [.755, 1.113] 1.220 [.819, 1.565] 1.178 [1.070, 1.327] .056 [�.033, .145] 1.177 [.647, 1.742] .397 [.329, .451]
GWide – LNarrow .728 [.636, .830] .844 [.745, .950] 1.242 [1.089, 1.412] .003 [�.025, .023] .879 [.218, 1.359] .304 [.251, .356]
Range diff .237 [�.004, .406] .376 [�.044, .732] �.064 [�.257, .153] .053 [�.035, .149] .298 [�.387, 1.199] .093 [.006, .167]

Experiment 3

GNeg – LPos .867 [.691, 1.017] .827 [.562, .992] 1.541 [1.142, 2.108] .000 [�.024, .018] 1.144 [.332, 1.647] .343 [.309, .375]
GPos – LNeg 1.273 [.974, 1.469] 1.644 [1.235, 2.131] 1.340 [.881, 1.759] .179 [�.159, .478] 1.310 [.355, 2.200] .411 [.345, .474]
Skew diff .406 [.072, .664] .817 [.408, 1.404] �.201 [�.961, .352] .178 [�.157, .482] .166 [�.837, 1.414] .068 [�.005, .140]

Note. CI � confidence interval; AUC � area under the curve; G � gain; L � loss; Neg � negative; Pos � positive; Uni � uniform; diff � difference.

(Appendices continue)
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Appendix C

Scatterplots for Pairs of Parameters Estimated Using Equation 2 in Experiment 1 Figure C1
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Figure C1. Parameter correlations in Experiment 1.
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