
Modelling and Solving Healthcare

Decision Making Problems under

Uncertainty

by

Elvan Gökalp

A thesis submitted in partial ful�lment of the requirements for the

Degree of Doctor of Philosophy

Operational Research and Management Sciences

Warwick Business School

The University of Warwick

September 2017

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/157788329?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Contents

List of Figures iv

List of Tables vi

Chapter 1 Introduction 1

1.1 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Contributions of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Decision-making under Uncertainty: A Review . . . . . . . . . . . . . . 7

1.3.1 Stochastic Programming . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.2 Queuing Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.3 Robust Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 21

Chapter 2 Capacity Planning for Network of Stem-cell Donation Cen-

tres 25

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Stochastic Capacity Planning in Healthcare . . . . . . . . . . . . . . . . 30

2.3 Operations of a Stem-cell Donation Centre . . . . . . . . . . . . . . . . . 33

2.4 Formulation of the Stochastic Capacity Planning Problem . . . . . . . . 36

2.5 Scenario-based Capacity Planning Model . . . . . . . . . . . . . . . . . . 43

2.5.1 An Approximation to Maximum Time Spent in Queue . . . . . . 46

2.6 Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.6.1 Design of Experiments and Data . . . . . . . . . . . . . . . . . . 55

2.6.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . 58

i



2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Chapter 3 Resource Allocation for Healthcare Network with Outsourc-

ing 69

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.4 Structural Properties and Solution Method for the Approximated Model 85

3.5 Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.5.1 Design of Experiments and Data . . . . . . . . . . . . . . . . . . 96

3.5.2 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . 97

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Chapter 4 Real-time Surgery Planning under Uncertainty in Surgery

Suite 109

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.2.1 Modelling of Real-time Surgery Planning Problem . . . . . . . . 114

4.2.2 Approximate Dynamic Programming for Healthcare Applications 120

4.3 Stochastic Dynamic Programming Model for Real-time Operating Room

Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.3.1 Real-time Operating Room Planning Model under Deterministic

Surgery Duration . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.3.2 Real-time Operating Room Planning Model under Surgery Dura-

tion Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.3.3 Real-time Multiple Operating Room Planning under Surgery Du-

ration Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.4 Simulation-based Approximate Dynamic Programming Approach . . . . 138

4.5 Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.5.1 Parameter Selection and Modelling Features for the ADP Algorithm144

ii



4.5.2 Performance Comparison of the ADP Algorithm and A Myopic

Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.5.3 Impact of Various Elective Scheduling Strategies . . . . . . . . . 155

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Chapter 5 Conclusions 160

5.1 Summary of Research and Findings . . . . . . . . . . . . . . . . . . . . . 160

5.2 Methodological and Practical Limitations of Thesis . . . . . . . . . . . . 163

5.3 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . 164

iii



List of Figures

2.1 Main operations in a stem-cell donation centre . . . . . . . . . . . . . . 34

2.2 A description of the patient side operations along with the notation used

for scenario s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3 Relative frequency histograms for the longest waiting time (left) and num-

ber of successful searches (right) obtained at single stem-cell donation

centre using the in-sample and out-of-sample simulation approaches. . . 60

2.4 Performance comparison of the two-center and �ve-center networks at

varying weekly budget per centre obtained by the optimization model . 61

2.5 Impact of weekly budget on the optimal capacities of donation centers

and unsuccessful searches for the two-center (left) and �ve-center (right)

networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.6 Impact of arrival variability on the capacity of centres and the rate of

unsuccessful searches in two-center (left) and �ve-center (right) networks 65

2.7 Average rate of unsuccessful searches at varying capacity levels with var-

ious demand patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.1 A schematic representation of a healthcare outsourcing network . . . . . 79

3.2 Maximum access times obtained for di�erent network structures at vari-

ous budget levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.3 Impact of di�erent capacity and budget levels on the maximum access

time of the network N(12, 40) . . . . . . . . . . . . . . . . . . . . . . . . 103

iv



3.4 Regional outsourced, remaining capacities and maximum access times in

the network N(12, 40) when the budget is 300$ . . . . . . . . . . . . . . 104

3.5 Maximum access time in the network N(12, 40) with varying budget and

Γar/σ
a
r levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.6 Maximum access time for the Audiology outsourcing network with vary-

ing budget and patient arrival rates . . . . . . . . . . . . . . . . . . . . . 107

4.1 A description of the decision-making process along with notation . . . . 130

4.2 Value of the initial state at di�erent number of iterations obtained by

various smoothing parameters . . . . . . . . . . . . . . . . . . . . . . . . 146

4.3 Optimality gap (columns) and number of states explored (lines) by the

ADP algorithm by using di�erent Γ levels and number of iterations . . . 147

4.4 Box plots for the total costs obtained with the ADP policy and the myopic

heuristic in di�erent levels of cost components . . . . . . . . . . . . . . . 153

4.5 Frequency histograms for time periods with an acceptance decision by

ADP and myopic policies under di�erent arrival rates . . . . . . . . . . . 154

4.6 Frequency histogram for time periods with an acceptance decision in two

rooms with di�erent initial schedules . . . . . . . . . . . . . . . . . . . . 156

v



List of Tables

2.1 Input data for parameters used in the numerical experiments . . . . . . 57

3.1 A review of the literature on capacity planning in service outsourcing . . 74

3.2 Description of the data set speci�ed for a small network N(3, 10) . . . . 97

3.3 Impact of network structure on performance of solution methods . . . . 98

3.4 Impact of the tolerance level on the heuristic's performance obtained

using the network N(12, 40) . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.5 Performance comparison of di�erent solution methods using the outsourc-

ing network N(12, 40) and di�erent budget levels . . . . . . . . . . . . . 100

3.6 Real data obtained from the NHS audiology network . . . . . . . . . . . 106

4.1 A classi�cation of the research papers on real-time surgery management 117

4.2 Input data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.3 Performance comparison of both strategies with and without bu�er at

various levels of cost components . . . . . . . . . . . . . . . . . . . . . . 157

4.4 Performance comparison of the LF and SF elective sequencing rules at

various cost component levels . . . . . . . . . . . . . . . . . . . . . . . . 158

vi



ACKNOWLEDGEMENTS

I would like to thank my supervisors, Nalan Gulpinar and Xuan Vinh Doan,

for their support, guidance and understanding. Very special thanks also go to

my friends in the Teaching Centre, Pauline, Tim, Jieun, Qutong, Evan, Selim,

Mustafa, Ahmed, Selin and many others for the wonderful moments and experi-

ences I shared with them during my PhD. Although my dear friends in Turkey,

Cansu, Duygu Guler and Duygu Tekin, were not here with me physically, their

friendship always supported me during this long journey. I also would like to

thank to my lovely Mumin who helped me a lot to deal with the last bit of my

PhD. Finally, I would like to express my heartfelt gratitude to my parents, Tulay

and Suleyman Gokalp, as well as my siblings Merve and Celal Gokalp. Without

their incredible support and encouragement, I would not have made it through

my PhD.

vii



DECLARATIONS

I declare that this thesis is my own work. This thesis has not been submitted in

any other university and not published in any scienti�c journal.

viii



ABSTRACT

The e�cient management of healthcare services is a great challenge for healthcare
managers because of ageing populations, rising healthcare costs, and complex op-
eration and service delivery systems. The challenge is intensi�ed due to the fact
that healthcare systems involve various uncertainties. Operations Research (OR)
can be used to model and solve several healthcare decision making problems at
strategic, tactical and also operational levels. Among di�erent stages of healthcare
decision making, resoure allocation and capacity planning play an important role
for the overall performance of the complex systems. This thesis aims to develop
modelling and solution tools to support healthcare decision making process within
dynamic and stochastic systems. In particular, we are concerned with stochastic
optimization problems, namely i) capacity planning in a stem-cell donation net-
work, ii) resource allocation in a healthcare outsourcing network and iii) real-time
surgery planning. The patient waiting times and operational costs are considered
as the main performance indicators in these healthcare settings. The uncertainties
arising in patient arrivals and service durations are integrated into the decision
making as the most signi�cant factors a�ecting the overall performance of the un-
derlying healthcare systems. We use stochastic programming, a collection of OR
tools for decision-making under uncertainty, to obtain robust solutions against
these uncertainties. Due to complexities of the underlying stochastic optimiza-
tion models such as large real-life problem instances and non-convexity, these
models cannot be solved e�ciently by exact methods within reasonable compu-
tation time. Thus, we employ approximate solution approaches to obtain feasible
decisions close to the optimum. The computational experiments are designed
to illustrate the performance of the proposed approximate methods. Moreover,
we analyze the numerical results to provide some managerial insights to aid the
decision-making processes. The numerical results show the bene�ts of integrating
the uncertainty into decision making process and the impact of various factors in
the overall performance of the healthcare systems.
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Chapter 1

Introduction

Healthcare industry is one of the largest and crucial sectors a�ecting millions

of lives worldwide. Recently, the industry has been facing signi�cant challenges

due to several sociological and technological changes. First of all, the increasing

amount of publicly available data has resulted in a higher demand for better

quality of services. Secondly, the incidence rates of long-term conditions such as

hypertension or diabetes have increased because of the modern lifestyle. Lastly,

one of the biggest challenges for the industry is the aging phenomenon i.e. the

increasing rate of over-aged population. The emergence of these challenges put

healthcare managers under a serious pressure to improve the e�ciencies of their

services.

Healthcare management is a complex task due to several distinguishing

features of healthcare services. First of all, they serve a large number of pa-

tients and engage with multiple stakeholders, such as hospital managers, doc-

tors, and nurses. Often in time, these stakeholders have con�icting objectives

like maximising pro�t or minimising waiting time. From a managerial point of

view, these performance measures are mainly in�uenced by several tactical and

strategic decisions regarding the capacity planning or resource allocation. These

1



decisions should take into account in�exible and expensive resources as well as

operational complexities involving di�erent specialities and resources at the same

time. Besides, healthcare services are subject to several uncertainties such as

patient arrivals, service durations, treatment outcomes, test results, or disease

progression.

Mathematical modelling can be used as a tool to simplify the complex sys-

tems and analyze them in a more e�ective manner. Operations Research (OR)

provides useful modelling tools for healthcare management due to its success in

handling large and complex systems (Brandeau et al., 2004). Healthcare mod-

elling is speci�cally concerned with the design of healthcare delivery systems to

achieve cost-e�ective quality of services. In particular, the decision-making in

healthcare modelling may be strategic/tactical such as capacity planning and re-

source allocation or operational such as patient and sta� scheduling. Capacity

planning, as one of the main interest areas in OR, deals with an e�ective use of

available resources to meet the changing demand for products or services. An

e�ective capacity planning model requires to take optimal decisions to minimize

operational costs while satisfying the demand even at emergency situations. In

particular, the capacity planning for healthcare facilities such as intensive care

units (Gallivan et al., 2002; Harper et al., 2010), inpatient clinics (Gnanlet and

Gilland, 2009; Creemers and Lambrecht, 2009), and hospitals (Utley et al., 2003)

is crucial to utilise resources such as nurses, beds and operating rooms. Similarly,

healthcare resource allocation problems aim to allocate a given set of resources

among the operational entities such that the overall service performance is im-

proved.

Healthcare modelling should also consider the inherent uncertainties, as

they may have a signi�cant impact on the solution and the quality of the ser-

vice provided to patients. The uncertainties a�ecting healthcare processes may
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be grouped under two categories: medical and managerial. Medical uncertainties

can be counted as treatment outcomes, results of medical tests, disease progres-

sion, etc. These uncertainties are usually independent from a speci�c hospital,

region or management which implies a higher chance of �nding relevant data for

the analysis. Managerial uncertainties can be listed as the variations in the de-

mand and service times, availability of resources (especially the medical sta�),

business environment, and the emergence of new technologies. Unlike the medi-

cal ones, these uncertainties may be speci�c to the hospital or the country under

consideration and may require di�erent modelling approaches.

Two critical managerial uncertainties a�ecting healthcare operations are

the variations in patient arrivals and service durations. In most of the healthcare

services, the overall patient demand is not known with certainty. When a health-

care delivery system is not designed according to this variation, the resulting

chaotic environment puts the lives of patients in danger. Appointment systems

aim to reduce the impact of this variation. However, even with an appointment

system, the arrival of an emergent patient is unavoidable. These patients should

either be diverted or inserted into the existing list of admitted patients which

implies extra waiting times for the existing patients. Thus, both the strategic

and operational healthcare planning should take into account the uncertainty in

patient demand. The other critical uncertainty, the variations in service dura-

tions, can be managed by creating robust schedules with plenty of bu�er times.

However, this may result in an ine�cient usage of resources which are very lim-

ited and costly. Therefore, the trade-o� between the conservative (robust) and

cost-e�ective approaches should be balanced very carefully in healthcare decision-

making.

Incorporating the uncertainty into the modelling of a problem is expected

to increase the robustness of the results. OR provides di�erent modelling ap-
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proaches depending on the nature of the decision-making problem under consid-

eration. When the probability distributions of the uncertain data are known or

can be estimated, stochastic programming can be used to model the problem.

Stochastic programming is a collection of the OR tools used for the decision-

making problems under uncertainty. A stochastic programming model aims to

�nd the optimum policy that is feasible for all (or almost all) possible realizations

of the uncertainty. In other words, it is concerned with the expected perfor-

mance of a system involving uncertainties. Stochastic programming o�ers several

modelling tools suitable for di�erent types of uncertainties and decision maker

attitudes towards these uncertainties. For example, uncertainties may follow a

speci�c distribution or attain no information at all. Some uncertainties may be

resolved after an initial set of decisions is taken. Besides, decision-makers may

be risk-averse, very cautious against uncertainties, or risk-seeker, willing to take

risks. Next section provides more detailed information about di�erent stochastic

programming tools suitable for various kinds of uncertainties and risk attitudes.

This thesis focuses on the capacity planning and resource allocation prob-

lems arising in di�erent healthcare management practices. Speci�cally, we model

and solve three healthcare decision making problems under uncertainty that can

be listed as:

• Capacity planning for a network of stem-cell donation centres,

• Resource allocation for a healthcare network with outsourcing,

• Real-time surgery management in a surgery suite.

The chapters incorporate several common features. First of all, the un-

certainties in patient arrivals and service times are considered in all chapters.

Secondly, the minimization of the patient waiting time is the main concern in

all models developed in the chapters. Lastly, the underlying uncertainties in the
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problems are incorporated into the modelling by using several stochastic program-

ming tools.

1.1 Thesis Outline

This thesis is composed of �ve chapters. Chapter 1 provides a brief introduction,

an overview of the thesis and a review of the OR methodologies for decision-

making under uncertainty. Chapter 2 focuses on the capacity planning for a

network of stem-cell donation centres. The chapter starts with providing some

background information related to stem-cell donation centres. Then, the under-

lying capacity planning problem is explained in more detail and a mathematical

framework is proposed. Afterwards, we present a scenario-based stochastic pro-

gramming model where the maximum patient waiting time is approximated by a

robust optimization based approach. Finally, we design several computational ex-

periments to investigate the model sensitivity and the impact of di�erent network

structures on the overall service performance.

In Chapter 3, we focus on a resource allocation problem in a healthcare

network with outsourcing. First, we provide a literature review and then describe

the underlying problem in detail. We develop a non-linear integer programming

model by incorporating a robust queuing approach. The structural properties

of the model are presented and an alternating optimization based heuristic is

proposed to solve the model. The chapter concludes with the computational

experiments that compare the performances of the proposed heuristic and the

available commercial solvers and investigate the e�ect of the model parameters

on the overall service measures.

Chapter 4 presents a stochastic dynamic programming approach for the

real-time management of a surgery schedule. First, we provide a review of the
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related literature and describe the problem in detail. Then, a stochastic dynamic

programming model is presented. Due to the large problem size, the real-sized in-

stances are solved with an approximate dynamic programming (ADP) algorithm.

The computational experiments analyze the impact of the model parameters on

the algorithm's performance and evaluate it with respect to an exact method

and a myopic heuristic. Finally, we compare di�erent elective surgery scheduling

strategies in terms of the overall cost. Chapter 5 concludes the thesis by summa-

rizing the research, the key �ndings and the direction of the future research.

1.2 Contributions of Thesis

This thesis aims to contribute to the literature by:

• Modelling three healthcare decision-making problems under uncertainty,

• Using several stochastic programming tools to deal with di�erent types of

uncertainties emerging within these problems,

• Analyzing the structures of the resulting models and developing and imple-

menting appropriate solution methods,

• Designing and analyzing several computational experiments to investigate

the performance of the solution methods and produce a set of useful man-

agerial insights.

Each chapter provides more detailed information regarding the contribu-

tions of the respective study. In the next section, we present several modelling

and solution approaches for decision-making under uncertainty.
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1.3 Decision-making under Uncertainty: A Re-

view

Healthcare management problems are a�ected by several uncertainties that should

be taken into account to obtain robust solutions. These uncertainties may be due

to the measurement errors or simply because the relevant data are not realized

yet. Traditional (deterministic) optimization models assume that the input data

of a problem are known beforehand. However, input data are usually neither

available nor �xed. This section provides a review of various methods used to

model and solve decision-making problems under uncertainty.

The most intuitive approach to handle the uncertainties in a decision-

making problem is to replace them with their average values or point-wise esti-

mates. This method reduces the stochastic problem into a deterministic one. But,

Ben-Tal and Nemirovski (1999, 2000) have shown that the solutions obtained by

using these estimates may become infeasible even with the slight changes in the

levels of the uncertain parameters. Thus, the solution found with the expected

values may not be feasible if the data change or realize di�erently from the ex-

pectation. This is usually not acceptable to decision makers who need solutions

suitable for most of the future realizations. Therefore, as many realizations as

possible should be included in the model. However, this may result in very large

problems that are computationally expensive.

Two main OR approaches for decision-making under uncertainty are stochas-

tic programming and robust optimization. The following sections provide some

background information related to these approaches.
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1.3.1 Stochastic Programming

Stochastic programming is a wide framework for modelling and solving optimiza-

tion problems in the presence of uncertainty. The framework is mainly introduced

in 1955 by Dantzig using the fact that uncertain data can be described by prob-

ability distributions. Readers are directed to Birge and Louveaux (2011) for a

comprehensive review of stochastic programming. In this section, we present

di�erent modelling and solution approaches under stochastic programming.

Modelling Approaches

This section provides an overview of stochastic programming modelling approaches

by emphasizing several problem features such as uncertainties, number of objec-

tive functions, and convexity. First, let's introduce the basic concepts of stochastic

programming. A stochastic programming model can be de�ned as,

max
x∈X

E[f(x, ξ)], (1.1)

where x ∈ X and ξ ∈ Ξ denote the vectors of decision variables and random

variables belonging to a feasible set X and a probability space Ξ, respectively. The

objective of the model is to maximize the expected performance represented in the

form of function, f(x, ξ), under the presence of uncertainties ξ. The stochastic

programming framework assumes that the distributions of the random variables

are known or can be estimated from the historical data.

Multi-stage Modelling: The uncertainties in a stochastic problem may be re-

alized in di�erent points of the planning horizon. Some decisions have to

be taken before the uncertainties are realized while the others may be taken

afterwards. The timing of a set of decisions is called a stage. Between each

stage, some relevant information is unfolded i.e. uncertainties are realized.
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A single-stage stochastic programming model requires all decisions to be

taken before the uncertainties are realized. If some decisions may be taken

afterwards, then the problem can be modelled as a multi-stage stochastic

programming model. A two-stage stochastic programming problem can be

written as,

max
x∈X

f(x) + E[Q(x, ξ)], (1.2)

where Q(x, ξ) is the optimal value of the second stage problem,

max
y∈Y

{q(y, ξ) | T (ξ)x +W (ξ)y = h(ξ)},

and x ∈ X, y ∈ Y, T , W and h represent the �rst and second stage vari-

ables, where Y is the feasible set y belongs to, and the elements of the

second-stage problem, respectively. In a multi-stage model, the decisions

taken in the second or later stages are called recourse actions. In other

words, each possible realization of the uncertainty is associated with a re-

course action.

Chance-constrained Formulations: In some problems, constraint violation

cannot be avoided due to the inherent uncertainties. For these cases, the

probability of violating a constraint can be bounded in a chance-constraint,

which can be formulated as,

Pr
(
φ(x, ξ) ≥ 0

)
≤ p,

where φ(x, ξ) ≥ 0, Pr(.) and p ∈ [0, 1] represent a �nite system of inequal-

ities, the probability function and the threshold probability level, respec-

tively. A chance-constraint can be for a single constraint only or multiple

constraints at the same time in which the dependencies between the random
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variables should also be considered.

Scenario-based Modelling: In a stochastic programming model, probability

distribution functions can be directly used as in the form of chance-constrained

formulations. Alternatively, they can be discretized in the form of scenarios;

the random vector ξ can be replaced with itsK possible realizations (scenar-

ios), ξ1, · · · , ξK , with the respective probabilities of occurrence represented

as p1, · · · , pK . Then, model (1.1) can be written as,

max
x∈X

K∑
k=1

pkf(x, ξk). (1.3)

With this discretization, the stochastic programming model (1.1) reduces to

a deterministic equivalent (1.3). As the number of scenarios, K, increases,

the solution of (1.3) is expected to approach to the (exact) optimum of

model (1.1).

A signi�cant challenge in scenario-based modelling is to generate the sce-

narios in such a way that the uncertainty representation is rigorous enough.

Several scenario generation methods have been proposed in the literature

(see Kaut and Wallace (2007) for more information). The choice of an ap-

propriate scenario generation method depends on the problem features such

as the number of stages or the nature of the information revealed between

the stages. The most popular scenario generation method is Monte-Carlo

simulation (Chen, 2015) in which, �rst, a random and independent sequence

of numbers, U1, · · · , UK is generated from a uniform distribution over [0,1].

Then, by using an appropriate transformation, these random numbers are

converted into a sample of ξ: ξ′ = {ξ1, · · · , ξK}. In other words, the se-

quence ω = {U1, · · · , UK} is an element of the probability space, while the

generated sample ξ′ is a function of ω. Given this sample, the expectation

10



in (1.2), E[Q(x, ξ)], can be approximated as,

E[Q(x, ξ)] =
K∑
k=1

Q(x, ξk)/K. (1.4)

This type of uncertainty modelling is also called Sample Average Approx-

imation (SAA). More information regarding SAA can be found in Shapiro

(2013).

Objective: An important feature of a stochastic programming model is the num-

ber of objective functions. When a model contains more than one objec-

tive function, fi(x, ξ) for i = 1, · · · ,m, they can be combined by multi-

plying each objective function with a weight wi, and summing them up:

h(x, ξ) =
m∑
i=1

wifi(x, ξ). The weights can be elicited from the decision-

makers by using the weight elicitation techniques (see Riabacke et al. (2012)

for more information). Alternatively, the problem may be formulated as a

multi-objective stochastic programming model which can be stated as,

max
x∈X

h(x, ξ) =
(
f1(x, ξ), f2(x, ξ), · · · , fm(x, ξ)

)
,

and can be solved with one of the multi-objective solution methods such

as evolutionary algorithms (Deb, 2001). These methods try to �nd non-

dominated solutions. A solution is called as non-dominated if none of the

objective functions can be improved in value without worsening some of

the other objective values. Readers are referred to Stancu-Minasian (1984)

and Ben-Abdelaziz (2012) for detailed information regarding the stochastic

programming with multiple objectives.

Convexity: Other than the modelling of objective functions, the appropriate so-

lution method for a stochastic programming model depends on whether it is
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convex or not. Convex models can be solved with exact methods while non-

convex models usually need to be solved with approximate or heuristic meth-

ods. The convexity of a stochastic programming model is mainly in�uenced

by the representation of the uncertainty. For example, chance-constrained

formulations are usually non-convex due to the underlying probability func-

tions. In multi-stage models, non-convexity may especially arise in recourse

functions which can be integer, non-convex and discontinuous (Sahinidis,

2004). Next section provides the details of the solution approaches used for

stochastic programming models.

Solution Approaches

This section reviews possible solution methods for stochastic programming mod-

els. We categorize the solution methods into two: analytical, which provide the

global optimum, and non-analytical (approximate or heuristic), preferred when

the analytical methods are not applicable or computationally expensive.

Analytical Approaches: Depending on the structure of a model, there are var-

ious analytical solution methodologies available in the literature. For ex-

ample, if the objective function of a model is di�erentiable and there is no

constraint, then the most intuitive solution is to take the derivative of the

objective function. However, usually, stochastic programming models have

constraints. In such a case, when the objective function and the constraints

are linear, the model can be solved with a linear programming method such

as simplex. Yet, the convexity is lost when a stochastic programming model

contains integer elements as in most of the scenario-based formulations.

These models can be solved with branch-and-bound, an exact method used

to solve integer linear programming models. In this method, the candidate

solutions are systematically enumerated by using a rooted tree with the full
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set at the root. Then, the branches of this tree are explored sequentially.

Before going into the other nodes in a branch, the root solution is com-

pared with the estimated upper and lower bounds of the optimal solution

and discarded if it does not provide a better solution. The main drawback

of branch-and-bound is the need for a large memory to keep track of the

solution tree.

Another exact method that can be used for stochastic programming models

with a discrete solution space is the exhaustive search: evaluating and com-

paring all possible solutions. However, due to the computational concerns,

this method is only preferred when the feasible solution set is small.

Approximate Approaches and Heuristics: If a problem is analytically in-

tractable or computationally expensive to solve, then approximate or heuris-

tic methods can be used to obtain a solution. Approximate solution methods

�nd a solution close enough to the optimum within a reasonable time. On

the other hand, heuristics provide any satisfactory solution within a short

time. Heuristics can be preferred over approximate methods when obtaining

a solution quickly is more important than the quality of that solution.

Stochastic programming models are usually hard to solve and require ap-

proximate or heuristic approaches (Stougie and van Der Vlerk, 2003). An

overview of approximation algorithms for stochastic programming models

and the analysis of their performance are given in Stougie and van Der

Vlerk (2003). A popular approximate method used to solve stochastic pro-

gramming models is Langrangian relaxation. This method involves adding

penalty costs to the objective function due to the violations in the inequal-

ity constraints. Another approximate solution method especially used for

two-stage stochastic programming models is L-shaped decomposition algo-
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rithm. Instead of solving the original problem, this method decomposes

it into smaller problems and solves them sequentially. There are several

variants of L-shaped decomposition such as regularized L-shaped decompo-

sition. The main framework can also be extended to multi-stage problems

(Birge, 1985) which result in the algorithms like nested Benders decom-

position, stochastic dual dynamic programming, etc. The decomposition

approach can also be combined with branch-and-bound to generate an e�-

cient exact algorithm for two-stage stochastic programming models (Ahmed

et al., 2004). When a stochastic problem is too complex to build an opti-

mization model, simulation-optimization can be used to obtain a solution.

In this method, a simulation model is used as a black-box to map the de-

cision variables to an estimate of the performance measure (April et al.,

2003).

For chance-constrained formulations, an approximate solution method is

p-e�cient point-based algorithm that enumerates p-e�cient points of the

joint probability function in the chance-constraint. A point v ∈ Rn is called

a p-e�cient point of the probability function F , if F (v) ≥ p and there is no

y < v such that F (y) ≥ p, where y ∈ Rn. (Lejeune and Noyan, 2010).

If the main concern is obtaining any solution but not nexessarily the best

one, then a stochastic programming model can be solved with a local search

algorithm that moves to a (better) neighbour solution iteratively. The al-

gorithm stops when the time limit is achieved or a deemed optimal solu-

tion is found. Another possible heuristic for stochastic programming mod-

els is genetic algorithm (Ma and Zhang, 2002) which iteratively modi�es

a population of candidate solutions based on the natural selection idea.

Multi-objective tabu search, a heuristic especially used for multi-objective

problems, improves an initial solution by searching for optimal solutions
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using parallel agents (Erdogan et al., 2010). Each agent searches for the

non-dominated solutions and shares the information with other agents to

get a better search performance. Another heuristic, progressive hedging, is

based on the scenario aggregation idea and used for multi-stage stochastic

programming models with integer variables (Wallace and Helgason, 1991).

Markov Decision Process

Within stochastic programming, a special area of study, Markov Decision Process

(MDP), focuses on the modelling of stochastic problems with dynamic decision-

making. Speci�cally, MDP is a framework for modelling Markovian processes

where the outcomes are a�ected by decisions and uncertainty at the same time.

In an MDP formulation, the process is de�ned by its selected features, called

states, that capture all information required to make decisions. Each possible

state s and action a are assumed to belong to �nite sets S and A, respectively.

The planning horizon can be �nite or in�nite and the decisions (actions) are taken

at discrete time points (epochs) represented with t ∈ {1, · · · , T} (T =∞ for the

in�nite case). When the decisions can be taken at any time point, the problem

becomes a continuous-time MDP. At each decision epoch t, the system randomly

moves from state s to another state s′ partially a�ected by the selected action a

and the transition probabilities represented by P t
a(s, s

′). The reward obtained as

a result of this transition is denoted by Rt
a(s, s

′). The Markovian property implies

that the sets of available actions, rewards and transition probabilities at epoch

t only depend on the current state and action at this epoch, not the past ones.

The objective of an MDP formulation is to �nd the optimum policy, the optimum

action for each state and epoch maximizing total expected reward. If the states

cannot be observed with certainty, the problem can be modelled as a partially

observable Markov decision process (POMDP) (Dutech and Scherrer, 2013).
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MDP formulations can be solved with dynamic programming methods such

as value or policy iteration. The value iteration method, known as backward

induction as well, iteratively calculates the optimum value of being in state s ∈ S,

V (s), by using an optimality equation. For an in�nite horizon problem, the

optimality equation can be written as

V(i+1)(s) := max
a∈A

{∑
s′∈S′

Pa(s, s
′)
(
Ra(s, s

′) + γVi(s
′)
)}
,

where i, γ, and S ′ represent the iteration counter, the discount factor and the

set of all possible next states, respectively. In a �nite horizon problem, the value

iteration method requires to compute the values of all possible states at the end of

the planning horizon, VT (sT ) for all sT ∈ S. Then, the state values in the previous

time periods are calculated iteratively by moving backwards in time based on the

optimality equation:

Vt(st) := max
at∈A

{ ∑
s′t+1∈S′

Pat(st, s
′
t+1)
(
Rat(st, s

′
t+1) + Vt+1(s′t+1)

)}
, t = 1, · · · , T − 1.

In the policy iteration, instead of iterating the value function, the optimum

policy π(s) is iteratively computed by using,

π(s) := arg max
a∈A

{∑
s′

Pa(s, s
′)
(
Ra(s, s

′) + γV (s′)
)}
,

for the in�nite horizon case, and

π(st) := arg max
at∈At

{ ∑
s′t+1∈S′

Pat(st, s
′
t+1)
(
Rat(st, s

′
t+1) + Vt+1(s′t+1)

)}
, t = 1, · · · , T − 1,

for the �nite horizon case. Then, the value function is calculated by using the

optimum policy and the optimality equation. Each iteration of policy and value
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iteration methods takes O(card(S3)) and O(card(S)card(A)) times, respectively

(Sun et al., 2013). Thus, when the state space is large and action set is relatively

small in an MDP formulation, value iteration should be preferred over policy

iteration.

For real-sized instances, MDP formulations can reach very large sizes quickly.

This phenomenon is known as `curse of dimensionality' in the literature. Since

the exact methods su�er from curse of dimensionality, approximation techniques

have been an active research area within the MDP community. Neuro-dynamic

programming is an approximation technique for MDPs that combine tools from

reinforcement learning to approximate the value functions (Bertsekas and Tsit-

siklis, 1995). The most popular one of the approximation techniques for MDPs is

ADP, a solution framework in which the value function is approximated by using

linearization or simulation-based methods. For more detailed information related

to ADP, readers are referred to Powell (2007).

ADP methods may be categorised under two main streams: linear pro-

gramming and simulation-based methods. The �rst stream is useful when the

expectation in optimality equations can be computed exactly. In these methods,

the dynamic formulation is �rst converted to an equivalent linear programming

model and then solved with well-established linear programming solution meth-

ods. However, the resulting model usually contains a very large number of con-

straints (Haugh and Kogan, 2007) that can only be solved with the reduction

techniques, such as constraint sampling or column generation.

The simulation-based methods may also be divided into two categories:

Q-learning algorithms and value/policy evaluation (Powell, 2007). The �rst one

is based on estimating and updating the value function for each state-action pair,

whereas the value and policy evaluation algorithms compute the value function

approximation of each state and a single policy at each iteration, respectively.
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Within both streams, direct methods use simulation to calculate the value func-

tion estimates of the sampled states and �t an approximation structure to these

samples. The value function estimates may be stored in a table format, known as

the lookup table. As the number of iterations increases, the previous estimates

for state values are averaged with the new values. The disadvantage of a direct

method is that it requires a large memory to store the lookup table. The indirect

methods use a linear combination of basis function approximations to solve the

optimality equations. In these methods, the approximate state value is obtained

by weighting and summing the basis functions which represent selected features

of the state variable. The basis function approximation allows to estimate the

state values that are not visited by the lookup table method. The selection of

these features is a state-of-art and depends on the problem structure.

There are two methods within the basis function approximation: on-policy

and o�-policy. The �rst method initially �nds the state values visited in a sample

path as in the lookup table based ADP algorithm. Then, it applies regression

methods on these approximate state values to �nd the best weight levels for the

basis functions. Finally, these weights are used to �nd the approximate state

values in the next iteration, and the greedy policy accordingly. In other words,

it approximates the state values within the policy selection. The o�-policy basis

function method applies the regression after the approximate state values and

the policy are computed by the lookup table aggregation. In both methods, as

the number of iterations increases, it is expected that the weights will converge

through their true values. The direct and indirect methods may di�er in the

convergence speed depending on the problem, whereas, both may su�er from

long simulation runs.

A simulation-based ADP algorithm may be single- or double-pass. In a

double-pass ADP algorithm, �rst, a trajectory of states and outcomes are gen-
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erated with the help of simulation and the initial approximate state values and

the greedy actions are obtained. Then, these approximate values are updated

with a backward pass i.e. by using the information from the future steps of the

same trajectory. A double-pass algorithm is especially preferred when the value

function di�ers for some periods of the planning horizon. In such a case, an action

at a period may have an e�ect on the costs incurring in the future periods.

1.3.2 Queuing Theory

A speci�c area of study focusing on service systems is known as queuing theory.

This section presents a brief overview of queuing theory, a modelling approach

for service systems involving queue(s). A queuing system can be de�ned by cus-

tomers, server(s), input process, service mechanism, system capacity and queue

discipline. In this framework, the customer is the entity demanding the service

while the server is the entity providing the service. The input process describes

the arrival pattern of the customers, usually in terms of the distribution of the

random variables. The service mechanism consists of the number of servers, the

service time, and the form of providing service (batch or single). System capacity

denotes how many customers can be present in the system at any time. Finally,

queuing discipline explains all other factors related to the order of queue selection

such as how servers accept the next customer to be served. The most popular

queuing disciplines can be listed as �rst-come �rst-served, last-come �rst-served,

and random selection for service.

All the information related to a queuing system can be represented with

a notational taxonomy developed by Kendall (1953). With this method, a queue

can be represented as α/σ/m/β/N/Q. The �rst and second symbols in this nota-

tion describe the distributions of the input process and service time, respectively,

and can take symbols like M (exponential), G (general), D (deterministic), or
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Ek (Erlang). The third symbol, m, shows the number of servers. For example,

M/M/1 represents a Poisson arrival process, exponential service times and a sin-

gle server queuing system. As there are more factors involved, they are added

sequentially to the whole notation. On some cases, each server may have its own

queue which is known as a parallel queue system. Alternatively, there can be a

network of queues in which customers move between di�erent servers in a sequen-

tial way. For example, surgical process can be represented as a queuing network

that requires an operating room, then a recovery bed, and �nally an intensive-care

unit bed.

The performance of a queuing system can be measured by average waiting

time, number of people waiting in the queue, server utilization, etc. The analysis

of a queuing system aims to provide a mathematical representation of these per-

formance metrics. The analysis starts by assuming that the statistical equilibrium

exists; the queuing system reaches to an equilibrium state in the long-run (Bhat,

2015). Let's consider the state transition probability of a system, represented

with {Q(t), t ≥ 0} at time period t,

Pij(s, t) = P [Q(t) = j|Q(s) = i], s < t,

where the system is at state j at time t conditional on its state i at time s. If the

system attains a statistical equilibrium, then,

lim
t→∞

Pij(s, t) = pj,

which is independent from time t and state i (Bhat, 2015).

When the interarrival times in a queue follow exponential distribution, it is

possible to obtain closed-form formulations of the performance metrics. However,

if the interarrival process is not exponential, it is usually not possible to derive

these closed-form formulations (Bandi and Bertsimas, 2012). These cases can be
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analyzed by using approximate approaches (Whitt, 1993; Kimura, 1983).

Queuing theory is usually simple, provide generic results and require less

data compared to other available methods for the analysis of queues such as

simulation modelling (Fomundam and Hermann, 2007). Due to its success in

analyzing complex service systems, queuing theory has been widely applied to

healthcare management problems (Green, 2006). Queuing theory can be used to

understand a healthcare system better, to �gure out the reasons of an undesired

performance or to make recommendations to improve it. For example, it can

be used to �nd the optimum number of servers (capacity) to achieve a better

performance in terms of the average waiting time or utilization. Queuing models

can also be used to test di�erent managerial strategies such as customer priority

schemes or the degree of �exibility to be used in resource planning (Green, 2006).

For a detailed review of queuing models in healthcare, readers are referred to

Green (2006) and Lakshmi and Iyer (2013).

1.3.3 Robust Optimization

Stochastic programming assumes that uncertain parameters follow certain prob-

ability distributions. However, in some cases, this is not applicable due to the

lack of data or simply because the data do not �t into any known probability dis-

tribution. For these cases, robust optimization (RO) o�ers a rigorous framework.

This section provides an overview of RO.

RO handles optimization problems with certain degree of robustness against

uncertainty that can be represented in deterministic and set-based forms. It pro-

vides a guaranteed performance even in the worst-case scenario. In other words,

the general purpose of RO is to �nd a solution that is feasible for any realization

of the uncertainty in an uncertainty set. Thus, it is usually preferred when the

solutions are highly sensitive to the perturbations in the data or the worst-case
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scenario cannot be a�orded. Although it is a relatively young �eld, mostly �our-

ished in the last 20 years, its computational tractability and suitability for many

stochastic problems have generated a considerable RO literature (Bertsimas et

al., 2011). RO di�ers from stochastic programming mainly because it does not

require any information regarding the probability distributions of uncertain pa-

rameters. Also, it is signi�cantly di�erent from the sensitivity analysis since the

solution of an RO formulation is feasible regardless of the data. Let's consider a

generic optimization problem under uncertainty,

max
x∈X

f(x, ξ). (1.5)

The robust counterpart of (1.5) can be written as:

max
x∈X

f(x, ξ), ∀ξ ∈ U, (1.6)

where U is an uncertainty set that the random parameters, ξ, can take any value

from. In general, an uncertainty set speci�es a set of values that the uncertain

parameters can take. In other words, by optimizing over an uncertainty set, the

original problem (1.5) is converted to its robust counterpart (1.6).

An uncertainty set can be de�ned as discrete or continuous. A discrete

uncertainty set contains discrete values representing possible realizations of un-

certainty. On the other hand, a continuous uncertainty set contains an in�nite

number of possible realizations. Other than these, uncertainty sets can be classi-

�ed according to their shapes or structures. Readers are referred to Bertsimas et

al. (2011) for a review of uncertainty set structures.

The most common set structures studied in the literature are ellipsoidal,

polyhedral, and cardinality-constrained (Bertsimas et al., 2011). For the ease

of understanding, we will explain di�erent uncertainty set structures through a

robust linear problem i.e. the robust counterpart of a linear optimization problem
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that can be written as

min
x∈X

cTx,

subject to aix ≤ bi, ai ∈ U, i = 1, · · · ,m,

where ai for i = 1, · · · ,m are the uncertain parameters belonging to the uncer-

tainty set U . An ellipsoidal uncertainty set can be de�ned as

U = {(a1, · · · , am) : ai = a0
i + ∆iξi, i = 1, · · · ,m, ||ξ||2 ≤ ρ},

where a0
i denotes the nominal value of the ith uncertain parameter and ρ is a

parameter controlling the size of the set de�ned by modeller. The robust linear

problem with an ellipsoidal uncertainty set can be written as a second-order cone

problem (Bertsimas et al., 2011):

min
x∈X

cTx,

subject to a0
ix ≤ bi − ρ||∆ix||2, i = 1, · · · ,m,

that can be solved with exact methods.

A polyhedral uncertainty set, a special case of an ellipsoidal set (Ben-Tal

and Nemirovski, 1999), can be de�ned as

U = {(a1, · · · , am) : ai = a0
i + ∆iξi, i = 1, · · · ,m, Dξ + q ≥ 0},

where D and q are the parameters de�ned by modeller. When a robust linear

problem has a polyhedral uncertainty set, it can be written as a linear optimiza-

tion problem that can be solved to optimality with many commercial solvers

(Bertsimas et al., 2011). As an alternative, a cardinality-constrained set limits

the number of parameters that are allowed to deviate from their nominal values.

With this type of uncertainty set, modellers can control the trade-o� between the

conservativeness and the optimality of the solution.
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The shape of the uncertainty set a�ects the tractability of an RO problem

signi�cantly (Bertsimas et al., 2011). Let's de�ne the feasible (solution) set of an

RO problem as,

X(U) = {x|g(x, ξ) ≤ 0, ∀ξ ∈ U}.

Then, the tractability usually refers to X(U) being convex in x (Bertsimas et

al., 2011). However, the robust counterparts of convex optimization problems are

mostly intractable (Bertsimas et al., 2011).

Recently, several important developments have occurred in RO; Gabrel et

al. (2014) present a detailed review of these advances since 2007. Two main

streams with recent advances are the use of risk theory to describe the uncer-

tainty sets and multi-stage RO models. In the �rst stream, uncertain parameters

are assumed to follow unknown probability distributions. This new approach is

also called distributionally robust optimization (Delage and Ye, 2010; Goh and

Sim, 2010) as an attempt to close the gap between stochastic programming and

RO. The second stream, multi-stage RO, is also known as dynamic RO in which

recourse decisions are included into a robust formulation in a tractable fashion.

Dynamic RO aims to improve the long-term tradition of static RO modelling; for

a detailed review, readers are referred to Duzgun and Thiele (2010).

The next chapter presents the capacity planning study for a stem-cell do-

nation network under uncertainty.
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Chapter 2

Capacity Planning for Network of

Stem-cell Donation Centres

2.1 Introduction

A healthcare system providing medical services involves multiple stakeholders

such as doctors, managers, and public policy makers. These stakeholders have to

deal with di�erent operational complexities and various uncertainties inherent in

the systems to decrease cost and to increase patient satisfaction. The operational

complexities arise from the fact that healthcare procedures usually consist of

multiple steps involving di�erent specialities and speci�c resources at the same

time. These steps incorporate several uncertainties such as treatment outcomes,

test results, and disease progression. Due to the increasing pressure to minimize

operational costs and high demand for an improved service, an e�ective capacity

planning becomes crucial for the healthcare management.

Healthcare is one of the largest sectors in the world, accounting around

10% of global GDP (Deloitte, 2016). Transplantation services, including organs,

tissues or cells, take an important place within the healthcare sector. In partic-

25



ular, kidney transplantation comprises around 70% of all transplants in the UK

(ODT, 2016). The most common cell transplantation is that of stem-cells de�ned

as infusion or injection of healthy stem-cells to replace the diseased or damaged

ones (Fruchtman, 2003). The stem-cell transplant is crucial for several illnesses:

leukaemia, anaemia, various blood diseases and immune system problems. Grat-

wohl et al. (2013) reported that around 60,000 stem-cell transplantations occur

annually worldwide.

The main distinguishing feature of stem-cell donation is that it does not

cause any harm to the donor. For this reason, a patient requiring a stem-cell

transplant has the option of conducting a search for matching cells from unrelated

living donors. Due to this feature, it is possible to develop a large donor database

for stem-cell donation. On the other hand, in the organ transplants, the donor's

health may be a�ected from the operation (for kidney transplants) or it is not even

possible to have transplant from a living donor (e.g. for heart, lung, pancreas,

etc.). Thus, the donor for an organ transplantation is usually a relative of the

patient. Otherwise, the patient has to wait for a deceased (recently died) donor.

Stem-cell donation centres are public facilities serving to patients in need

of stem-cell transplants that require complex search procedures and the advanced

blood-gene tests to reveal any matching between donors and patients. These

advanced blood-gene tests may be done in the laboratories belonging to the state

hospitals such as in Turkey or private transplantation centres as in the UK. In this

chapter, we consider the former case, i.e. when the centre and laboratories belong

to the same body. Even though the search process is expensive, ranging between

$25,000 to $150,000 (Lee et al., 2000), a transplantation is the last chance for the

survival of some patients. Also, international sources cost nearly 10 times more

than the national sources due to the special carriage requirement for stem-cells.

In general, life expectancy of patients waiting for a stem-cell transplant
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is short (Odejide, 2014); in other words, the probability of patient death during

the search is high. Therefore, the processing time to search for the best match is

crucial for the survival of these patients. For a donation centre with over-utilized

work capacity, the search process generally takes longer and this of course in-

creases the number of deaths. For example, Anthony Nolan, a stem-cell donation

register in the UK, reported that they were able to supply suitable donors for

only half of the patients needing transplantation in 2014 (Antony Nolan, 2016).

As another example, in Turkey, around 70 out of 1000 patients die within a year

due to the lack of suitable stem-cell donations (Beksac, 2014).

All stem-cell donation centres operating within a country are managed by

an authority such as a foundation or the state which is also responsible for the

distribution of the budget among them. The centres usually operate indepen-

dently, but have access to the same national donor database. The main reason

behind the incoordination is the geographical distance between centres due to

their scarcity and high establishment costs; for example, there are only two cen-

tres in Turkey (Beksac, 2014). Each centre typically aims to increase the number

of successful searches as well as utilizing the resources in a cost-e�ective way. In

order to decrease the number of deaths, capacities of centres could be enlarged or

new facilities could be opened. However, high operational and infrastructure costs

limit the capacity expansion opportunities. Thus, the central authorities need to

plan the capacities of donation centres to maximize the overall performance con-

sidering the in�exibility of resources. In this chapter, we are concerned with a

stochastic capacity planning problem that takes into account search operations

of stem-cell donation centres.

In the literature, there exist several statistical studies that aim to determine

the optimum donor database levels for the stem-cell donation centres in terms

of cost-e�ectiveness (see for instance, Hurley et al., 2003; Muller et al., 2003;
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Kollman et al., 2004). The authors calculate the probability of �nding a suitable

donor given a donor database level and gene compositions. Then, they consider

the average cost of adding a donor to the database. It is found that adding more

donors provides a decreasing utility after a certain database level. Thus, they

identify the best donor database level in terms of the cost-e�ectiveness. However,

according to our best knowledge, the stochastic capacity planning problem for a

network of stem-cell donation centres has not been studied yet.

The closest service system to stem-cell donation centres is blood banks.

The operational and strategic aspects of blood banks are handled with various

optimization and simulation based techniques; for instance, see Alfonso et al.,

(2013) and Gunpinar (2013). However, those models cannot be directly applied

for management of stem-cell donation centres due to the several distinguishing

di�erences between the operations of these service providers. Blood banks collect

and store bloods before releasing them to hospitals. Blood is a perishable product

with limited storage period in blood banks whereas blood collected in stem-cell

donation centres is discarded once the gene information of the prospective donor

is revealed. Also, blood banks can work as mobile teams and most importantly do

not require expensive advanced blood testing machines unlike stem-cell donation

centres.

In this chapter, we develop a stochastic capacity planning model for a net-

work of stem-cell donation centres. In particular, we are concerned with allocation

of the capacity budget among stem-cell donation centres such that their perfor-

mance in �nding suitable donors of stem-cells under uncertainty is maximized.

The contributions of this chapter are twofold in terms of modelling and solution

approaches.

• We model complex search operations to be integrated into the capacity

decision-making problem using stochastic programming. We investigate the
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impact of uncertainty on search operations as well as strategic capacity

decisions. In particular, uncertainties arising in patients' lifetime and test

results are represented by a probability distribution and a scenario-based

approach, respectively. The service capacity of these centres cannot be easily

adapted to the variation in number of patient arrivals. Therefore, patient

arrivals, that a�ect the average service time of the centre, and consequently

the number of successful searches are also assumed to be uncertain. For

the advanced blood testing system searching for the best match, we use a

�rst-come �rst-served (FCFS) queue assuming that arrival and service times

follow general distributions.

• In order to obtain robust solutions against the uncertainty in patient arrival

and blood test duration, we consider an approximate upper-bound of the

waiting time in blood testing from robust queueing. The resulting problem

formulation leads to a non-linear integer programming model that is compu-

tationally di�cult to solve. We reformulate the model into an integer linear

programming model under certain distribution assumptions. Finally, we

design a series of computational experiments to illustrate the performance

of the developed model. The numerical results obtained by the in-sample

and out-of-sample experiments show that the proposed method provides a

good approximation to the waiting time of blood samples. Moreover, they

imply that the cost-e�ectiveness of the network improves as the number of

centres increases.

The rest of this chapter is organized as follows. In Section 2.2, the literature

on the capacity planning problems within healthcare is reviewed. Section 2.3

describes the patient and donor side operations of a stem-cell donation centre.

Section 2.4 focuses on formulation of the stochastic capacity planning model. In

Section 2.5, we introduce a scenario-based capacity planning model for a network
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of stem-cell donation centres. The numerical results are displayed in Section 2.6.

2.2 Stochastic Capacity Planning in Healthcare

Capacity planning, as one of the main problems in OR, deals with an e�ective

utilization of available resources to meet changing demand for products or ser-

vices. The capacity planning problems have been widely studied in the literature

for various service providers such as banks, hotels, and hospitals as well as for

production and supply chain management purposes.

The healthcare capacity planning problems involve various uncertainties

like demand, sta� availability and medical results. In particular, variabilities in

di�erent factors such as patient arrivals and service processes may result in ex-

cessive waiting times and poor utilization of facility resources (Salzarulo et al.,

2011). In order to handle uncertainties, there exists di�erent approaches. For

example, the sensitivity analysis is applied only after a solution is obtained as a

post-optimization tool. Unlike the sensitivity analysis, the expected value of un-

derlying random factor can be used to �nd the solution of an optimization problem

under uncertainty. Note that this solution is the optimum only for a single real-

ization of the uncertainty (corresponding to the expected value), possibly giving

undesirable results for other realizations. On the other hand, the scenario-based

stochastic programming approach considers an adequate range of possible real-

izations as well as probabilities of their occurrences and optimizes the expected

performance of the system in view of a �nite number of discrete scenarios. The

scenario-based uncertainty modelling approach provides a �exible way of de�ning

the decision process where each scenario represents a possible realization of the

uncertainty associated with the occurrence probability. In this section, we brie�y

review the capacity planning models within the healthcare service management
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under uncertainty.

Queuing theory, as a modelling approach to obtain performance measures

in a queuing system, has been widely applied for the capacity planning of health-

care services; a related review can be found in Fomundam and Hermann (2007).

For example, the built-in queuing formulas can be used to �nd the number

of servers (capacity) required to achieve a certain degree of performance as in

Creemers and Lambrecht (2009). Hulshof et al. (2013) also use queuing theory

to model the elective patient admission and intermediate term resource allocation

for hospitals with uncertain treatment paths and number of arrivals. They con-

sider di�erent queues for di�erent types of services with time-dependent resource-

capacity levels. The objective is to obtain the optimum number of patients to

be served at each time period. Similarly, Cochran and Roche (2009) apply queu-

ing theory to test various capacity design alternatives to be used in real time

when the capacity cannot meet the demand. Bretthauer et al. (2011) consider

the capacity planning problem for healthcare operations with blocking between

di�erent units. Similarly, Castillo et al. (2009) study the optimal capacity and

location of healthcare facilities modelled as queues with exponential service times

and Poisson arrivals. By considering the time-varying demand in hospitals, Green

et al. (2007) analyze the sta�ng requirement in hospitals based on the queuing

analysis. The main drawback of queuing models comes from their intractability

due to non-linear formulations of performance metrics under certain distribution

assumptions for arrival and service processes.

Simulation is an alternative approach to model the service systems when

the queuing formulations are not useful due to their complexities. Harper et al.

(2010) introduces a discrete-event simulation model to analyze the operations

management of an intensive care unit and uses the data generated by the simu-

lation approach to solve the stochastic optimization model which computes the
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optimum number of nurses required to achieve the service targets. DeAngelis

et al. (2003) consider simulation optimization to determine the capacity of a

transfusion centre under multiple objectives: cost minimization to achieve a �xed

waiting time and minimization of the waiting time under a limited budget. The

queuing system in centres is modelled with a discrete event simulation. The ob-

jective functions are approximated by �tting functions to the data generated by

the simulation model. The processes in a blood collection unit are modelled by

using a simulation-based approach by Alfonso et al. (2013). They evaluate pos-

sible blood-collection server con�gurations from a cost-e�ectiveness perspective.

Although simulation is very useful to model complex systems, it can only provide

approximate solutions that are a�ected by the bias of data generation.

The optimization models in healthcare capacity planning mostly focus on

single hospital or department. However, the interconnection between departments

and hospitals has a signi�cant e�ect on their performance. There are several stud-

ies considering this interconnection for the capacity planning under uncertainty

for a network of hospitals. Flessa (2000) develops a model to allocate resources

in the preventive and curative services in hospitals and dispensers. The author

considers di�erent types of diseases and assumes �xed service units required for

each disease type in di�erent institutions. The optimization model distributes a

�xed budget among di�erent institutions based on the expected patient arrivals.

Stummer et al. (2004), Govind et al. (2008), Santibanez et al. (2009) and Gunes

et al. (2010) focus on the location and number of beds in hospitals within a

network to minimize operation cost and maximize patient utility. They consider

the patient �ows either at the unit level or regional level to �nd the optimum

bed/sta� capacities. However, they do not model the operational details, but

rather assume that patients stay for a �xed period of time. Unlike these authors,

Mahar et al. (2011) study the location of the specialized services such as imaging
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or neonatal intensive care. Their model identi�es which hospitals in a network

should have the specialized care services.

The hospital network capacity planning models developed in the litera-

ture are not directly applicable to modelling of search operations within stem-cell

donation centres. The stem-cell donation centres have distinctive and complex

operations, making the problem novel in this sense. Besides, the capacity plan-

ning model introduced in this chapter incorporates the queuing theory that has

not been widely studied in the network capacity planning under uncertainty. The

most relevant papers using queuing theory for healthcare network capacity plan-

ning are Pehlivan et al. (2012) and Asaduzzaman et al. (2010). Pehlivan et

al. (2012) develop a mixed-integer model to determine the capacity of maternity

facilities in a network in view of uncertain patient arrivals and service times. The

objective is to minimize the number of refused admissions. On the other hand,

Asaduzzaman et al. (2010) develop a queuing model to �nd the optimum ca-

pacities of neonatal centres to minimize refusal and over�ow probabilities. Unlike

these authors, we employ a novel robust approach to derive the maximum waiting

time in a queuing system. The resulting non-linear integer formulation is then

approximated as a linear integer model that can be solved by exact methods.

2.3 Operations of a Stem-cell Donation Centre

We consider a network of stem-cell donation centres at each of which the same kind

of search operations takes place. Stem-cell donation centres located in di�erent

areas operate independently to �nd suitable donors for the patients applying to

the centre. They are �nancially coordinated by a central authority who may also

set up national targets for centres to achieve. Before introducing the formulation

of the capacity planning problem of the central authority, we summarize search
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operations of a stem-cell donation centre in this section.

The search operations of a centre can be classi�ed into two groups related

to donor and patient sides. The patient side operations mainly consist of searching

suitable donors for the patients who need a transplantation. In the donor side, the

centre accepts and tests the bloods of prospective donors and updates the donor

database. Figure 2.1 depicts various activities taking place at both patient and

donor sides in a stem-cell donation centre. The search operations taking place at

patient and donor sides use the same (national) donor database.

Figure 2.1: Main operations in a stem-cell donation centre

The patient-side operations are based on the search for the best match

between a patient and donors' blood genes required for a transplantation. The

possibility of �nding a perfect match between family members is around 30%

(Antony Nolan, 2016). The patients who cannot obtain a suitable donor from

their family members require cells from suitable non-related donors. The search

operations take place sequentially at three di�erent levels. At the �rst stage,

an online database search is performed as soon as a patient is admitted to the

centre. The initial database search is relatively simple and can be completed in

a short period. Suitable donors possessing the same blood characteristics with
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the patient's blood gene structure are identi�ed at the end of the online search.

The number of eligible donors depends on the database level at the time of the

initial search. As expected, a larger database increases the chance of �nding more

suitable donors.

At the second stage of the patient side operations, the suitable donors

are contacted to provide a new blood sample. The donor can either go to the

center to supply blood sample or send his/her own blood sample to the center.

The blood samples collected from the suitable donors are stored temporarily and

tested by a �rst-come �rst-served basis using advanced equipment in the blood-

test laboratories working in collaboration with the centre. Further blood tests

are conducted to �nd the best match for the patient among the eligible donors

(identi�ed at the �rst level). Total number of tests to be conducted for each

patient is limited and can be determined by the central authority as a national

policy. The duration of an advanced test is subject to a small variation. The

patient remains in the process until all blood samples are processed. When a

suitable donor with a perfect matching is found, the donation search for the

patient is terminated and then a transplantation can take place. If there is no

match between a patient and suitable donors, then an international search may

be initiated as the �nal stage of the search process. If the international search

becomes unsuccessful, then the search is completed without a transplantation.

The donor and patient side operations are performed independently. In

the donor side operations, a number of donors arrives to the centre each day and

provides blood samples at any convenient time. Then, some preliminary tests

are conducted on the blood samples in a laboratory. These tests do not require

any special equipment and are not as advanced as the ones applied for the donor

bloods on the patient side operations; only preliminary information is gathered at

this stage. After completing the tests, the bloods can be either stored (if there is
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enough space) or discarded. Note that the characteristic of the blood revealed by

the test is important rather than the blood itself. The unique information of each

blood sample is recorded in the online donor database. When a perfect matching

between the blood characteristic of a donor and a patient is found, the donor is

called back to supply the actual donation of stem-cells.

The actual donation and transplantation take place in a hospital rather

than the donation centre. The donor side operations only a�ect the performance

of the stem-cell donation centre through the database level. On the other hand,

the database level is mainly determined by the donation willingness in the country.

Therefore, the donor-side operations are not taken into account for modelling

search operations of stem-cell donation centres. Besides, these operations are

simple and do not require strategic decision making.

The existence of su�cient capacity for the advanced blood tests plays an

important role on the success probability of having a transplantation. On the

other hand, a large capacity (at low demand season) may unnecessarily increase

the operational cost. The search process involves real-time complex operations

(as described above) and various uncertainties arising at di�erent levels of the

donation search processes. Thus, it is crucial to determine the optimum service

capacity of each stem-cell donation centre by taking various uncertainties into

account.

2.4 Formulation of the Stochastic Capacity Plan-

ning Problem

Stem-cell donation centres within a country usually do not interact with each

other, but are controlled and �nancially supported by a central authority. Al-

though the location, size and capacity of centres di�er from each other, they
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perform the same kind of search operations and contribute to the government's

national targets. In this section, we introduce a stochastic capacity planning

model for a network of stem-cell donation centres to optimize the overall perfor-

mance of the network. Before introducing the capacity planning model, we �rst

describe the model assumptions and the underlying uncertainties.

Assumptions: We make the following assumptions for the model development.

• The service capacities of the centres are assumed to remain the same dur-

ing the planning horizon. We consider a �rst-come �rst-served queue with

random service time in order to model the operations of advanced blood

test.

• In general, an international search starts only after the results of all ad-

vanced tests are revealed. However, for cases where the medical situation

of a patient is very critical, an international search may start as soon as the

patient is admitted. Although these special cases are not taken into account

for the sake of simplicity, the model introduced in this chapter can be easily

modi�ed to incorporate the medical condition of a patient.

• The international search is an independent process; therefore, a local au-

thority, patient or any other external factors cannot in�uence its duration.

In addition, the advanced tests of blood samples to be collected from suit-

able international donors, are usually conducted at their own centres. It is

worthwhile to mention that the advanced-blood tests of the international

donors might be done at the stem-cell donation center where the patient

is registered. But for the sake of simplicity, these cases are omitted in the

problem formulation.

• We also assume that the patient leaves the system at the end of unsuccessful

national and international search operations. However, in practice, if the
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patient is in severe medical conditions, a new search may be started for

him/her. These cases are not taken into account in the current model.

Uncertainty: The search operations within a stem-cell donation center involve

various exogenous and endogenous factors that directly a�ect the overall goals and

capacity planning strategies of the center. We can classify these factors according

to stages of patient arrivals and blood samples as well as the search operations at

the national and international levels. They are described in more detail below:

• The arrival time of a patient is not known in advance and the total number

of patients that have been waiting for a suitable donor varies over time.

Similarly, number of suitable donors to be tested for each patient is uncer-

tain.

• The completion time of a donor search is crucial on the success of donor

search operations. It is basically determined as the sum of the durations

taken for the national and international search operations.

� Search duration at the national level depends on the travelling time of

blood donors and the waiting time of blood samples in the system for

the advanced test. The donor travelling time depends on an individ-

ual's behaviour and personal preferences; therefore, it is not known in

advance by the center. In addition, the waiting time of blood samples

in the system is also uncertain due to the variations in patient arrivals

and testing duration.

� Duration of the international search is a�ected by various factors such

as the capacity and the demand at the international centres and also

the frequency of patients' gene structure.

Thus, we model the donor travel time, the blood test waiting time and the

international search duration as uncertain parameters.
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• The results of matching tests using the national and international sources

may be in�uenced by various endogenous (frequency of patient's gene struc-

ture) and exogenous (capacity of the donor pool) uncertainties. Note that

the blood gene structure of a patient is constructed by millions of di�erent

combinations. Therefore, the test results are also assumed to be uncertain

in the formulation of the capacity planning problem.

• Apart from these factors, the health condition of a patient independently

in�uences the success of the donor search for a possible transplantation.

Most of the patients seeking suitable donors have a critical health condition.

Thus, the patient's lifetime is considered as an uncertain factor to be roughly

predicted by the doctors. As explained further in the next section, we

assume that the patient lifetime is assumed to follow a known distribution.

Problem Formulation: We consider a network consisting of J stem-cell dona-

tion centres labelled as j = 1, · · · , J . A central authority is responsible to allocate

the budget capacity B among centres. Consider a planning horizon T , that is dis-

cretized by time periods t = 1, · · · , T . In practice, T may represent a year while

each time period corresponds to one week. Throughout the chapter, uncertain

parameters are indicated by a tilde, ∗̃.

Let Ĩj denote the number of patients (labelled as i = 1, · · · , Ĩj) arrive to

centre j during the planning horizon. There can be a single or a batch arrival

of patients at any time period. For each patient i, suppose that p̃ij number of

suitable donors are found from the online search. The candidate donors are then

invited to supply another blood sample for further testing. For each patient i,

we introduce indices k ∈ {1, · · · , p̃ij} to label the blood samples that are received

from p̃ij donors.

Let xj be a discrete decision variable representing the capacity of centre j
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for the advanced testing during the planning horizon. The waiting time of blood

samples in the service system, W̃ijk(xj), is de�ned as the duration between the

arrival of blood sample k of patient i to the blood-testing queue and the start of

its test in centre j. Note that the time taken from the arrival of a blood sample till

the test completion directly depends on the capacity of the centre. Speci�cally,

each machine-sta� pair in the advanced blood testing is identi�ed as one unit of

capacity.

Let t̃ijk denote time taken between the arrival of patient i to centre j and

collection of the k-th blood sample for the patient. We introduce õijk to represent

the duration of the advanced blood test for blood sample k of patient i in centre

j. Let ũijk(xj) de�ne the duration between the arrival of patient i to centre j

and the test completion time of its k-th blood sample. We can compute ũijk(xj)

for i = 1, · · · , Ĩj, j = 1, · · · , J and k = 1, · · · , p̃ij as an accumulated outcome of

uncertain waiting time and arrival time of the blood sample as follows:

ũijk(xj) = t̃ijk + õijk + W̃ijk(xj). (2.1)

The search process is not only a�ected by the time to obtain the test

results, but also the medical outputs. Thus, we need to take into account the

search results of each patient arriving to the centre. Let r̃ij and z̃ij represent the

search results obtained by the national and international sources, respectively, for

patient i admitted to centre j. If at least one blood test result is positive, then

r̃ij takes 1. If the results of all blood tests are negative, then r̃ij is assigned to 0.

Similarly, if the search using international sources for patient i is successful, then

z̃ij takes 1; otherwise, it takes 0. If a search at the international level is never

initiated, then it is �xed at zero (z̃ij = 0). According to the revealed results of the

tests taken at the national level, either a transplantation takes place or the search
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for a suitable donor is carried out at the international level, assuming that the

patient is still alive. The duration of an international search is represented with

ṽij if activated. Thus, for patient i in the system, one of the following possible

outcomes is realized:

• At least one positive result is obtained from the national sources (r̃ij = 1

and z̃ij = 0).

• No positive result is achieved from the searches using the national and

international sources (r̃ij = 0 and z̃ij = 0).

• No positive result is obtained from the national sources, but a positive result

is acquired from the international search (r̃ij = 0 and z̃ij = 1). Notice that

the case z̃ij = r̃ij = 1 never occurs since a search at the international level

for patient i is initiated only after no suitable donor is identi�ed from the

national sources.

Let d̃ij(xj) de�ne the search completion time taken from the admission of

patient i to centre j until the end of all searches for a suitable donation to be

completed. The search completion time depends on the number of suitable donors

as well as the search outcomes at the national and international levels. A search

at the national level is terminated only when the advanced tests for all suitable

donors are completed. Recall that a transplantation can be conducted only when

the perfect match from suitable donors is found (Antony Nolan, 2016). Thus,

if at least one positive outcome from the national search (r̃ij = 1) is achieved,

then the search completion time for patient i is determined as the maximum of

whole test completion times as d̃ij(xj) = max
k=1,··· ,p̃ij

{ũijk(xj)}. The reason of using

a `maximum' function is that the centre waits until the last test to be able to

have backup donors and the best possible match.

On the other hand, if no perfect match is found from the national sources

(r̃ij = 0), but there is at least one positive result obtained from the international
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sources (z̃ij = 1), then the search completion time is computed as sum of the

completion times of the national and international searches:

d̃ij(xj) = ṽij + max
k=1,··· ,p̃ij

{ũijk(xj)}.

Finally, if no search at the national and international levels is successful

(r̃ij = z̃ij = 0), then the search completion time is assigned to a big number,

d̃ij(xj) = M , to imply that the patient remains in the system as long as being

alive. Three cases showing computation of d̃ij(xj) can be summarised in a compact

form as follows:

d̃ij(xj) =



max
k=1,··· ,p̃ij

{ũijk(xj)}, if r̃ij = 1,

ṽij + max
k=1,··· ,p̃ij

{ũijk(xj)}, if r̃ij = 0 & z̃ij = 1,

M, otherwise.

(2.2)

A successful search process leads to transplantation if the patient is still

alive when the search process is terminated. Suppose that l̃ij is the expected

lifetime of patient i to be estimated when admitted to centre j. Let us de�ne a

binary variable ỹij(xj) that takes 1 if the search for patient i admitted to centre

j is unsuccessful and 0, otherwise. Thus, the relationship between the search

outcome, the search completion time and the life expectancy of patient i at centre

j can be expressed as follows:

ỹij(xj) =


0, if d̃ij(xj) ≤ l̃ij,

1, otherwise.

Then, the number of unsuccessful searches conducted at centre j can be easily

computed as
Ĩj∑
i=1

ỹij(xj). The central authority needs to determine the capacity

xj of each centre j, for j = 1, · · · , J , such that total number of expected trans-
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plantations (or unsuccessful searches) over all donation centres of the network is

maximized (or minimized) in view of the budget restriction.

Given a unit-capacity cost Cj of centre j during the planning horizon T ,

we must ensure that the network capacity cost should not exceed the available

budget B. This can be stated by a linear budget constraint as
J∑
j=1

Cjxj ≤ B.

Then the stochastic capacity planning model (SCP) for a network of stem-cell

donation centres can be formulated as follows:

SCP: min
xj∈Z+

J∑
j=1

E

[
Ĩj∑
i=1

ỹij(xj)

]
,

subject to
J∑
j=1

Cjxj ≤ B.

This is a complex problem where the expectation in the objective function needs

to be computed over all types of uncertainties given random number of arrivals.

In order to do this, we adopt a scenario-based stochastic programming approach

to determine the optimal capacities of the donation centres in a network.

2.5 Scenario-based Capacity Planning Model

In order to capture various events (including emergency situations) arising in the

real life operations of a stem-cell donation network, we introduce a �nite number

of discrete scenarios (or may so-called cases) each of which represents a possible

future realization of random patient arrivals. These scenarios are generated by

using past data and statistics. Let S denote total number of scenarios. Each

scenario (represented by s = 1, · · · , S) displays a sequence of patient arrivals

with the corresponding probability ωs, where
S∑
s=1

ωs = 1. It also captures the

information regarding total number of patients Ijs arriving to centre j during the

planning horizon. In this section we describe the scenario-based capacity planning

model. The notation used for a speci�c scenario s along with the operational
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diagram is illustrated in Figure 2.2.

For each patient i = 1, · · · , Ijs under scenario s, pijs number of donors are

assumed to be identi�ed from the initial search and invited to the donation center

j for the advanced test. Indices k ∈ {1, · · · , pijs} label the blood samples that are

received from pijs donors for patient i at centre j under scenario s. Each donor

(or blood sample k = 1, · · · , pijs) of patient i arrives to centre j after tijks periods

from the time when the invitation is sent.

Figure 2.2: A description of the patient side operations along with the notation
used for scenario s.

The service time for blood sample k under scenario s is denoted by oijks.

Accordingly, we de�ne the waiting time in advanced testing queue W s
ijk(xj) of

donor blood sample k for patient i at centre j under scenario s. In addition, the

search results obtained by the national and international sources are represented

as rijs and zijs, respectively, for patient i in centre j under scenario s. All these

scenario-dependent parameters are deterministic under scenario s. On the other

hand, the lifetime l̃ijs of patient i at centre j under scenario s is assumed to

be random, and follows a known distribution fijs. In general, one can only ob-

tain probabilistic information of patient life-expectancy given his/her conditions

during the search process.

The following rules express the cases when the search operations at centre
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j for patient i under scenario s lead to a transplantation or not:

ỹijs(xj) =


0, if max

k=1,··· ,pijs
{tijks + oijks +W s

ijk(xj)} − l̃ijs < 0 & rijs = 1, (2.3)

0, if max
k=1,··· ,pijs

{tijks + oijks +W s
ijk(xj)}+ vijs − l̃ijs < 0 & zijs = 1,

1, otherwise.

Then, we can state the scenario-based capacity planning model (SCPscen)

as follows:

SCPscen : min
xj∈Z+

S∑
s=1

ωs

J∑
j=1

Ijs∑
i=1

E[ỹijs(xj)],

subject to
J∑
j=1

Cjxj ≤ B.

The size of SCPscen depends on the number of discrete scenarios, the number of

centres, and total number of patients arriving to the centres during the planning

horizon. In order to solve SCPscen, we need to compute E[ỹijs(xj)] in view of

all scenarios. This involves the determination of the waiting time of each blood

sample, W s
ijk(xj).

As mentioned before, we model the advanced blood testing system as an

incapacitated FCFS queue that involves multiple servers with general arrival and

service time distributions. An assumption of general distribution prevents any

possible inaccuracy or errors occurring due to an imprecise �tting of data of the

underlying distributions. However, it is computationally challenging to derive

a closed-form formulation for the waiting time for each blood sample, W s
ijk(xj),

even for given capacity decisions xj (Tijms et al., 1981). The computational in-

tractability due to combinatorial number of calculations has already been proven

for a queuing system of multiple servers with exponential arrivals and general

service time distribution (Tijms et al., 1981). Thus, we approximate the search

success by considering the average waiting time of each blood sample in the sys-

tem. However, the capacity decisions made in view of average waiting time of
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the blood testing queue may cause severe delays during the high demand sea-

sons. Therefore, we consider the upper bound of waiting time of blood samples in

the queue for determining the optimal service capacity of donation centres. This

basically implies the worst-case approach for the waiting times in blood testing

queues. In this way, the donation centre can accommodate the worst outcome

of uncertain waiting time. Next, we derive an approximate formulation of the

maximum waiting time for blood samples under each scenario.

2.5.1 An Approximation to Maximum Time Spent in Queue

It is worthwhile to mention that there exists di�erent approximation methods

for the maximum waiting time in a queue; for instance, see Gupta and Osogami

(2011). However, as pointed out by Bandi and Bertsimas (2012), these approx-

imations do not lead to realistic results when the arrival process follows a dis-

tribution apart from Poisson. In order to overcome this problem, Bandi and

Bertsimas (2012) proposed an alternative approximation method to compute an

upper bound on the waiting time when the arrival and service times are indepen-

dent and identically distributed (i.i.d) random parameters following an unknown

distribution in an FCFS queue with x servers. We now provide a brief overview

of this approach and then explain how to apply it for the donor blood samples.

Let Tk and Yk represent random interarrival and service times for samples

k = 1, · · · , K, respectively. The �rst moment (mean values 1/µ and 1/λ) of the

random service and interarrival times are estimated from the past data. Assume

that Tk and Yk belong to uncertainty sets Uarrv and U serv, respectively. Moreover,

the sizes of these uncertainty sets are determined by parameters Γarv and Γserv

that basically measure the variability in the interarrival and service times, respec-

tively. The uncertainty set Uarrv for interarrival times Tk of samples k = 1, · · · , K
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is de�ned as follows:

Uarrv =

{
(T1, T2, ..., TK)

∣∣∣∣∣
∣∣∑K

k=m+1 Tk −
K−m
λ

∣∣√
(K −m)

≤ Γarv, ∀m ≤ m0

}
, (2.4)

where m0 can be set to K − 30. Similarly, the uncertainty set U serv for service

times Yk of samples k = 1, · · · , K is

U serv =

{
(Y1, Y2, · · · , YK)

∣∣∣∣∣
∣∣∑e

k=m+1 Ykx+b − e−m
µ

∣∣√
(e−m)

≤ Γserv, ∀m ≤ e− 1, 0 ≤ b < x

}
,

where the accumulated service times are calculated over the partitions of service

times into x groups with sizes e = bK/xc to re�ect the multi-server nature of the

problem. The following proposition states the upper-bound W (x) on the waiting

time W (x) in view of these uncertainty sets.

Proposition 1 (Bandi and Bertsimas, 2012) Assume that the interarrival and

service times for an FCFS queue with x servers belong to the uncertainty sets

Uarrv and U serv, respectively. The approximate upper bound W (x) on the waiting

time in the queue can be calculated as,

W (x) =
λ(Γarv + Γserv/

√
x)2

4
[
1− λ/(µx)

] . (2.5)

Proof. Readers are referred to Bandi and Bertsimas (2012) for the proof and the

details of the parameter estimation.

Notice that in a stable queuing system, the tra�c density must be smaller

than unity, that is λ
µx
< 1. In other words, the number of servers x must be larger

than λ/µ.

Let's assume that the interarrival and service times of the donor blood

samples are i.i.d. The interarrival times of blood samples are subtracted from
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the patient arrival times and donor travel times tijks in the generated data. The

parameters, λ and µ, are estimated from the past data while the parameters

Γarv and Γserv, denoting the variation in the interarrival and service times, can

be set to a �xed number times of the standard deviation of the interarrival and

service times, respectively. We can then apply Proposition 1 to compute the

upper bound Wj(xj) on the waiting time W s
ijk(xj) for donor blood sample k of

patient i in centre j with capacity xj under scenario s. In this case, the inequality

Wj(xj) > W s
ijk(xj) is ensured for all blood samples k = 1, · · · , pijs of any patient

i = 1, · · · , Ijs arrived to center j under di�erent scenarios s = 1, · · · , S. By

replacing W s
ijk(xj) by Wj(xj) in (2.3), ỹ′ijs(xj) is obtained as

ỹ′ijs(xj) =


0, if W j(xj)− l̃ijs + max

k=1,··· ,pijs
{tijks + oijks} < 0 & rijs = 1, (2.6)

0, if W j(xj)− l̃ijs + max
k=1,··· ,pijs

{tijks + oijks}+ vijs < 0 & zijs = 1,

1, otherwise.

Notice that we have ỹ′ijs(xj) ≥ ỹijs(xj) since Wj(xj) > W s
ijk(xj) holds. Then the

scenario-based capacity planning model SCPscen can be rewritten as the following

approximated optimization model

SCPappx : min
xj∈Z+

S∑
s=1

ωs

J∑
j=1

Ijs∑
i=1

E[ỹ′ijs(xj)],

subject to
J∑
j=1

Cjxj ≤ B.

It is worthwhile to mention that the optimal capacities of stem-cell donation

centres obtained from SCPappx are more conservative towards the uncertainty in

waiting times. Therefore, it leads to a higher objective function value than the

one obtained from SCPscen.

To be able to solve SCPappx, an analytical form of E[ỹ′ijs(xj)] needs to be

derived. We assume that the lifetime expectancy l̃ijs of each patient i arriving to

centre j under scenario s follows a general distribution. Let fijs(.) represent the
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probability distribution function of l̃ijs. For the sake of convenience, we introduce

random parameters

l̃′ijs = l̃ijs− max
k=1,··· ,pijs

{tijks + oijks} and l̃′′ijs = l̃ijs− max
k=1,··· ,pijs

{tijks + oijks}− vijs.

The following proposition states the derivation of the expected number of unsuc-

cessful searches within a network of stem-cell donation centres and reformulates

the approximated scenario-based capacity planning problem SCPappx.

Proposition 2 Using the upper-bound of the blood waiting time in (2.5), the

scenario-based stochastic capacity planning problem (SCPappx) for a network of

stem-cell donation centres under patient lifetime expectancy following a general

distribution becomes an integer optimization model (SCPgdist) as follows:

SCPgdist :

min
xj∈Z+

S∑
s=1

ωs

J∑
j=1

Ijs∑
i=1

rijs

(
1−

∫
lijs: l′ijs > βijs, xj ≥ φ(l′ijs)

fijs(lijs)dlijs

)

+zijs

(
1−

∫
lijs: l′′ijs > βijs, xj ≥ φ(l′′ijs)

fijs(lijs)dlijs

)
+ (1− rijs)(1− zijs),

subject to

J∑
j=1

Cjxj ≤ B,

where φ(w) =

[
− Γarvj Γservj −

√
(1− λ2

j )(Γ
arv
j Γservj )2 +

4λjw
µ (4w − λj(Γarvj )2) + 4λjw(Γservj )2

]2

[
λj(Γarvj )2 − 4w

]2 .

Proof. The upper bound W j(xj) =
λj(Γ

arv
j + Γservj /

√
xj)

2

4
[
1− λj/(µjxj)

] on the blood waiting

time in centre j can be rewritten as Wj(xj) =
βjxj + γj

√
xj + ηj

xj − πj
by using pa-

rameters βj =
(Γarvj )2λj

4
, γj =

Γarvj Γservj

2
, ηj =

(Γservj )2λj

4
, and πj =

λj
µ
. Then,

49



the expected number of unsuccessful searches becomes

E[ỹ′ijs(xj)] =



Pr
(
W j(xj)− l̃ijs + max

k=1,··· ,pijs
{tijks + oijks} > 0

)
, if rijs = 1,

Pr
(
W j(xj)− l̃ijs + max

k=1,··· ,pijs
{tijks + oijks}+ vijs > 0

)
, if zijs = 1,

1, otherwise.

(2.7)

From the �rst two conditions Wj(xj) − l̃′ijs > 0 and Wj(xj) − l̃′′ijs > 0 in (2.7),

we obtain the following inequalities:
(βj − l̃′ijs)xj + γj

√
xj + ηj + l̃′ijsπj

xj − πj
> 0 and

(βj − l̃′′ijs)xj + γj
√
xj + ηj + l̃′′ijsπj

xj − πj
> 0, respectively. Since (xj − πj) is always

positive due to the tra�c intensity condition, we can rewrite (2.7) as follows;

E[ỹ′ijs(xj)] =



Pr
(
(βj − l̃′ijs)xj + γj

√
xj + ηj + l̃′ijsπj > 0

)
, if rijs = 1,

Pr
(
(βj − l̃′′ijs)xj + γj

√
xj + ηj + l̃′′ijsπj > 0

)
, if zijs = 1,

1, otherwise.

(2.8)

Let us de�ne ξj =
√
xj in order to analyse the �rst condition in (2.8). In this

case, we have a quadratic function h(ξj) = (βj − l̃′ijs)ξ2
j + γjξj + ηj + l̃′ijsπj.

• If βj − l̃′ijs ≥ 0, then the quadratic function is always positive, that is

h(ξj) > 0, since γj, ξj, ηj, l̃′ijs, πj are all positive.

• On the other hand, if βj − l̃′ijs < 0, then h(ξj) possesses the positive and

negative roots (denoted by ξ+ and ξ−, respectively) as

ξ+,−
j =

−γj ±
√
γ2
j − 4(βj − l̃′ijs)(ηj + l̃′ijsπj)

2(βj − l̃′ijs)
. Then h(ξj) can be written

in a factorized form as h(ξj) = (βj− l̃′ijs)(ξj−ξ+
j )(ξj−ξ−j ). We can note that

h(ξj) > 0 is satis�ed if and only if ξj < ξ+
j which implies that xj < (ξ+

j )2.

For the square of the positive root, we introduce φ(l̃′ijs) = (ξ+
j )2 that can be
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explicitly written as φ(l̃′ijs) =

(
− γj −

√
γ2
j − 4(βj − l̃′ijs)(ηj + l̃′ijsπj)

)2

4
(
βj − l̃′ijs

)2 .

Then, xj < φ(l̃′ijs).

As a result, h(ξj) > 0 in the �rst probability of (2.8) is valid only when βj−l̃′ijs ≥ 0

or βj − l̃′ijs < 0 and xj < φ(l̃′ijs). Then we can easily show that

Pr
(
(βj − l̃′ijs)xj + γj

√
xj + ηj + l̃′ijsπj > 0

)
= 1−Pr

(
βj − l̃′ijs < 0, xj ≥ φ(l̃′ijs)

)
by using the following relationship between probability functions

Pr
(
βj−l̃′ijs ≥ 0

)
+Pr

(
βj−l̃′ijs < 0

)
·Pr
(
xj < φ(l̃′ijs)

)
= 1−Pr

(
βj−l̃′ijs < 0

)
·Pr
(
xj ≥ φ(l̃′ijs)

)
.

By applying the same procedure, equivalent conditions for

(βj − l̃′′ijs)xj + γj
√
xj + ηj + l̃′′ijsπj > 0,

the second probability of (2.8) are obtained. Moreover, we have

Pr
(
(βj− l̃′′ijs)xj +γj

√
xj +ηj + l̃′′ijsπj > 0

)
= 1−Pr

(
βj− l̃′′ijs < 0, xj ≥ φ(l̃′′ijs)

)
.

Then we can compute the expected number of unsuccessful searches in view of

Wj(xj) for patient i in centre j under scenario s as follows;

E[ỹ′ijs(xj)] =


1− Pr

(
βj − l̃′ijs < 0, xj ≥ φ(l̃′ijs)

)
, if rijs = 1,

1− Pr
(
βj − l̃′′ijs < 0, xj ≥ φ(l̃′′ijs)

)
, if zijs = 1,

1, otherwise.

(2.9)
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that can also be equivalently rewritten as

E[ỹ′ijs(xj)] =

[
1− Pr

(
βj − l̃′ijs < 0, xj ≥ φ(l̃′ijs)

)]
rijs +[

1− Pr
(
βj − l̃′′ijs < 0, xj ≥ φ(l̃′′ijs)

)]
zijs + (1− rijs)(1− zijs).

Using the probability distribution function, fijs(lijs), E[ỹ′ijs(xj)] can be restated

as follows:

E[ỹ′ijs(xj)] =

(
1−

∫
lijs: l′ijs>βijs, xj≥φ(l′ijs)

fijs(lijs)dlijs

)
rijs +(

1−
∫
lijs: l′′ijs>βijs, xj≥φ(l′′ijs)

fijs(lijs)dlijs

)
zijs + (1− rijs)(1− zijs).

By substituting this into the optimization model SCPappx, we obtain SCPgdist as

presented in Proposition 2.

Recall that the model SCPgdist is developed under the assumption of general

distribution for uncertain lifetime expectancy of patients. As suggested by the

World Health Organization (for instance see, Salomon et al. 2001), the uniform

(discrete) distribution can be a reasonable assumption for the patients' lifetime

expectancy. The following proposition states the derivation of a scenario-based

formulation of the stochastic capacity planning problem in view of uniformly

distributed random parameters for lifetime expectancy of patients arriving to the

stem-cell centres.

Assume that random lifetime expectancy parameters, l̃′ijs and l̃
′′
ijs, follow a

uniform discrete distribution and vary within intervals [l′ijs, l
′
ijs] and [l′′ijs, l

′′
ijs], re-

spectively. Moreover, let us consider sets Θ = {l′ijs, · · · , l
′
ijs} and Θ = {l′′ijs, · · · , l

′′
ijs}
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consisting of �nite number of values taken from the corresponding intervals.

Let Pr(l′ijs = w) represent the probability of lifetime of patient i admitted

to donation center j under scenario s taking value of w within minimum and

maximum possible lifetimes that the patient can have. Moreover, let's de�ne

an indicator function as ψwj = 1(w > βj) for w ∈ Θ ∪ Θ = {l′′ijs, · · · , l
′
ijs},

j = 1, · · · , J and s = 1, · · · , S. Note that a characteristic (indicator) function

1(∗) takes 1 if the condition “∗′′ holds and 0, otherwise.

Proposition 3 The scenario-based capacity planning problem SCPappx for a net-

work of stem-cell donation centres under patient lifetime expectancy following a

uniform (discrete) distribution can be formulated as an integer linear optimization

model SCPudist as follows:

SCPudist :

min
xj∈Z+

S∑
s=1

ωs

J∑
j=1

Ijs∑
i=1

(
rijs

∑
w∈Θ

1− ψwjτwj
l′ijs − l′ijs

+ zijs
∑
w∈Θ

1− ψwjτwj
l
′′
ijs − l′′ijs

+ (1− rijs)(1− zijs)

)
,

subject to
J∑
j=1

Cjxj ≤ B,

φ(w)− xj ≤M(1− τwj), w ∈ {l′′ijs, · · · , l
′
ijs}, ∀j, s, i = 1, · · · , Ijs,

τwj ∈ {0, 1}, w ∈ {l′′ijs, · · · , l
′
ijs}, ∀j, s, i = 1, · · · , Ijs,

where M represents a su�ciently big number.

Proof. Under the uniform (discrete) distribution assumption, the probabilities

in (2.9) are computed as

Pr
(
l̃′ijs > βj, xj ≥ φ(l̃′ijs)

)
=
∑
w∈Θ

Pr(l′ijs = w)1(w > βj, xj ≥ φ(w)),

=
∑
w∈Θ

1(w > βj, xj ≥ φ(w))

l
′
ijs − l′ijs

=
∑
w∈Θ

ψwj 1(xj ≥ φ(w))

l
′
ijs − l′ijs

,

(2.10)
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and

Pr
(
l̃′′ijs > βj, xj ≥ φ(l̃′′ijs)

)
=
∑
w∈Θ

Pr(l′′ijs = w)1(w > βj, xj ≥ φ(w)),

=
∑
w∈Θ

1(w > βj, xj ≥ φ(w))

l
′′
ijs − l′′ijs

=
∑
w∈Θ

ψwj 1(xj ≥ φ(w))

l
′′
ijs − l′′ijs

.

(2.11)

It is worthwhile to emphasize that φ(w) takes a �xed value for a given w. Thus, for

a given capacity xj of center j = 1, · · · , J , the probabilities in (2.10) and (2.11)

become deterministic. In order to express 1(xj ≥ φ(w)), we introduce binary

variable τwj for w ∈ {l′′ijs, · · · , l
′
ijs}, and patient i = 1, · · · , Ijs under scenario

s = 1, · · · , S subject to

τwj =


1, if xj ≥ φ(w),

0, otherwise.

This relationship can be formulated as a set of constraints using the big M ap-

proach;

φ(w)−xj ≤M(1−τwj), w ∈ {l′′ijs, · · · , l
′
ijs}, j = 1, · · · , J, i = 1, · · · , Ijs, s = 1, · · · , S.

The expected number of unsuccessful searches E[ỹ′ijs(xj)] in view of uniformly

distributed life expectancy of patients can be computed as

E[ỹ′ijs(xj)] =

S∑
s=1

ωs

J∑
j=1

Ijs∑
i=1

(
rijs

∑
w∈Θ

1− ψwjτwj
l′ijs − l′ijs

+ zijs
∑
w∈Θ

1− ψwjτwj
l
′′
ijs − l′′ijs

+ (1− rijs)(1− zijs)

)
.

Then the stochastic capacity planning problem SCPappx can be reformulated as

an integer (linear) programming model SCPudist as stated in Proposition 3.
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2.6 Computational Experiments

In this section, we �rst describe the design and the input data used for the nu-

merical experiments and then present the computational results of the stochastic

capacity planning model of a network of stem-cell donation centres.

2.6.1 Design of Experiments and Data

We design a series of computational experiments in order to illustrate the per-

formance of the SCPudist model. In particular, we aim to answer the following

questions:

• How would a network constructed by stem-cell donation centres with the

optimal capacity perform under uncertain real-life environment?

• How does the capacity planning model behave under di�erent size of uncer-

tainty sets of the interarrival and service times?

• How do the model parameters such as budget, demand, and unit capac-

ity cost a�ect the optimum capacity levels and overall performance of the

network?

• What is the impact of the size of a network (i.e. the number of stem-cell

donation centres) on the overall performance in terms of the number of

successful searches?

The mixed integer (linear) optimization model SCPudist was implemented

in IBM ILOG CPLEX and solved by the Cplex solver. All computational exper-

iments were carried out on a laptop with Windows XP operating system, CPU

2.26 GHz Intel Corei5 and 8 Gb of RAM.

In order to illustrate how a network of stem-cell donation centres structured

with the optimal capacity performs under real-life conditions as well as to validate

the stochastic capacity planning optimization model, we developed a discrete-
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event simulation model in MATLAB. The simulation model explicitly performs

the queuing activities and the advanced blood testing operations. The success of

search operations depends on the waiting time of each blood sample of patients

admitted to the donation centre. While the simulation model computes the real

waiting time of blood samples using a queuing model, the stochastic optimization

approach uses the upper bound approximation of the waiting time for each blood

sample.

The simulation model generates the input data using in-sample and out-

of-sample simulation approaches for performance comparison purposes. The in-

sample data for the scenario-based parameters are randomly generated using spe-

ci�c distributions within the prede�ned ranges while the values of the determin-

istic parameters remain the same as introduced in Table 4.2. The results of

the optimization model obtained by using the in-sample data are abbreviated as

�in-sample optimization�. We can report that the CPU time taken to solve the

underlying optimization model with the in-sample data is about 15 minutes.

The output of the optimization model is also validated via the simulation

model. The optimal capacities of the centres within the network, obtained by

solving the optimization model with the in-sample data, are inserted into the

simulation model. Then, we run the simulation model again using the data sets

generated with in-sample and out-of-sample approaches regarding with stochastic

parameters in view of optimal capacities of centers. The performance metrics

measuring the expected rate of unsuccessful searches computed by the in-sample

and the out-of-sample data are labelled as �in-sample simulation� and �out-of-

sample simulation�, respectively.
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Input Data

For the numerical experiments, we consider two di�erent network structures con-

sisting of two and �ve stem-cell donation centres. The two-center network that

consists of stem-cell donation centres located in two cities, namely Istanbul and

Ankara in Turkey, is a real-case. The initial data set for the two-center network

was gathered from di�erent sources such as published research papers in the lit-

erature as well as an expert knowledge. The �ve-center network is arti�cially

constructed on the basis of the data collected for the two-center network. Ta-

ble 4.2 shows a description of the input data used for the numerical experiments

and the corresponding sources from where the data were obtained.

Table 2.1: Input data for parameters used in the numerical experiments

Description of Parameters Value/Range Source of Data Distribution

Patient arrival rates for two centres, respectively 4 & 3.8 days/patient Expert knowledge Exponential

Probability of �nding a perfect match via
0.12 and 0.4 Querol et al. (2009a)

Binomial
national and international sources, respectively

International search duration [5, 15] weeks Querol et al. (2009a) Uniform

Travel time of donors (samples) [1, 3] weeks Expert knowledge Uniform

Patients' remaining lifetime [1, 60] weeks Howard et al. (2008) Uniform

Average service (blood-testing) time [5, 5.1] days DYBMS (2015) Uniform

Number of donors found by initial search [0, 6] donors Expert knowledge Uniform

Variabilities of interarrival and service times 9 and 0.015 Expert knowledge �

Unit capacity cost of a center $10 Expert knowledge �

Total weekly budget $800 per week User-speci�c �

Number of scenarios generated for in-sample and 200 and 2000 User-speci�c �
out-of-sample experiments, respectively

A planning horizon is set for three years where each period corresponds to a

time length of one week. We generate S = 200 scenarios with equal probabilities

(i.e., ωs = 1/S for s = 1, · · · , S) as the input to the optimization model and

the in-sample experiments. Similarly, we randomly generate 2000 scenarios to be

used in the out-of-sample experiments.

The data associated with the scenario-dependent parameters such as pa-

tient arrivals, donar travel time, international search duration and number of

suitable donors found by initial search, are randomly generated by using various
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distributions with the estimated moments shown in Table 4.2. For patient inter-

arrival times, we consider exponential distribution with the arrival rates, 4 and

3.8 days/patient, respectively, for two centres in Turkey (Istanbul Tip Fakultesi

Kemik Iligi Bankasi, 2016). The parameters related to donor travel times, in-

ternational search duration, service time (blood-testing duration) and number of

suitable donors are assumed to follow a uniform distribution.

We assume that results of national and international searches follow bino-

mial distributions with the average values equal to the probabilities of �nding a

perfect match via national and international sources, 0.12 and 0.4, respectively.

It is worthwhile to emphasise that during the data generation, the international

search is never initiated for a patient if his/her national search is successful.

As suggested by Bertsimas and Bandi (2012), the interarrival time vari-

ability (Γarrv) is set to three times of the standard deviation in the generated

interarrival times (3). Similarly, the service time variability (Γserv) is set to the

three times of the standard deviation in the generated service times (0.005).

Finally, as mentioned before, remaining patient life-times (weeks) follow

uniform (discrete) distribution in each scenario. Note that the bounds of this

distribution may be di�erent for each patient and the real data for these bounds

are not available. Thus, we randomly generated the lower and upper bounds for

each patient at each scenario assuming that they also follow uniform distributions.

2.6.2 Numerical Results

In this section, we present the results of the computational experiments of the

capacity planning model. Speci�cally, we aim to show the performance of the

optimization model for di�erent network structures consisting of one, two and �ve

donation centres. We also investigate the e�ect of the model parameters (such

as budget and arrival variability) in the optimal decisions. The other parameters
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such as success rates, international search duration and lifetimes do not a�ect the

optimal decisions signi�cantly, thus, the experiments related to these parameters

are not presented. Total rate of unsuccessful searches and maximum waiting time

in the advanced blood testing queue are used as the performance metrics.

Model performance: In order to examine the performance of the opti-

mization model developed in the previous section, we consider two independent

stem-cell donation centres with patient arrival rates of 4 and 3.8 days/patient

assuming that the two centres are not inter-connected to each other. The weekly

budget shown in Table 4.2 are used for both centres. Figure 2.3 displays the rela-

tive frequency histograms of the longest (maximum) blood waiting time (left plot)

and expected number of successful searches (right plot) using the in-sample and

out-of-sample simulation experiments. The relative frequency of a performance

metric is de�ned as the ratio of the real frequency of the corresponding criteria to

the total number of observations. Since two centres have very close arrival rates,

their performances are almost same. Thus, we only show the results for one centre

(with 4 days/patient).

The results of both donation centres obtained by the out-of-sample and in-

sample simulation approaches con�rm that the upper bound of the waiting time

computed for the optimization model (25) is a good approximation to the longest

waiting time (22) obtained by the simulation model. In Figure 2.3, we present

the frequency of having di�erent longest waiting times and number of successful

searches (aggregated in groups of 10) in out-of-sample and in-sample simulations.

The frequencies show the rate of observing the corresponding outcome in the

simulation runs. Note that the levels of successful searches are grouped and

labelled according to the upper-bound of the corresponding category, for example

all the values between 171 and 180 are shown under 180. As shown in Figure 2.3,

the minimum number of successful searches (169) is very close to the expected
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Figure 2.3: Relative frequency histograms for the longest waiting time (left) and
number of successful searches (right) obtained at single stem-cell donation centre
using the in-sample and out-of-sample simulation approaches.

number of successful searches (E[ỹ′ijs(x
∗
j)] = 171) computed by the optimization

model. The optimum capacity of the center (with the larger arrival rate) obtained

by solving the optimization model is x∗j = 11. We observe that the in-sample

approach provides a slightly better performance than the out-of-sample as the

optimization model uses the in-sample data.

Next we design a numerical experiment that was originally motivated by

a real situation where the current network of stem-cell donation centres needs to

be expanded. For instance, according to a national newspaper (Milliyet, 2016),

the Turkish Government aims to increase the number of the stem-cell donation

centres in Turkey to improve the current number of transplantations. For this

purpose, suppose that the government plans to have at least one center in �ve

di�erent geographical areas of Turkey. Given the new stem-cell donation network,

we investigate how the performance of the network would be a�ected if the number
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of centres and total capacity budget are increased.

E�ect of Network Size: In order to establish the impact of the network

size on the optimum capacities as well as the performance metrics, we extend

our experiments to consider a �ve-center network. As mentioned before, the �ve-

center network is arti�cially constructed on the basis of the real data collected for

the two-center network. The centres are assumed to be located in �ve di�erent

areas of Turkey. The interarrival rates to the (arti�cial) donation centres are

determined based on the region populations as 3.2, 3.7, 4, 4, and 4 days/patient,

respectively. All parameters (apart from the patient arrival rates) that are input

to the optimization model remain the same as speci�ed for the two-center network.
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Figure 2.4: Performance comparison of the two-center and �ve-center networks
at varying weekly budget per centre obtained by the optimization model

Figure 2.4 displays the results of the optimization model in terms of the

relative rates of the unsuccessful searches (at y-axis) as the weekly budget per

center (at x-axis) varying between $300 and $700 for the two-center and �ve-center
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networks. These results show that the �ve-center network provides signi�cantly

less unsuccessful searches than the two-center network for almost all budget levels.

We also observe that the �ve-center (two-center) network produces almost same

level of unsuccessful search rate at weekly budget higher than $475 ($500). This

is because the budget is already at a very high level and no more improvements

can be achieved in the unsuccessful search rate. Note that the optimization

model does not take into account the �xed cost of opening a new centre as well

as travelling costs of patients that may a�ect the overall cost of expanding the

network structure.

The out-of-sample experiments for the �ve-center network are designed as

follows. For each donation center in the network, we �rst compute the average

number of unsuccessful searches conducted at �xed capacity (that is determined

by solving the optimization model using the in-sample data) over all scenarios.

The total number of (patient arrivals) unsuccessful searches of the network is then

computed as the sum of (patient arrivals) average unsuccessful searches over all

patients admitted to all donation centres of the network. This basically implies the

objective function value

(
J∑
j=1

S∑
s=1

ωs

Ijs∑
i=1

E[ỹ′ijs(x
∗
j)]

)
given the optimal capacity

x∗j . The relative rates of unsuccessful searches for the network can be de�ned

as ratio of the total number of unsuccessful searches of the network to the total

number of patient arrivals to the network.

Sensitivity Analysis of Model Parameters: We are also concerned

with the impact of various model parameters (such as budget, arrival variability

and demand) on the optimal capacity decisions and di�erent performance metrics.

To examine this impact, we designed a set of controlled experiments where we only

change one parameter at a time within a certain range while keeping the other

model parameters at their base levels as de�ned in Table 4.2. We also investigated

the model sensitivity towards other parameters such as unit-capacity cost. We
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can report that there is no signi�cant change observed in the capacity decisions in

di�erent unit-capacity cost levels. Therefore, we only present the computational

results related to the weekly budget, arrival variability and demand in this section.

Impact of Budget: Figure 2.5 presents the optimum capacities of each centre

within the two-center (left panel) and �ve-center (right panel) networks at various

weekly budget levels re�ecting di�erent economic conditions. From these results,

we observe that the optimal capacities of centres increase as the budget of centres

increases, but remain the same after certain budget levels. This con�rms that

increasing the weekly budget of centres more than a certain level does not improve

the overall performance of the network of stem-cell donation centres. On the other

hand, there does not exist a feasible capacity solution when the budget levels are

less than $200 and $1000 for two-center and �ve-center networks. In addition, the

optimal capacity of a centre with a high arrival rate is higher than the capacities

of other centres with low arrival rates as expected.

We also display 5% con�dence intervals for the total rate of unsuccessful

searches obtained by the out-of-sample experiments (using the respective opti-

mum capacities found by solving the optimization model SCPudist) in Figure 2.5.

Total rate of unsuccessful searches monotonically decreases as the value of weekly

budget increases.

Impact of Arrival Variability: As mentioned before, the variability param-

eters (denoted by Γarv and Γserv) de�ne the conservativeness of the underlying

uncertainty sets for the interarrival and service times. In other words, a larger

variability corresponds to a more conservative uncertainty set since it covers a

larger number of possible realisations. To investigate how the performance met-

rics and centre capacities change as the level of conservativeness (which mostly

depends on the modellers' preference) varies, we solve the optimization model

for di�erent arrival variabilities (i.e., Γarv/σarv = 0, 1, 2, 3, 4). It is worthwhile
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Figure 2.5: Impact of weekly budget on the optimal capacities of donation centers
and unsuccessful searches for the two-center (left) and �ve-center (right) networks.

to mention that the service-time variability does not have a signi�cant e�ect on

the performance since it is almost negligible. Notice that the case for Γarv = 0

corresponds to optimize based on the expected waiting time of blood samples. In

addition, we do not consider the cases where Γarv/σarv ≥ 5 since the interarrival

uncertainty set covers almost all possible realizations of random interarrrival time

of patients when Γarv = 4σarrv.

For this experiment, the budget levels are set as $1000/week and $7200/week

for the two-center and �ve-center networks, respectively, while keeping the other

model parameters at their base levels. Figure 2.6 presents the average rate of un-

successful searches as well as the optimal capacity levels of the donation centres

obtained by solving the optimization model at di�erent arrival variabilities for

the two-center (left panel) and �ve-center (right panel) networks. Notice that the

capacities of centres 3, 4 and 5 coincide at each value of arrival variability (since

their arrival rates are the same).
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Figure 2.6: Impact of arrival variability on the capacity of centres and the rate
of unsuccessful searches in two-center (left) and �ve-center (right) networks

We also display the results of the out-of-sample experiments in Figure 2.6.

As we can see from Figure 2.6, the di�erence between the rates of unsuccessful

searches obtained by the optimization model and the out-of-sample experiments

raises up to 30% as the level of conservativeness (variability parameter) increases.

This approves that the level of conservativeness plays an important role on the

performance metrics and the optimum capacities of centers. In particular, when

the variability parameter is set as zero, all blood samples are assumed to face

the same average waiting time. In this case, the out-of-sample results provide

the highest rate of unsuccessful searches in both network structures. We can

therefore conclude that the use of average waiting time in the model leads to a

biased objective value.

Impact of Demand Change: In the numerical experiments so far, we have

assumed that the demand pattern does not change during the planning horizon.

In order to investigate the possible impact of demand changes on the performance
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metric, we consider a case of single donation center with varying demand rates

while all other parameters remain the same. The trends in the demand can be

observed due to the population increase, the change in population dynamics or

the emergence of better therapies replacing stem-cell donation. For this purpose,

we conduct out-of-sample experiments while the demand changes with a linear

fashion. We consider four cases as the demand increases by 25%, 50%, and 75%

as well as decreases by 50% until the end of the next 3 years and compare the

average rate of unsuccessful searches.
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Figure 2.7: Average rate of unsuccessful searches at varying capacity levels with
various demand patterns

Figure 2.7 plots the rate of average unsuccessful searches for all demand

patterns at di�erent capacity levels. The results in Figure 2.7 show that the

increase in the demand results in a larger e�ect compared to a decrease with the

same rate. In the optimum capacity level (11) of the centre (computed with the

base demand rate), when the demand increases by 50% and 75%, the average
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unsuccessful search rate increases by around 20% and 50% respectively. This

con�rms that the decision-maker should increase the capacity of the donation

centre signi�cantly in case of a rising demand. By setting up the capacity of

the centre higher than 16 does not make much di�erence in terms of the overall

performance.

2.7 Conclusions

Stem-cell donation centres serve patients with an urgent need of transplantation.

The search process for a suitable stem-cell donor consists of several steps and

require time-consuming and expensive advanced blood tests. The capacity for

the blood-testing service a�ects the waiting time to complete the donor search

and its success. Besides, several exogenous uncertainties such as patient lifetimes

or donor travel times arise during the search. In this research, we develop a

scenario-based stochastic model to �nd the optimum capacities in a network of

stem-cell donation centres maximizing the expected number of successful patient

searches under a budget restriction. The advanced blood testing in each centre

is modelled as a �rst-come �rst-served, multi-server queue with unknown service

and arrival distributions. The upper-bound of the waiting time in this queue is

replaced with a safe approximation. The resulting non-linear integer programming

model is reformulated into a linear one.

The computational experiments show that increasing the number of cen-

tres within a stem-cell donation network improves the cost-e�ectiveness, but in

contrary the budget increase more than certain amount does not contribute to

the network's performance. Moreover, the sensitivity analysis reveal that the

variabilities in patient arrivals have a signi�cant impact on the optimum capac-

ities and the search success rates. The capacity decisions made in view of the
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average waiting time of blood samples lead to a biased result, especially in high

demand scenarios. On the other hand, the worst-case approach for the waiting

time permits to take into account the extreme case of uncertain patient arrivals.
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Chapter 3

Resource Allocation for Healthcare

Network with Outsourcing

3.1 Introduction

Outsourcing has emerged as a business approach in the service sector over the

last few decades. It can be de�ned as the procurement of goods or services from

an external provider under a contract. Complete outsourcing aims to serve all

customers through a provider while partial outsourcing (so-called co-sourcing)

targets speci�c customers on the basis of their strategic importance or for ge-

ographical reasons. Outsourcing may be preferred as a way of either reducing

costs (Johnson, 2008) or increasing value of services (Kakabadse and Kakabadse,

2000). Outsourcing has been practiced in various service and support sectors

such as call-centre and housekeeping services. A signi�cant outsourcing trend

has recently been observed in healthcare services towards information technology

and clinical services, such as anaesthesia, emergency department sta�ng, dial-

ysis, diagnostic imaging and hospital sta�ng (Punke, 2013). According to the

survey conducted by a US outsourcing company in 2014, around 81% and 90% of
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the US community hospitals outsource emergency and anaesthetic care services,

respectively (Saunders and Westerink, 2014).

Outsourcing of medical services, so-called healthcare outsourcing, has been

signi�cantly rising in other countries as well as in the UK. According to the Centre

for Health and Public Interest, total amount spent on healthcare outsourcing from

private service providers has increased 50% between 2009-14, and the value of

outsourcing contracts in 2014 was ¿22.6 billion that was a quarter of the entire

the UK National Health Service (NHS) budget at that time (CHPI, 2015). Types

of contracted clinical services provided by the healthcare contracts vary widely

across the country while general practices including surgeries constitute over a

third of the total value.

A healthcare outsourcing contract may either be �activity-based� where

the provider is paid for each patient served, or �block" where a lump sum of

money is paid to the provider for the delivery of services over a �xed period

of time (usually one year). There are also contracts combining both types of

payment structures. For example, a block contract can be used for a baseline

activity while beyond a speci�c threshold, the payment takes place according to

an activity-based contract. The NHS reported that the majority of outsourcing in

the UK healthcare sector is based on the block contracts due to the easy payment

structure (NHS, 2014). In addition to the payment structure, the contracts also

specify target performance levels, expected patient volumes, penalties and validity

duration. Moreover, contract parties must agree on the type of patients to be

served by the provider. For example, all patients in a speci�c area may be directly

allocated or only some patients with certain medical conditions may be referred

to the service provider (Earwicker and Whynes, 1998). The contract design is a

time-consuming and costly process (Monitor, 2013). Due to complex negotiations

between parties, it is generally issued for at least one year validity period.
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In particular, 211 local clinical commissioning groups are responsible for

issuing contracts in the interests of the population of their respective regions in the

UK (NHS, 2014). These commissioning groups may even co-source with several

providers at the same time and develop an outsourcing network in which several

providers share the same patient population (UK Department of Health, 2014).

Capacity planning is an important aspect in the design of healthcare outsourcing

networks (Harrogate and Rural District CCG, 2014; NHS Scotland, 2015; Milton

Keynes CCG, 2017).

A central health authority such as the NHS in the UK has a �xed budget for

outsourcing healthcare services in a network composed of several regions (NHS,

2013). The central health authority must assign patients in di�erent regions to

be treated by the contracted providers, and at the same time, must ensure that

the service level in the network satis�es performance targets at the global level;

for instance, patient waiting and access times. However, outsourcing networks

involve several uncertainties such as the number of patient requests and the service

durations that the central authority needs to take into account when making the

capacity planning decisions. Due to these uncertainties, even for �xed levels of

outsourced capacities, calculating the expected waiting times in such a network

is challenging. Thus, �nding the optimum outsourcing capacities and assigning

patients to providers in an outsourcing network is a complex problem that requires

rigorous mathematical modelling and appropriate solution approaches.

In this chapter, we consider a healthcare outsourcing network managed by

a central authority which has a �xed budget to outsource service capacities from

healthcare providers in several regions. We develop a mathematical optimization

model to determine the optimum allocation of patients within the network and

capacity levels to outsource from the providers. Each service provider is modelled

by a �rst-come-�rst-served (FCFS) queue, assuming that both arrivals and ser-
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vice times follow general distributions. The maximum access time to service in

each queue is approximated using a robust optimization framework. The resulting

model is a multivariate, non-linear, integer programming problem which is di�-

cult to solve with exact methods. Thus, we introduce an alternating optimization

based heuristic to solve the underlying model. The computational experiments

are designed to illustrate the performance of the heuristic using the sets of both

generated and real data. The numerical results show that the heuristic approach

provides almost optimum solutions within a reasonable CPU time. The exper-

iments conducted with the real data suggest that the service performance in a

UK healthcare outsourcing network can be improved. Finally, our results show

that the structure of the network plays an important role on the overall service

performance.

This chapter is organized as follows. The next section provides a literature

review regarding capacity planning in service outsourcing, facility and resource

allocation problems in healthcare networks and healthcare outsourcing. Section

3.3 describes the details of the underlying capacity planning problem and presents

a stochastic programming model. The structural properties of the model are

analyzed in Section 3.4 which also introduces an alternating optimization based

heuristic to solve the model. Section 3.5 presents the design and the results of

the computational experiments.

3.2 Literature Review

The capacity planning problem brie�y outlined above relates to three streams

of the Operations Research literature. The �rst stream focuses on the service

outsourcing from a mathematical modelling perspective while the second stream

studies resource and facility allocation problems in healthcare networks. The
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third stream is concerned with the research on healthcare outsourcing.

The overall performance in service outsourcing signi�cantly depends on

the outsourced capacity levels. Therefore, the capacity planning problems within

service outsourcing have been widely studied; for instance see Aksin et al. (2008),

Gurvich and Pery (2012), Schrieck et al. (2014), Kocaga et al. (2015), and Liu et

al. (2015). Zhou and Ren (2010) provide a comprehensive review of the literature

on service outsourcing. The main features of these papers are summarized in

Table 3.1.

Service outsourcing can be practiced based on either of two main strategies.

In the �rst strategy, the excess demand is served by the outsourced organisation

while the rest is served by the outsourcer. The second strategy is just the opposite

of the �rst one; the excess demand is served by the outsourcer in this case. The

capacity planning problems arising within both strategies have been analyzed in

the literature. These problems are usually modelled by several approaches such

as game theory (Aksin et al., 2008; Liu et al., 2014) and two-stage programming

(Kocaga et al., 2015). The game-theoretic models are solved by using an equilib-

rium analysis (Aksin et al., 2008; Liu et al., 2014) while two-stage programming

models are solved by heuristics (Kocaga et al., 2014). Additionally, a common

feature in service outsourcing environments is the existence of queues. The queues

inherent in the outsourcing problems are modelled by queuing theory (Gurvich

and Pery, 2012; Schrieck et al., 2014; Liu et al., 2015). The queuing models

are usually solved by approximation rules such as square root sta�ng rule and

Hayward's approximation rule (Gurvich and Pery, 2012; Schrieck et al., 2014).

Among various services, call-centre outsourcing has been main focus of the

capacity planning papers in service outsourcing. One of the most comprehensive

analysis for capacity planning in call-centre outsourcing is conducted by Aksin

et al. (2008). They assume that a contractor with some pricing power o�ers
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capacity- and volume-based contracts to a service provider where the demand

is uncertain. They consider di�erent contract schemes, such as subcontracting

base demand or demand �uctuations and to �nd the optimum contract price and

service capacities of the contractor and the provider. They use a game-theoretic

approach to derive the optimum capacities when the price is �xed, and optimum

prices when the capacities are �xed. Rather than developing a queuing model,

they provide generic insights, assuming that the model is extended with a queue.

Table 3.1: A review of the literature on capacity planning in service outsourcing

Research Papers
Modelling Approach Decisions Outsourcing Solution Approach

GT TS QT Capacity Price Base Peak Exact Heuristic
Aksin et al. (2008) X X X X X X
Gurvich and Pery (2012) X X X X
Schrieck et al. (2014) X X X X
Kocaga et al. (2015) X X X X
Liu et al. (2015) X X X Threshold-based X
Our approach Stochastic Programming X Demand-based X

*GT: Game Theory; TS: Two-stage stochastic programming, QT: Queuing theory

Unlike Aksin et al. (2008), several authors (Schrieck et al., 2004; Koacaga

et al., 2015; Gurvich and Perry, 2012) consider a queue within the call-centre

outsourcing. Schrieck et al. (2014) develop a mathematical model to �nd the

optimum number of sta� in a call-centre assuming that the demand is outsourced

at busy times. They assume that the probability that a customer waits more than

a certain duration should not pass a speci�c value. They use an extension of the

square root sta�ng rule and Hayward's approximation rule to identify the best

sta� levels in terms of the loss probability. The �rst rule uses a policy function

based on the square root of the mean arrival rate to calculate the required sta�ng

level. This rule requires that the interarrival and service times follow exponential

distributions. The second rule provides approximate performance measures for

a queuing system, assuming that arrivals and service times follow general and

exponential distributions, respectively.
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Similarly, Kocaga et al. (2015) consider the capacity planning problem in a

call centre which outsources when the system is too crowded. They develop a two-

stage stochastic programming model to �nd the optimum sta�ng and outsourcing

policy to minimize the total cost. The �rst-stage decision is the number of sta� to

employ, while the second-stage decision is the real-time call routing. The service

system is modelled as a queue with exponentially distributed interarrival and

service times, multiple servers and abandonment. They use square root safety

sta�ng policies combined with routing to solve the resulting model. Gurvich and

Perry (2012) model a network of outsourced call-centres as a multi-queue system.

They develop several approximation rules to �nd the greedy sta�ng and routing

policy.

Unlike most of the studies on the service outsourcing, Liu et al. (2015)

consider a healthcare outsourcing problem. They develop a mathematical model

to �nd the best mutual referral policy between a community and a city hospital

minimizing the cost of outsourcing. Two types of relationship between hospitals,

subordination, two integrated hospitals, and subcontracting, separate but col-

laborating hospitals, are analyzed independently. They consider several contract

schemes such as fee-for-service with and without cost sharing. They assume that

patients are referred to the contracted hospital according to their medical states.

The optimal referral policy is found by using game theory. In summary, our re-

view in service outsourcing indicates that the relevant papers have only considered

two-player, game-theoretic relationships, while capacity and patient allocations

in healthcare outsourcing networks remain unexplored. Considering the rapid in-

crease in healthcare outsourcing, our research can contribute signi�cantly to both

practice and theory in this area.

The other related stream of literature focuses on the facility location/allocation

problem with immobile servers, stochastic demand and congestion (see the reviews
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by Berman and Krass (2002) and Bo�ey et al. (2007)). A similar area of study

is capacity planning for hospitals with uncertain demand or lengths of stay (see

Mousazadeh et al. (2016) for a detailed review). Speci�cally, the studies in these

streams seek to identify the location and capacity of healthcare facilities and allo-

cate uncertain demand to these locations in order to maximize pro�ts. Queuing

theory is used by only a few of the papers in this area (Marianov and Serra, 2002;

Chao et al., 2003). Marianov and Serra (2002) model the hospitals in a network

as M/M/m queues where the objective is to minimize the number of hospitals

in the network and the number of sta� assigned to each hospital. They assume

that the probability that there are more than certain number of waiting patients

is limited. The resulting non-linear integer programming model is solved with a

heuristic concentration method.

Similarly, Chao et al. (2003) consider a resource allocation problem in a

network of hospitals in which each region has a certain rate of switchable and non-

switchable patients. A central decision maker allocates the available resources op-

timally between the hospitals based on the expected patient waiting times. Each

hospital is modelled as an M/M/1 queue with exponentially distributed service

and interarrival times. Naboureh and Safari (2016) aim to �nd the optimum loca-

tion and capacity of a specialized service within a hospital chain, where patients

may be diverted to other hospitals at a certain cost. Zhang et al. (2010) study a

bi-level problem for capacity and patient allocation to preventive healthcare cen-

tres in a network. The lower level problem focuses on the user choice nature of the

allocation decisions, while the number, locations, and capacities of the facilities

are found by solving the upper level problem. They assume that the patients are

not assigned to speci�c centres, but may choose the facility to be served based

on the total expected waiting and travelling time. The objective of the model

is to maximize the participation of the population. The lower level problem is
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solved with an exact method (gradient projection), while the upper level problem

is solved with a heuristic (tabu search).

The underlying capacity planning problem considered in this chapter dif-

fers from facility and resource allocation problems in healthcare networks in sev-

eral ways. Most importantly, we assume that arrival and service times follow

general rather than exponential distributions. This assumption forces to consider

approximate formulations since the queuing literature mostly deals with exponen-

tial service and interarrival times (Bandi and Bertsimas, 2012). Also, we consider

maximum rather than average patient waiting times that are not focused much

in the queuing theory literature. Finally, we consider the capacity and patient

referral decisions simultaneously, unlike the related papers. Therefore, the models

developed in the literature are not applicable to the strategic planning problem

considered in this chapter.

Several authors concentrate on the design and planning of contracts be-

tween medical sta� and hospital management by using game theory (Lu and Don-

aldson, 2000; Fuloria and Zenios, 2001; Lee and Zenios, 2012). Lu and Donaldson

(2000) deal with performance-based contracting of medical sta� and its e�ect

on the overall clinical outcomes. Fuloria and Zenios (2001) study an outcome-

adjusted contracting problem between two parties, where the purchaser seeks to

reimburse for optimal treatment types by de�ning the contract terms according

to the observed outcomes. Lee and Zenios (2012) focus on the structure of a

principal�agent model in Medicare's dialysis payment system using an empirical

method. However, these papers mostly concentrate on the design of contracts

rather than the capacity planning problem and its e�ect on patient access times.

Our contributions to the literature can be summarized in terms of mod-

elling and solution approaches as follows.

• We develop a non-linear integer programming model for the capacity plan-
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ning problem of a healthcare outsourcing network. Each provider is mod-

elled as an FCFS queue where the service and interarrival times follow

general distributions. The maximum waiting time in each queue is approx-

imated with a robust optimization based approach. The resulting model is

a non-linear integer programming model and di�cult to solve with exact

methods.

• Due to the computational di�culties encountered with the exact methods,

we introduce an alternating optimization based heuristic to solve the result-

ing model. We illustrate the performance of the heuristic through several

computational experiments. The numerical results show that the proposed

heuristic has a better computational performance than the considered com-

mercial solvers for real-sized instances. Finally, we investigate the impact of

the model parameters on the overall performance of a healthcare outsourc-

ing network. The results are used to provide several policy insights for the

planning of healthcare outsourcing networks.

3.3 Problem Formulation

We consider a patient population residing in several independent regions. Within

each region, healthcare providers can supply medical services based on a contract

with a central healthcare authority such as the NHS in the UK. A schematic

description of a healthcare outsourcing network is presented in Figure 3.1. We

assume that there exists no relationship between the service providers apart from

o�ering contract-based services to the same authority. The health authority needs

to determine the outsourcing capacity to supply from each service provider at each

region in view of the total outsourcing budget. Additionally, the health authority

has to allocate the expected patient volume among the contracted providers.
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Patient requests directly arriving to the health authority are then referred to

the service providers. We do not consider a speci�c referral process, but assume

that a �xed ratio of expected patient volume is allocated to each provider. The

providers are required to serve the patients referred to them.

Figure 3.1: A schematic representation of a healthcare outsourcing network

Let's consider a health authority responsible for the patients divided into R

regions, labelled as r ∈ {1, · · · , R}. Each region r consists of nr number of service

providers that are labelled as i = 1, · · · , nr. Let xir ∈ Z≥0 represent the capacity

(in terms of the number of servers or sta�) that the central authority outsources

from provider i ∈ {1, · · · , nr} in region r. Let yir(xir) denote a binary variable

representing whether there is a contract between provider i in region r and the

central authority. If service capacity is contracted in provider i and region r (i.e.

xir > 0), then the provider is outsourced and therefore yir(xir) = 1. However, if

no outsourcing contract exists between the provider and the central authority, in

other words no capacity is assigned to the provider (i.e.xir = 0), then yir(xir) = 0.

The maximum capacity that can be outsourced from provider i ∈ {1, · · · , nr} in

region r is denoted by Cir. Thus, the capacity allocated to provider i in region
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r cannot exceed the available capacity level. This can be stated as the following

constraint:

Ciryir(xir) ≥ xir. (3.1)

Let pir denote the variable cost depending on the (unit) capacity outsourced from

provider i in region r. There is also a �xed contracting cost, denoted by f , that

will be paid for the time spent on negotiations or paperwork when the contract

has been signed between the partners. Given the budget level B′, we impose the

following linear constraint that restricts the total cost of service outsourcing over

all regions not to exceed the available budget:

R∑
r=1

nr∑
i=1

fyir(xir) + pirxir ≤ B′. (3.2)

Generally speaking, demand for any service in the network and service

durations are not known in advance. Suppose that demand in region r follows a

known distribution with average λr (average number of patents arriving in region

r during a day) that can be estimated from historical data. Let αir ∈ [0, 1] denote

a percentage (or a fraction) of overall demand realised (patient arrivals) in region

r to be served by provider i. Then, the average number of patients allocated

to provider i in region r (denoted by λir) can be computed as λir = λrαir. All

expected patient demand in region r should be allocated among the providers in

this region:

nr∑
i=1

αir = 1, r = 1, · · · , R. (3.3)

We model the service system of provider i in region r as an FCFS queue facing

no blocking and congestion. The number of servers in each queue is de�ned by

the outsourced capacity xir. The average service rate (average number of patients
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served by unit-capacity during a day) of provider i in region r is denoted by µir.

For a stable queue, the utilization rate (tra�c intensity) in the queue should be

smaller than 1, that is
λir
xirµir

< 1 for i = 1, · · · , nr and r = 1, · · · , R. In other

words, the total service rate (xirµir) should be larger than the total arrival rate

(λir) such that the queue does not grow exponentially. Using λir = λrαir, we

obtain the following condition

xirµir > λrαir, i = 1, · · · , nr, r = 1, · · · , R. (3.4)

The central health authority is responsible for patients to be served within a

certain time. However, due to the variations in arrival and service times, the

access times of patients for the service can vary. Since each patient is equally

important and the worst-case, the patient death, should be avoided as much as

possible, we assume that the health authority aims to minimize the worst-case

access time within the network (NHS, 2017). Let's represent the maximum patient

access time in provider i and region r with Wir(αir, xir) which depends on the

demand allocated to this provider and the outsourced capacity. This dependency

is due to that the waiting times in a queue are a�ected by the number of servers

and the arrival rates to this queue. The health authority would like to determine

the capacity to outsource and number of patients referred to each provider in

parallel to the outsourcing contract, if signed, so that the maximum (patient)

access time over all regions is minimized. Then, the capacity planning problem

of the central authority can be formulated as:
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CAP : min
αir,xir

max
r={1,··· ,R},i={1,··· ,nr}

Wir(αir, xir),

s. t.
R∑
r=1

nr∑
i=1

fyir + pirxir ≤ B′,

nr∑
i=1

αir = 1, r = 1, · · · , R,

xirµir > αirλr, i = 1, · · · , nr, r = 1, · · · , R,

Ciryir ≥ xir, i = 1, · · · , nr, r = 1, · · · , R,

xir ≥ yir, i = 1, · · · , nr, r = 1, · · · , R,

xir ∈ Z≥0, yir ∈ {0, 1}, αir ∈ [0, 1], i = 1, · · · , nr, r = 1, · · · , R.

We assume that the arrival and service processes follow general distributions in

all regions. Our aim by this assumption is to prevent any possible inaccuracy or

errors occurring due to an imprecise �tting of data of the underlying distributions.

However, it is computationally di�cult to derive an exact formulation for the

maximum waiting time in a queue with a general arrival distribution (Bandi

and Bertsimas, 2012). Therefore, we consider an approximate formulation of the

maximum access time in each provider.

Approximation to Maximum Waiting Time in Queue

There are various approximate formulations for the maximum waiting time in

a queue where the arrival and service times follow general distributions (for in-

stance, see Gupta and Osogami (2011)). However, these approximations may not

lead to realistic results due to the underlying assumptions (Bandi and Bertsi-

mas, 2012). As an alternative approach, Bandi and Bertsimas (2012) propose an

approximation method based on robust optimization for the maximum waiting

time in an FCFS queue. This approach adjusts the conservativeness of the model

against the uncertainties in the arrival and service times without assigning any

speci�c distributions to them. Particularly, Bandi and Bertsimas (2012) consider

an FCFS queue where the service and interarrival times of the customers are

82



independent and identically distributed (i.i.d.) random numbers. By using the

central limit theorem, they develop uncertainty sets that the service and interar-

rival times belong to. Readers are referred to Bandi and Bertsimas (2012) for the

details and Section 2.5.1 for an overview regarding this approximation. Next, we

explain how to apply this approach to obtain the approximate maximum access

time of each patient admitted to provider i in region r.

Consider the FCFS queue in provider i in region r with xir number of

servers. Let's assume that the interarrival and service times of patients in provider

i in region r are i.i.d. and represented as Tpir and Ypir for patients p = 1, · · · , Pir,

respectively. The means µir and λir of the random service and interarrival times

in provider i in region r are estimated from the generated data. Assume that

Tpir and Ypir belong to uncertainty sets Uarrv
ir and U serv

ir , respectively. Moreover,

the sizes of these uncertainty sets are determined by parameters Γair and Γsir that

basically measure the variability in the interarrival and service times, respectively.

They are set by the modeller based on the desired conservativeness of the model

against the uncertainties (Bandi and Bertsimas, 2012). As Γair and Γsir are higher,

the model considers a wider range of realizations for the interarrival and service

times i.e. it gets more conservative. The uncertainty set Uarrv
ir for interarrival

times Tpir of patients p = 1, · · · , Pir, i = 1, · · · , nr, and r = 1, · · · , R is de�ned

as follows:

Uarrv
ir =

{
(T1, T2, ..., TPir

)

∣∣∣∣∣
∣∣∑Pir

p=m+1 Tp −
Pir−m
λir

∣∣√
(Pir −m)

≤ Γair, ∀m ≤ m0

}
,

where m0 can be set to Pir − 30. Similarly, the uncertainty set U serv
ir for service

times Yp of samples p = 1, · · · , Pir is de�ned as

U serv
ir =

{
(Y1, Y2, · · · , YPir

)

∣∣∣∣∣
∣∣∑eir

p=m+1 Ypxir+b − eir−m
µir

∣∣√
(eir −m)

≤ Γsir, ∀m ≤ eir − 1, 0 ≤ b < xir

}
,

83



where the service times are computed over the partitions of service times into

xir groups with sizes eir = bPir/xirc due to the multiple servers. In view of

these uncertainty sets, we can then apply Proposition (2.5.1) to compute the

approximate upper bound of the access time in provider i in region r, denoted by

W ir(αir, xir), for provider i in region r as follows:

W ir(xir, αir) =
αirλr

(
Γair + Γsir

√
1
xir

)2

4
(

1− αirλr
µirxir

) . (3.5)

Note that the patient interarrival times in provider i and region r depend on the

demand allocation to this provider (i.e. the decision variable αir). Indeed, the

arrival of patients to provider i in region r is similar to an arrival thinning process

with fraction αir. Based on the analysis provided in Bandi et al. (2015), we can

formulate the variation in the patient interarrival times in provider i and region

r as,

Γair = Γar

√
1

αir
, r = 1, · · · , R, i = 1, · · · , nr,

where Γar is the variation in the interarrival times in region r and can be driven

from the historical interarrival times. For example, it can be set to the double

of the standard deviation of the interarrival times to cover a wide range (around

95%) of possible interarrival times, as suggested by Bandi and Bertsimas (2012).

Then, the approximated capacity planning problem can be formulated as follows,

ACAP : min
αir,xir

max
r={1,··· ,R},i={1,··· ,nr}

αirλr
(
Γar/
√
αir + Γsir/

√
xir
)2

4
(

1− αirλr
µirxir

) ,

s. t. Constraints (3.1), · · · , (3.4),

xir ∈ Z≥0, yir(xir) ∈ {0, 1}, αir ∈ [0, 1], r = 1, · · · , R, i = 1, · · · , nr.

Note that the size of ACAP depends on the number of regions as well as service

providers that basically increase the number of constraints and, most importantly,
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the number of integer and binary decision variables. On the other hand, the

non-linear approximate upper-bound of access time also adds complexity to the

problem.

3.4 Structural Properties and Solution Method for

the Approximated Model

In this section, we �rst present an analysis of the model structure and then in-

troduce a solution method based on the alternating optimization. For the sake

of computational convenience, we consider a special case of the approximated

capacity planning problem under an assumption that the �xed contract costs are

removed. In other words, we �x the decision variables representing the choice of

service providers i = 1, · · · , nr in region r = 1, · · · , R as yir(xir) = 1. Then, the

�xed contract cost f × yir(xir) in the budget constraint becomes a constant and

we obtain the modi�ed capacity constraint as

Cir ≥ xir, r = 1, · · · , R, i = 1, · · · , nr, (3.6)

and the budget constraint as

R∑
r=1

nr∑
i=1

pirxir ≤ B, (3.7)

where B = B′ −
R∑
r=1

nr∑
i=1

fyir(xir). The approximated problem ACAP becomes:

SACAP : min
xir,αir

max
r={1,··· ,R},i={1,··· ,nr}

αirλr
(
Γar/
√
αir + Γsir/

√
xir
)2

4
(

1− αirλr
µirxir

) ,

subject to Constraints (3.3), (3.4), (3.6), (3.7),

xir ∈ Z≥0, αir ∈ [0, 1], r = 1, · · · , R, i = 1, · · · , nr.
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Although the model is simpli�ed signi�cantly with this modi�cation, the

objective function, describing the approximate upper-bound of the waiting time, is

still non-linear even with continuous capacity variables. The following proposition

states the convexity of this function.

Proposition 4 For xir ∈ R≥0 and αir ∈ [0, 1], the approximate upper-bound of

the waiting time W (xir, αir) for the service provider i and region r

W (xir, αir) =
αirλr

(
Γar/
√
αir + Γsir/

√
xir
)2

4
(

1− αirλr
µirxir

) , (3.8)

is neither a convex nor a pseudo-convex function.

Proof. For the sake of convenience, we drop indices i and r in the formulation

of W in (3.8) which is then de�ned as

f(x, α) =
αλ
(
Γa/
√
α + Γs/

√
x
)2

4
(

1− αλ
xµ

) =
µλ
(
Γa
√
x+ Γs

√
α
)2

4(µx− αλ)
.

For y =
√
x, β =

√
α, and, m = λ/µ, we obtain

g(y, β) =
λµ
(
Γay + Γsβ

)2

4
(
y2µ− β2λ

) =
λ
(
Γay + Γsβ

)2

4
(
y2 −mβ2

) .
Since λ is a constant, we drop it from the derivative calculations. The �rst order

partial derivatives of f(x, α) with respect to x and α, respectively, can be written

as,

∂f(x, α)

∂x
=

1

2y

∂(g(y, β))

∂y
= −yβ

2(m(Γa)2 + (Γs)2) +mβ3ΓsΓa + y2ΓaΓsβ

4y(y2 −mβ2)2
,
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and

∂f(x, α)

∂α
=

1

2β

∂(g(y, β))

∂β
=
y2β((Γa)2m+ (Γs)2) + ΓsΓay3 +mΓaΓsβ2y

β(y2 −mβ2)2
.

Let H =

a b

b c

 denote the Hessian matrix of function f(x, α), where the second

order derivatives of f(x, α) are denoted by a, b and c. The second order partial

derivatives of f(x, α) can be computed follows:

a =
∂2f(x, α)

∂x2
=
β[−m2ΓaΓsβ4 + 6mΓaΓsβ2y2 + 3y4ΓaΓs + 4y3β(m(Γa)2 + (Γs)2)]

2y3(y2 −mβ2)3
,

c =
∂2f(x, α)

∂α2
=
y[4mβ3y(m(Γa)2 + (Γs)2) + 6my2β2ΓaΓs + 3m2β4ΓaΓs − ΓaΓsy4]

2β3(y2 −mβ2)3
, and,

b =
∂2f(x, α)

∂x∂α
,

=
−[6my2β2ΓaΓs + 2βy3(m(Γa)2 + (Γs)2) + ΓaΓsy4 +m2β4ΓaΓs + 2mβ3y(m(Γa)2 + (Γs)2)]

2βy(y2 −mβ2)3
.

Following Lau (1978), we need to show that H is a positive semi-de�nite matrix

for f(x, α) to be a convex function. In other words, all principal minors, a, c,

(ac− b2), should be non-negative. The third principal minor can be rewritten as:

ac− b2 =
a′c′ − (b′)2

2β2x2(y2 −mβ2)6
, where

a′ =−m2ΓaΓsβ4 + 6mΓaΓsβ2y2 + 3y4ΓaΓs + 4y3β(m(Γa)2 + (Γs)2),

b′ =6my2β2ΓaΓs + 2βy3(m(Γa)2 + (Γs)2) + ΓaΓsy4 +m2β4ΓaΓs + 2mβ3y(m(Γa)2 + (Γs)2),

c′ =4mβ3y(m(Γa)2 + (Γs)2) + 6my2β2ΓaΓs + 3m2β4ΓaΓs − ΓaΓsy4.

Note that since the denumerator is always positive, the sign of the principal minor

(ac− b2) is equal to that of a′c′ − (b′)2 which can be rewritten as:

a′c′ − (b′)2 = (∆a′ + ∆c′)b′ + ∆a′∆c′, where,
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∆a′ =a′ − b′,

=2ΓaΓs(y4 −m2β4) + 2βy(m(Γa)2 + (Γs)2)(y2 −mβ2),

and

∆c′ =c′ − b′,

=2ΓaΓs(m2β4 − y4) + 2βy(m(Γa)2 + (Γs)2)(mβ2 − y2).

Note that ∆a′ + ∆c′ = 0 and ∆a′ > 0, ∆c′ < 0 due to the tra�c intensity

condition (i.e. y2 −mβ2 > 0). This leads to the third principal minor to become

a′c′− (b′)2 ≤ 0. This shows that the approximate upper-bound of waiting time is

not a convex function even with relaxed capacity variables.

For pseudo-convexity, we need to show that all the leading principal minors

of the bordered Hessian matrix (denoted as Hp) of the approximate upper-bound

of waiting time must be negative (Crouzeix and Ferland, 1982; Avriel and Schaible,

1978). For d = ∂f(x,α)
∂x

and e = ∂f(x,α)
∂α

, the bordered Hessian matrix is denoted by

Hp =


0 d e

d a b

e b c

 .

The �rst leading principal minor of Hp, −(d)2, is always negative. The second

leading principal minor can be written as,

−d(dc− eb) + e(db− ea). (3.9)

For the simplicity purposes, let's denote the denumerator of d and e by

d′ = yβ2(m(Γa)2 + (Γs)2) + y2ΓaΓsβ +mβ3ΓaΓs and

e′ = y2β(m(Γa)2 + (Γs)2) + ΓaΓsy3 +mΓaΓsβ2y, respectively. By using the rela-

tionship a′ + c′ = 2b′, we can see that the sign of (3.9) is equivalent to that of
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(c′yd′ − a′βe′)(yd′ − βe′). Note that (yd′ − βe′) is always zero. Thus, the princi-

pal minor is non-negative. This shows that the approximate upper-bound of the

access time for provider i in region r (3.8) is not a pseudo-convex function.

The convexity analysis shows that even the relaxed version of the problem is

non-convex. However, it is crucial to �nd the best solution close to the global one.

For large size non-convex problems, �nding the global optima is computationally

expensive. In this chapter, we introduce an alternating optimization method for

solving the capacity planning of a healthcare outsourcing network.

In the alternating optimization method, the underlying problem is decom-

posed into several subproblems with respect to the decision variables. Then these

subproblems are iteratively solved to �nd the optimum solution of the original

problem. Initially, the algorithm requires to identify a feasible solution for one

set of decision variables. This solution is used as the input to the other subprob-

lem that is solved to optimality. It is proved that the alternating optimization

algorithm is convergent when the variables are partitioned into two sets (Bezdek

and Hathaway, 2002). Next we consider the optimization problem, SACAP, and

apply an alternating optimization method to �nd the optimal capacity planning

strategy for a healthcare outsourcing network. We �rst transform SACAP by

introducing a positive variable z representing the maximum waiting time. Thus,

the inner maximization problem can be written as a constraint as follows:

SCPZ : min
z,αir,xir

z,

subject to z ≥ W (αir, xir), i = 1, · · · , nr, r = 1, · · · , R,

Constraints (3.3), (3.4), (3.6), (3.7),

z ∈ R≥0, xir ∈ Z≥0, αir ∈ [0, 1], r = 1, · · · , R, i = 1, · · · , nr.

This model can be decomposed into two subproblems in each of which the ca-

pacity and demand allocation decisions (xir and αir) are �xed, respectively. The

following propositions display how to obtain these subproblems which are to be
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solved iteratively at each iteration of the alternating optimization algorithm.

Proposition 5 For �xed capacity level x̄ir for provider i in region r, the opti-

mization model, SCPZ, becomes:

SCPZ(x̄ir):

min
z,αir∈[0,1]

z,

s. t. 4z ≥ λr(Γar)2, r = 1, · · · , R, (3.10)[
−
√
x̄irµirΓ

a
rΓ

s
irλr + 2

√
λ2
r(Γ

a
r)

2zµirx̄ir − x̄irµ2
ir(Γ

s
ir)

2zλr − 4z2x̄irµirλr

λr(µir(Γsir)
2 + 4z)

]2

≥ αir,

r = 1, · · · , R, i = 1, · · · , nr. (3.11)

nr∑
i=1

αir = 1, r = 1, · · · , R,

x̄irµir > αirλr, r = 1, · · · , R, i = 1, · · · , nr.

Proof. By substituting xir = x̄ir in constraint, z ≥ W (αir, x̄ir), we obtain,

W (αir, x̄ir)− z =
µirx̄irαirλr

(
Γar

√
1
αir

+ Γsir

√
1
x̄ir

)2
− 4z(µirx̄ir − αirλr)

4
(
µirx̄ir − αirλr

) ≤ 0. (3.12)

Note that the denominator of (3.12) is always positive due to the tra�c inten-

sity condition. For ωir =
√
αir, uir = µirλr(Γ

s
ir)

2 + 4λrz, vir = 2
√
x̄irµirΓ

a
rΓ

s
ir,

and hir = µirλr(Γ
a
r)

2x̄ir − 4x̄irµirz, the numerator of (3.12) can be written in a

quadratic form: A(ωir) = uirω
2
ir + virωir + hir. Notice that uir and vir are always

positive and depending on the sign of hir, A(ωir) has either two negative roots

(hir > 0) or one positive and one negative root (hir ≤ 0). We also know that

ωir =
√
αir is always positive. Thus, we can only consider hir ≤ 0⇔ λr(Γ

a
r)

2 ≤ 4z

that is equal to constraint (3.10). A(ωir) is not positive if ωir is smaller than or
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equal to the positive root. This leads to

[
−√xirµirΓarΓsirλr + 2

√
λ2
r(Γ

a
r)

2zµirxir − xir(µir)2(Γsir)
2zλr − 4z2xirµirλr

λr
(
µir(Γsir)

2 + 4z
) ]2

≥ αir,

which is equivalent to constraint (3.11).

Proposition 6 For �xed values of patient allocation decisions, ᾱir, for service

provider i in region r, the optimization model SCPZ becomes:

SCPZ(ᾱir):

min
z,xir∈Z≥0

z,

s. t.,

4z ≥ λr(Γ
a
r)

2, r = 1, · · · , R,

xir ≥

[
−
√
ᾱir(µirΓ

a
rΓ

s
irλr + 2

√
−λ2

rµir(Γ
a
r)

2z + µ2
ir λr(Γ

s
ir)

2 + 4µirλrz2)

µir(λr(Γar)
2 − 4z)

]2

,

r = 1, · · · , R, i = 1, · · · , nr, (3.13)

xirµir > ᾱirλr, r = 1, · · · , R, i = 1, · · · , nr,

xir ≤ Cir, r = 1, · · · , R, i = 1, · · · , nr,
R∑
r=1

nr∑
i=1

pirxir ≤ B.

Proof. By substituting αir = ᾱir in constraint, z ≥ W (ᾱir, xir), we obtain,

W (ᾱir, xir)− z =
µirxirᾱirλr

(
Γar

√
1
ᾱir

+ Γsr

√
1
xir

)2
− 4z(µirxir − ᾱirλr)

4
(
µirxir − ᾱirλr

) ≤ 0. (3.14)

We observe that the denominator of (3.14) is always positive due to the tra�c in-

tensity condition. For kir =
√
xir, ηir = µirλr(Γ

a
r)

2−4µirz, τir = 2µirΓ
a
rΓ

s
irλr
√
ᾱir,

and κir = ᾱirµirλr(Γ
s
ir)

2 + 4ᾱirλrz, its numerator can be written in a quadratic
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form as P (kir) = ηirk
2
ir + τirkir + κir. Notice that both τir and κir are always

positive. The increasing or decreasing pattern of function P (kir) depends on the

sign of ηir. It has either two negative roots (when ηir > 0) or one positive and one

negative root (when ηir ≤ 0). Also, note that kir =
√
xir is always non-negative.

Thus, ηir > 0 is not feasible, and λr(Γar)
2 ≤ 4z should always be satis�ed. In this

case, since ηir ≤ 0, P (kir) is not positive when kir is larger than or equal to the

positive root that leads to constraint (3.13):

xir ≥
[−√ᾱir(µirΓarΓsirλr + 2

√
−λ2

rµir(Γ
a
r)

2z + µ2
ir λr(Γ

s
ir)

2 + 4µirλrz2
)]2

[
µir(λr(Γar)

2 − 4z)
]2 .

Note that the objective functions of both subproblems SCPZ(ᾱir) and

SCPZ(x̄ir) are monotonic. Also, for a �xed value of z, they become linear pro-

gramming problems. Thus, we consider a section search method to solve these

subproblems.

A section search method does not require di�erentiation and converges

to the optimum solution when the objective function is monotonic (Burden and

Faires, 1993). In particular, a section search method narrows the feasible region

of the variables by systematically comparing the objective function values. The

most widely used section search method is bisection search (Waeber et al., 2013).

The bisection search method divides the feasible region into two halves at each

iteration. By using a bisection search, we can obtain the unique optimum of

subproblems SCPZ(ᾱir) and SCPZ(x̄ir). Bertsekas (1999) showed that when each

subproblem in an alternating optimization algorithm attains a unique minimum,

the convergence point of the algorithm is a stationary point.

In this chapter, we combine the alternating optimization based heuristic

with the bisection search to solve the optimization model SACAP. The pseudo
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code of the alternating optimization algorithm is presented in Algorithm 1. At

each iteration, the algorithm solves two subproblems SCPZ(ᾱir) and SCPZ(x̄ir)

with a bisection search using linear programming (e.g. simplex) and integer linear

programming (branch-and-bound) methods, respectively. Then, it compares the

objective function values computed at the optimal solution of the subproblems.

The heuristic stops when the di�erence between these objective values is smaller

than a certain tolerance level (e.g. δ = 10−8).

The main steps of the algorithm are described as follows. In the initial step,

the heuristic requires to �nd a feasible solution at which the objective function

value is represented byW ′. Note that this value can be set to a very large number.

We also determine the initial feasible solution xir by setting the minimum capacity

levels that satisfy the tra�c intensity constraints, i.e. xir = λir/µir, assuming that

all the service providers in region r share total number of patients λr arriving to

region r equally, that is λir = λr/nr for i = 1, · · · , nr and r = 1, · · · , R. The

�xed capacity levels, xir, and the objective function value z = W ′ are given as

inputs to subproblem SCPZ(x̄ir). Then, SCPZ(x̄ir) is solved by narrowing the

distance between a feasible and infeasible objective values, denoted by zdf and

zdinf , respectively, at iteration d. If this subproblem has a feasible solution, then

the distance between zdf and zdinf is halved and the problem is solved again with

the new objective value, while the iteration counter d is increased. This process

goes until the di�erence between zdf and z
d
inf is less than a tolerance level δ. Then,

the solution obtained in the last iteration and the objective value zfc are given

as the inputs to SCPZ(ᾱir) where the objective value z = zfc. The same process

repeats for this subproblem while the interval for the objective value is halved at

each iteration m until there is no further change. If the di�erence between the

last objective values obtained in two subproblems, z∗fa and z
∗
fc is smaller than δ,

then the algorithm stops. Otherwise, the optimum capacity levels obtained by
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solving SCPZ(ᾱir) and the maximum of two objective values max{z∗fc, z∗fa} are

given as the inputs to SCPZ(x̄ir) and the whole process is repeated again.

Note that each subproblem is solved with bisection search that has compu-

tational complexity of O(log h) where h is the size of feasible space, i.e. [0,W ′].

There is no worst-case iteration complexity analysis for alternating optimization

when the objective function is not convex. The computation time of the heuristic

depends on the starting point (the initial capacity set) as well as the convergence

rates i.e. how fast the subproblems converge to a solution in terms of the number

of iterations. We analyze the computational performance of the heuristic in more

detail in the next section.

3.5 Computational Experiments

This section is concerned with the design and data structure used for the numer-

ical experiments and also presents the computational results obtained by solv-

ing the capacity planning problem using the alternating optimization algorithm.

With these experiments, we also aim to display the sensitivity of the solution

towards the model parameters. Speci�cally, we would like to answer the following

questions during the computational experiments:

• How does the alternating optimization algorithm perform with respect to

other approaches?

• How does the factors such as budget and network size a�ect the performance

of the heuristic?

• How does the service performance of the outsourcing network change with

respect to the model parameters?
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Algorithm 1 Alternating Optimization combined with Bisection Search

Initialize δ (tolerance), z∗fa = W ′ and z∗fc = 0.
Determine feasible xir values (xir) for r = 1, · · · , R and i = 1, · · · , nr.
while |z∗fa − z∗fc| > δ, do
Set z1

f = max{z∗fa, z∗fc}, z1
inf = 0, and d,m = 1.

while |zdf − zdinf | > δ do
if the following optimization model has a feasible solution,

min
αir∈[0,1]

zd = (zninf + zdf )/2,

s. t. zd ≥ W ir(αir, xir), r = 1, · · · , R, i = 1, · · · , nr,
nr∑
i=1

αir = 1, r = 1, · · · , R,

xirµir > αirλr, r = 1, · · · , R, i = 1, · · · , nr,

then
zd+1
f = (zdinf + zdf )/2,

else
zd+1
inf = (zdinf + zdf )/2.

end if
d := d+ 1.

end while
Set z∗fa = zd−1

f , αir = α∗ir, the optimum decision allocation levels at d − 1,
z1
inf = 0 and m = 1.
while |zmf − zminf | > δ. do
if the following optimization model has a feasible solution,

min
xir∈Z≥0

zm = (zminf + zmf )/2,

s. t. zm ≥ W ir(αir, xir), r = 1, · · · , R, i = 1, · · · , nr,
xirµir > αirλr, r = 1, · · · , R, i = 1, · · · , nr,
Cir ≥ xir, r = 1, · · · , R, i = 1, · · · , nr,

B ≥
R∑
r=1

nr∑
i=1

pirxir,

then
zm+1
f = (zminf + zmf )/2,

else
zm+1
inf = (zminf + zmf )/2.

end if
m := m+ 1.

end while
return Set z∗fc = zm−1

f and x̄ir = x∗ir, the optimum capacity levels obtained
at m− 1.

end while
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• How does the capacity planning model perform in terms of the patient access

time when real data are considered?

The alternating optimization algorithm was implemented in MATLAB

while the integer linear programming problem (the second subproblem) is solved

by Cplex (branch-and-bound). All computational experiments were carried out

on a laptop with Windows XP operating system, CPU 2.26 GHz Intel Corei5 and

8 Gb of RAM.

3.5.1 Design of Experiments and Data

We design three sets of computational experiments in order to illustrate the per-

formance of model SACAP developed in the previous section. Initially, we inves-

tigate computational performance of the proposed heuristic and compare it with

the commercially available exact and local solvers. We randomly generate a data

set for a network consisting of three regions with 10 service providers. The speci�-

cations of this data set, so called small network, is presented in Table 3.2. In order

to illustrate e�ect of di�erent network structures on the performance of the algo-

rithm, we also generate other arti�cial data sets with more regions and providers

(labelled as R and P, respectively). We abbreviate these networks as N(R, P) in

the rest of the chapter. In particular, we consider di�erent network structures

with 3, 6, and 12 regions and 10, 20 and 40 providers (that are abbreviated as

N(3, 10), N(6, 20) and N(12, 40), respectively). These networks are constructed

as duplication of identical small networks. For example, the network N(12, 40)

is combination of four small networks of N(3, 10), where the data related to the

providers and regions remain the same as presented in Table 3.2.

In the second part of the experiments, we conduct a sensitivity analysis by

using the arti�cial data sets to investigate e�ect of the model parameters on the

results. We also investigate impact of real data setting on the performance of the
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capacity planning problem of a healthcare outsourcing network. The real data

are obtained from the online NHS sources (Monitor, 2016). Since the real data

do not di�erentiate between the unit-prices of providers, we generate the arti�cial

data sets, N(R, P).

We assume that the interarrival and service times follow exponential distri-

butions with the rates presented in Table 3.2. The interarrival and service times

are generated by simulation. Then, the variation parameters are set to the double

of the standard deviations of the corresponding simulated data, as suggested by

Bandi and Bertsimas (2012).

Table 3.2: Description of the data set speci�ed for a small network N(3, 10)

Parameter Level
Budget 500$
Number of providers in the regions 3, 4, 3
Average patient arrival rates for each region (patient/day) 24, 24, 18
Mean service times for each region (patient/day) 1.5, 1.5, 1.5
Available capacities (Cir) of service providers at each region [100, 45, 15], [100, 45, 35, 35], [135, 35, 25]
Unit-capacity costs for each provider at each region ($) [1.2, 1, 1], [1.2, 1, 1, 2], [1.1, 1, 1]

3.5.2 Computational Results

Computational Performance of the Heuristic

In order to illustrate the performance of the heuristic, we choose a local solver

(Bonmin in GAMS) and a global solver (Couenne in Julia) as benchmarks. There

are few commercial solvers available for non-linear integer programming problems.

Bonmin and Couenne are chosen based on their computational performance. The

solution quality of these solvers and the heuristic is measured in terms of the

optimality gap and the CPU time taken to �nd a solution. To investigate the

computational performance of the heuristic, we consider di�erent network struc-

tures, i.e. number of providers and regions, that a�ect the problem size. Note

that the global solver cannot �nd the optimum for some instances and had to be
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stopped at 20,000th second. Thus, the gap (i.e. the normalized di�erence) be-

tween local and global solutions is not always the optimality gap and, therefore,

named as `lower bound gap'.

To test e�ect of the integrality constraints, we also solve the relaxed ver-

sion of model SACAP (by �xing the capacity decisions, xir, to be continuous) for

all solvers. In this case, the lower bound gap obtained by the heuristic is almost

negligible, e.g. 6.3e−4 for the network N(12, 40). Thus, in the rest of the experi-

ments, the initial capacity set given as input to the heuristic, x̄ir for i = 1, · · · , nr

and r = 1, · · · , R, is found by solving the relaxed version of the corresponding

problem instance with the heuristic.

Table 3.3: Impact of network structure on performance of solution methods

Network structure: N(region, provider) N(3, 10) N(6, 20) N(12, 40)
Problem Size
Number of constraints 24 47 93
Number of continuous variables 10 20 40
Number of integer variables 10 20 40
Lower bound gap (%)
Local Solver 0.09 0.09 0.01
Heuristic 0.12 0.2 0.4
CPU time (seconds)
Local Solver 0.35 55 281
Heuristic 3.6 6.3 9.22
Global Solver 81.975 > 20,000 >20,000

Table 3.3 shows the problem sizes, computation times and lower bound gap

for di�erent network structures and solvers. The computation time of the global

solver increases exponentially with respect to the problem size. For example, in

the networks N(6, 20) and N(12, 40), the global solver is stopped after 20,000

seconds when the optimality gap reported by the solver, between the upper and

lower bounds, was negligible (2.63 x 10−5). Moreover, the heuristic and the local

solver display similar performance pattern for the network N(3, 10). On the other

hand, for the networks N(6, 20) and N(12, 40), the heuristic has a much shorter
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computation time but a larger gap than the local solver. However, occasionally,

the local solver reported the function evaluation or infeasibility errors while the

heuristic always manages to �nd a solution. Also, we should note that the lower

bound gap of the heuristic is almost negligible in all network structures.

From the computational experiments, we observe that the choice of model

and input parameters plays an important role on the performance of the heuristic.

Therefore, we test the heuristic for di�erent levels of the parameters such as the

tolerance of the heuristic, budget, and available capacities. In this section, we

only report the numerical results of experiments obtained with the parameters

such as tolerance of the heuristic (denoted by δ in Algorithm 1) and budget, that

show signi�cant impact on the heuristic performance. We use the network N(12,

40) with one instance in these experiments.

As Table 3.4 shows, the lower bound gap (the CPU time) obtained by 0.01

tolerance is smaller (higher) than the gap (the CPU time) obtained at the levels

0.1 and 0.05. We also observe that as the tolerance is decreased further from 0.01,

the heuristic's performance does not change signi�cantly. Thus, the tolerance is

set to 0.01 in the rest of the experiments.

Table 3.4: Impact of the tolerance level on the heuristic's performance obtained
using the network N(12, 40)

Tolerance 0.1 0.05 0.01
Lower bound gap (%) 0.8 0.6 0.2
CPU time (seconds) 3.98 6.1 9.22

To investigate the e�ect of budget on the heuristic's performance, we con-

sider tight (900$) and loose (2100$) budget levels for the network N(12, 40). Note

that the level of the budget (B) in�uences the computation time of the heuristic

since it determines the search space for the feasible solutions. As displayed in Ta-

ble 3.5, with the tight budget, the computation time of the local solver increases
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considerably (cannot reach to a solution and stopped at 20.000th seconds). On

the other hand, the tight budget does not a�ect the computation time of the

heuristic signi�cantly but increases its the lower bound gap.

Table 3.5: Performance comparison of di�erent solution methods using the out-
sourcing network N(12, 40) and di�erent budget levels

Budget 900$ 2100$
Lower bound gap (%)
Heuristic 2 0.4
Local Solver 2* 0.01
CPU time (seconds)
Heuristic 12.1 9.22
Local Solver >20.000 281
Global Solver >20.000 >20.000
*stopped

In summary, we can conclude that the heuristic performs better than the

local and global solvers in terms of the computation time and lower bound gap,

especially when the budget constraint is tight. Thus, we use the heuristic to

obtain the results in the rest of the computational experiments.

Sensitivity Analysis

In order to investigate how the model parameters a�ect the capacity planning

strategies as well as the performance metric (patient access time) in a network,

we design controlled experiments where one parameter is varied within a certain

interval while other model parameters remain the same level as initially de�ned.

The numerical experiments show that several model parameters such as network

structure, available capacity, budget and arrival rate play an important role (in

comparison to other parameters) on the maximum access time. Thus, in this

section we present the results of the sensitivity analysis for these parameters.

E�ect of Network Structure on Maximum Access Time: As mentioned be-

fore, the network structure, i.e. the number of regions and providers, can
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a�ect the maximum access time in the network in several ways. For exam-

ple, the number of regions (regional boundaries) in an outsourcing network

is usually identi�ed based on the geography as well as some ad-hoc deci-

sions. Large regions may be preferred to decrease the bureaucratic burden

but may be di�cult to manage. In order to investigate the e�ect of the

number of regions in a network on the maximum access time, we generate

an arti�cial network by modifying the network N(12, 40) as a network N(5,

40), while total number of providers and total arrival rate in the network are

kept the same. Thus, in the new instance, each region has more providers

and a larger arrival rate compared to the original network N(12, 40). In

other words, we just enlarge the boundries of the existing regions. With

this change, the maximum access time in the network decreases by 53%

than the one obtained in the network N(12, 40). This result suggests that

larger regions are more advantageous than the smaller ones. However, note

that the management of operations and contracting may get more complex

with larger regions.

We also measure the change in the maximum waiting time when the bud-

get is identi�ed for a di�erent network size that consists of less number of

providers as well as regions. Unlike the previous test, here, we change the

number of providers in addition to the number of regions in the network.

We also identify three budget levels for each network structure to investigate

the e�ect of the budget at the same time. For the network N(12, 40), we

consider di�erent budget levels, 900$, 1200$, and 1800$, that are labelled

as `low budget', `medium budget' and `high budget', respectively. For other

instances, the budget is halved proportional to their sizes, e.g. the high

budget corresponds to 900$ for the network N(6, 20). Figure 3.2 displays

the maximum access times in di�erent network structures and budget levels.
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Figure 3.2: Maximum access times obtained for di�erent network structures at
various budget levels

As Figure 3.2 shows, the maximum access time decreases as the size of a

network increases. This observation is more prevalent with a tighter budget.

It suggests that de�ning a common budget for a larger network is more

advantageous. This can be explained by increased level of risk sharing in a

larger network. Also, we see that the decline in the maximum access time

gets smaller as the network size is increased.

E�ect of Available Capacities: The available capacity of each provider de-

pends on the annual strategic plans which can be revised in the coming

years. To test the e�ect of di�erent capacity levels, we solve the instance

for the network N(12, 40). We consider the double and half of the original

available capacities and three di�erent budget levels: high (1800$), medium

(1200$), and low (900$).

The results shown in Figure 3.3 indicate that the maximum access time

does not have a linear relationship with the available capacities; when they
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Figure 3.3: Impact of di�erent capacity and budget levels on the maximum access
time of the network N(12, 40)

are halved, the maximum access time does not double. Also, the decrease

in the available capacities has a larger e�ect on the maximum access time

than an increase of the capacities. This di�erence is more prevalent with a

tighter budget. However, we see that when the capacities are halved, even

doubling the original budget does not a�ect the maximum waiting time.

E�ect of Budget and Arrival Variation: The budget level may change ac-

cording to the economic conditions. Additionally, the risk-aversion of the

decision makers, which de�nes the conservativeness of the model, can vary

among di�erent decision-makers. In other words, the ratio of Γar to the stan-

dard deviation of the interarrival times, denoted by σar , may be di�erent for

all regions r = 1, · · · , R. Thus, we investigate the e�ect of the budget and

the interarrival time variation (Γar/σ
a
r ) on the maximum access time. Note

that Γar/σ
a
r = 2 for r = 1, · · · , R in the previous experiments. Since the

variation in the service times is quite low, its e�ect is not presented here.
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Figure 3.4: Regional outsourced, remaining capacities and maximum access times
in the network N(12, 40) when the budget is 300$

For this purpose, we solve the model with the network N(12, 40) for a wide

range of budget levels. We found that the problem is infeasible when the

budget is 200$. Figure 3.4 presents the maximum access times and the

outsourced/remaining capacity levels out of the available capacities in each

region when the budget is 300$. We see that the maximum waiting times

in the regions are almost equal to each other. This is possibly because the

budget is very tight which makes the capacity constraints redundant. In

this case, the heuristic optimizes the budget distribution in such a way that

the maximum waiting times in the regions are equal to each other.

Figure 3.5 shows the maximum access times obtained at di�erent levels of

budget and interarrival time variation for the network N(12, 40). The max-

imum access time does not have a linear relationship with the budget and

interarrival variation. Thus, increasing the budget more than a certain level

is not advantageous. Also, the maximum access time is very sensitive to the

changes in Γar/σ
a
r . As expected, the outsourced capacity levels increase when
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Figure 3.5: Maximum access time in the network N(12, 40) with varying budget
and Γar/σ

a
r levels

the budget and arrival variation are increased and decreased, respectively.

Analysis of an Audiology Outsourcing Network

To investigate how the heuristic performs with real data, we solve a real-life in-

stance obtained from the NHS audiology services network in the UK (Monitor,

2016). In this case, there are four regions, namely Essex, North durham, Hartle-

pool and Newcastle, as summarized in Table 3.6. We should note that the budget

and the capacities o�ered by the providers are not available in the online data

sources. Thus, we solve the model for a wide range of these parameters. However,

the numerical results indicate that the optimum capacity levels change slightly

for di�erent available capacity levels. Thus, we present the maximum access time

for only the available capacities given in Table 3.6. In order to show impact of

future demand realisations (as possible changes of population dynamics) on the

capacity planning strategies of the audiology services, we consider four demand
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patterns where the original patient arrival rates (in Table 3.6) are increased by

25% and 50%, and decreased by 25%.

Table 3.6: Real data obtained from the NHS audiology network

Regions
Number of Price (¿) Patient arrival Maximum Ratio C/λ
Providers per day (λ) Capacity (C)

Essex 2 294 1.35 10 7.4
N. Durham 13 283 3.38 36 10.65
Hartlepool 6 283 2.9 21 7.24
Newcastle 9 283 2.74 18 6.56

The experiments show that when the budget constraint is not too tight, in

one of the regions, all available capacity is contracted and some available capacity

is left over in the others. This bottleneck region identi�es the maximum access time

within the whole network. Thus, in such a case, the maximum access time within

a network can only be decreased by improving the performance in the bottleneck

region. For this, the bottleneck region should be �rst identi�ed from the available

data. One intuitive way of identifying the bottleneck region is dividing total

available capacity (C) with the total arrival rate (λ) in all regions. The last column

of Table 3.6 shows this ratio for the regions in the NHS Audiology network. The

results show that although Newcastle has the smallest C/λ, the bottleneck region

is Essex. This counter-intuitive result is possibly due to the number of providers

in regions that a�ect the dispersion of the arrival variation among the providers.

Figure 3.6 shows the maximum access times in di�erent budget and arrival

levels. When the budget is lower than ¿12150 and ¿11150 and the arrivals are

increased by 25% and 50% than the original, respectively, the problem becomes

infeasible (shown as blank sections in the graph). According to the NHS statistics,

95% of the patients wait at least 8 weeks for the audiology service in these regions

(NHS UK, 2016). Figure 3.6 shows that the current maximum waiting time may

be reduced signi�cantly if the budget is increased to ¿12150. However, when the

budget is larger than ¿12150, the maximum access time within the network does

106



Budget (£)
10150 11150 12150 13150 14150 15150 16150

M
ax

im
um

 w
ai

tin
g 

tim
e 

(w
ee

ks
)

0

50

100

150

200

250

300

25% decreased arrival
Normal arrival
25% increased arrival
50% increased arrival

Figure 3.6: Maximum access time for the Audiology outsourcing network with
varying budget and patient arrival rates

not change signi�cantly. As the budget is increased to ¿16150, the maximum

access time is not a�ected signi�cantly by an increase in the patient arrivals.

Also we see that the maximum access time does not vary much when the arrivals

are decreased by 25% from the original and the budget is larger than ¿12150.

3.6 Conclusions

Outsourcing has been increasing within the healthcare sector mainly due to the

increasing demand for more cost-e�ective services. This increase results in health-

care outsourcing networks in which several providers share a patient population

based on contractual relationships. This chapter focuses on the strategic capacity

planning problem in a healthcare outsourcing network. We consider a health au-

thority which buys healthcare services from available providers based on a �xed

price. The authority has a limited budget to be used for the contracts.

We develop a mathematical model to �nd the optimum capacities to out-
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source from each provider. A robust queuing approach is used to approximate

the maximum access time in the providers. The resulting model is intractable

due to the non-linear and integer formulations. To solve the problem, we pro-

pose an alternating optimization based heuristic combined with bisection search.

The computational experiments show that the heuristic performs better than the

available commercial solvers, especially when the budget is tight. The sensitivity

analysis reveals that it is more advantageous to identify larger regions with more

number of providers rather than the smaller ones. Also, de�ning the budget for

a smaller network with less providers and regions results in a higher maximum

access time. The computational experiments with the real data show that the

current waiting times for the NHS Audiology services can be reduced.

The developed model and solution method can be applied to several health-

care services such as surgery or imaging services. Besides, although the model

is developed for healthcare outsourcing, it can be applied to any kind of service

outsourcing network, with slight modi�cations if needed. As future work, the

shortcomings of some assumptions used in modelling of the problem can be stud-

ied. For instance, in the current model, the contract prices between the providers

and the central authority are �xed. On the other hand, the negotiations between

the providers and the central authority can be studied by using a game-theoretic

approach. Another possible extension is to consider the e�ect of patient choice

during the referral on the overall performance. This would require to add choice

models onto the original capacity planning study. In the future work, contract

types in terms of payment structures such as activity-based or hybrid payment

systems can be included into the decision making process.
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Chapter 4

Real-time Surgery Planning under

Uncertainty in Surgery Suite

4.1 Introduction

A surgery suite can be seen as the engine of a hospital. Surgeries generate around

40 per cent of the revenues in the UK hospitals (HFMA, 2005). They are among

the most pro�table healthcare services, with prices of up to a hundred thousand

pounds (Carey et al., 2011). Surgeries also account for the majority of hospitals'

operational capacity (Macario et al., 1995). They consume a signi�cant amount of

physical resources, such as beds and equipment, as well as human resources with

di�erent levels of expertise. Given its impact on the revenue and resource usage,

surgery management is one of the most crucial tasks for healthcare professionals.

However, a recent study indicates that the current management practices are

not able to reach the performance targets such as average time to get service

(Department of Health, 2016).

Surgery management involves four major decision-making stages: strategic

case-mix planning, development of a master surgery schedule, scheduling of indi-
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vidual elective cases and reactive surgery scheduling. The strategic case-mix plan-

ning identi�es the surgical blocks i.e. how the available time in operating rooms'

(ORs) is distributed among di�erent specialities (for instance, see Yahia et al.

(2015)). The second stage, also called master surgery scheduling, consists of the

assignment of surgical specialities to surgical blocks over the scheduling horizon

(typically one week) in order to maximize the resource utilization (for instance,

see Beliën et al. (2007)). The third stage, which has been most widely studied,

involves the assignment of speci�c surgeries directly to the surgery blocks identi-

�ed in the previous step. Reactive surgery scheduling, the last stage of surgery

management, is de�ned as the real-time management and revision of surgery suite

schedules as disruptions such as non-elective admissions occur (for instance, see

Stuart and Kozan (2012)). Readers are referred to Erdogan et al. (2011) for more

details of the decision-making stages in surgery management.

The last two stages of surgery management involve o�ine and online (real-

time) tasks, depending on whether the patient is elective or non-elective. A non-

elective and elective patients are simply referred as `non-elective' and `elective',

respectively, throughout the chapter. Elective surgeries, which constitute most

of the demand, are scheduled days or weeks ahead. There are di�erent rules

to sequence elective surgeries such as the longest surgery �rst and the shortest

surgery �rst in which the surgeries are ordered according to the descending or

ascending expected duration, respectively. More sophisticated sequencing rules

can be listed as longest waiting time, earliest start time and latest start time.

This chapter is not concerned with the elective surgery scheduling; readers are

referred to Guerriero and Guido (2011) for a detailed review of elective surgery

scheduling.

In reactive surgery scheduling, various types of disruptions such as patient

no-shows or the sta� unavailability need to be considered. The most crucial one of
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these disruptions can be observed on the non-elective arrivals and the variations in

surgery durations (Van Riet & Demeulemeester, 2015). Besides, the realization

time of the disruptions and possible e�ects are not known in advance. Thus,

the reactive surgery scheduling requires a real-time decision-making process in a

very short time by considering many criteria such as costs, and patient and sta�

satisfaction. Most importantly, the decisions made at any time may a�ect the

future schedules signi�cantly.

In order to handle these kinds of disruptions, hospitals in general develop

two main strategies (Van Riet & Demeulemeester, 2015). In the �rst approach,

non-electives are treated separately from the scheduled cases by reserving dedi-

cated room(s) based on the predicted demand. However, this results in an in-

e�cient schedule due to the uncertainty in non-elective arrivals (Van Riet &

Demeulemeester, 2015). For example, when there is no non-elective arrival, this

strategy may result in revenue losses since the dedicated rooms and medical sta�

have to stay idle. The other strategy accommodates the non-electives by allowing

sta� overtime and cancellation of electives in a reactive fashion (e.g. see Ozkara-

han, 2000; Blake et al., 2002). This (online) approach brings patient discontent

and extra cost due to cancellations and overtime (Hosseini, 2012). However,

Wullink et al. (2007) showed that the online approach usually results in a better

performance in terms of waiting time, sta� overtime, and OR utilization. This

chapter focuses on decision-making problems encountered in the online approach.

Recently, two approaches are combined in some hospitals (Van Riet & Demeule-

meester, 2015). In this so-called hybrid approach, some bu�ers are left within

the elective schedules to accommodate the non-electives (Van Riet & Demeule-

meester, 2015).

The online approach requires to take critical interdependent decisions through-
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out a day. At the beginning of a typical work day, the schedule of elective surgeries

in a surgery suite for that day is usually ready. Each elective/non-elective surgery

is associated with an estimated duration (number of required time slots). As the

surgeries are carried out, non-electives in di�erent health conditions arrive ran-

domly to the hospital. In particular, when a non-elective arrives, the responsible

sta� of the hospital must decide whether or not to accept the patient and as-

sign him/her to one of the operating rooms. Since non-electives usually require

urgent treatment, accepting a non-elective may lead to the postponement of pre-

scheduled surgeries. On the other hand, the delays in the scheduled start times

may result in the deterioration of their health conditions. In addition to this,

hospitals are generally concerned with the extra sta� overtime and consequently

the additional cost. Besides, the last surgery in a day need to be completed by

the end of shift time at that day (i.e. 24 hours). If the completion time of the

last surgery exceeds the planning horizon, the decision maker may also cancel

some electives. Cancellations do not only create anger and discontent for elective

patients (Scho�eld et al., 2005), but also impact on the future schedules. Due

to its e�ect on the cancellations and overtime, the acceptance of a non-elective

is a dynamic decision and should consider all future possibilities. According to

the NHS statistics, 20,464 elective surgeries were cancelled at the last minute by

English hospitals at the last quarter of 2014/15 (NHS, 2014). Moreover, 3,567

emergency patients were rejected from the same hospitals in 2014. The main rea-

son for these cancellations and rejections was capacity shortages (Campbell and

Arnett, 2015).

Due to the uncertain and dynamic nature of the surgeries, as well as various

criteria such as overtime, cancellations and rejections, the real-time management

of a surgery suite is a challenging and important decision-making process for

hospitals. Moreover, hospital managers are under the pressure of reducing patient
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dissatisfaction and operational costs. This complex process requires an elaborate

mathematical approach. However, the literature related to the real-time surgery

management is scarce (Van Riet & Demeulemeester, 2015). The related studies

lack the comprehensive analysis of all relevant uncertainties and criteria which

are crucial to obtain rigorous solutions. Also, the evolving and dynamic nature of

the real-time surgery management is overlooked in most of the papers. Thus, this

research aims to �ll this gap and �nd an optimum policy to manage non-elective

arrivals, such that patient satisfaction is maximised while overall operational costs

are minimised. For this purpose, we develop a stochastic dynamic programming

model of the real-time surgery management problem. Due to the problem size,

it is computationally intractable to �nd exact solutions for practical instances.

For such cases, approximate dynamic programming (ADP) is used. The policies

obtained through ADP are then compared with a myopic approach for di�erent

cost schemes. Finally, we investigate the e�ect of di�erent elective scheduling

strategies on the overall cost by using generated data inspired from real data.

The remainder of this chapter is organised as follows. Section 4.2 presents

a literature review of the real-time surgery management problem and ADP appli-

cations in healthcare. Section 4.3 �rst describes the underlying problem in more

detail and then introduces a stochastic dynamic programming model for the daily

management of a surgery suite. We extend the model by considering the uncer-

tainty in surgery durations and multiple surgery rooms. Section 4.4 explains the

solution approach, ADP, in more detail. Section 4.5 presents the design as well

as the �ndings of the computational experiments.
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4.2 Literature Review

The Operations Research community has conducted extensive studies for various

strategic and tactical decisions as well as o�ine and online approaches arising

within the surgery management (Cardoen et al., 2010). However, the studies on

the real-time surgery management is limited. In this section, �rst, we review

the literature on the real-time surgery management. This is then followed by an

examination of the ADP applications in healthcare.

4.2.1 Modelling of Real-time Surgery Planning Problem

The closest task to surgery planning is that of appointments. However, appoint-

ment management is not as complex as the real-time surgery management since

there are no signi�cant disruptions to appointments such as random non-elective

arrivals or task durations (Gupta and Denton, 2008). Thus, the research related

to the appointment management is not included in this review.

A real-time production scheduling problem in manufacturing has been

widely studied by many researchers (Billaut and Roubellat, 1996; Wu et al., 1999;

Aloulou and Portmann, 2003). However, the nature of the healthcare service i.e.

involving the lifes of patients as well as signi�cant operational uncertainties such

as surgery durations, distinguishes the healthcare applications of real-time man-

agement from those in manufacturing area.

Real-time surgery management has not received enough attention in the lit-

erature, as supported by Erdogan et al., (2011), Guerriero and Guido (2011) and

Van Riet and Demeulemeester (2015). Table 4.1 summarises previous research on

the real-time surgery management. The related papers have considered various

performance measures such as overtime and patient-related costs including those

of cancellation and rejection; however, none has studied all measures together.
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Given their e�ects on decision making, these measures should be considered to-

gether for a more rigorous analysis (Van Riet and Demeulemeester, 2015). Sim-

ilarly, although many authors have considered the uncertainty either in surgery

durations or non-elective arrivals, only Hosseini (2012) and Borgman (2017) has

considered both of them together. Two-stage stochastic programming has been

used to model these uncertainties (Batun, 2011; Zhang et al., 2013; Heydari and

Saoudi, 2016). In this method, the �rst-stage decisions are taken before the re-

alisation of uncertainty. After the uncertainty has unfolded, the second-stage

decisions, or so-called recourse decisions, are taken to adjust the earlier decisions.

However, the uncertainties a�ecting the real-time surgery management, namely

the non-elective arrivals and surgery durations, are revealed throughout the day,

not only once a day. Therefore, stochastic dynamic programming, which models

multi-stage stochastic decision-making problems, is a more suitable technique for

modelling of the real-time surgery management problem.

In the real-time surgery management, analytical approaches can be applied

each time when there is a disruption to the schedule (reactively) or to derive an

optimum policy consisting of the optimum action for each possible case (proac-

tively). Reactive decision-making models for real-time surgery management are

developed by Stuart and Kozan (2012), Van Essen et al. (2012), Duma and

Aringhieri (2015) and Erdem et al., (2012). Stuart and Kozan (2012) focus on

the reactive surgery scheduling problem as random non-elective arrivals occur.

They model the problem as a single machine scheduling problem with sequence

dependent processing times and due dates by including the priorities of elective

and non-elective cases. Two con�icting objectives considered in the paper are

to maximise the number of non-electives inserted into the schedule and to min-

imise the number of cancelled electives. They assume that surgery durations are

sequence-dependent and follow independent log-normal distributions. The opti-
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mization model is solved by an exact method, the branch-and-bound algorithm,

which produces a list of surgeries that are expected to be late.

Due to the computational di�culties in reactive surgery scheduling prob-

lem (Van Essen et al. 2012), several authors (Van Essen et al. 2012; Duma and

Aringhieri, 2015; Erdem et al., 2012) have developed approximate solution meth-

ods. Van Essen et al. (2012) model a reactive surgery scheduling problem as an

integer linear program to minimise the deviances from stakeholders' preferences.

Their model can be used as a decision support system to determine a new elec-

tive surgery schedule in case of a disruption. They show that the reactive surgery

scheduling problem for multiple rooms is NP-hard. Unlike us, they assume that

non-elective patients are always accepted for the operation. Similarly, Erdem

et al. (2012) construct a deterministic mixed-integer linear programming model

that reschedules elective patients to the operation and post-anaesthesia clinical

care units when a non-elective patient arrives. They assume that non-elective pa-

tients may be rejected or accepted. The objective function consists of the costs of

postponing electives and rejecting non-electives, whereas it disregards the cost of

overtime. They use a genetic algorithm to obtain approximate solutions for real-

sized instances. Simulation is another approximate technique used for reactive

surgery scheduling (Duma and Aringhieri, 2015).
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Table 4.1: A classi�cation of the research papers on real-time surgery management
Research papers Modelling Decisions Uncertainty Costs Solution Method

IP TS MDP Reject Cancel Assign Arrival Duration OR & Sta� Patient-related Exact Heuristic
Batun (2011) X X X X X X
Hosseini (2012) X X X X X X
Stuart & Kozan (2012) X X X X X X
Erdem et al.(2012) X X X X X
VanEssen et al. (2012) X X X X X
Zhang et al.(2013) X X X X X X
Duma & Aringhieri (2015) Simulation X X X X X
Addis et al. (2016) X X X X X
Heydari & Saoudi (2016) X X X X X
Our approach X X X X X X X X X X
*IP: Integer programming, *TS: Two-stage stochastic programming, *MDP: Markov Decision Process
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The reactive decision-making approach ignores the dynamic nature of the

real-time surgery management problem. Therefore, several authors (Zhang et

al., 2014; Heydari and Saoudi, 2016) have considered the proactive modelling

approach in which all uncertainties and multiple stages of decision-making are

included to obtain a proactive policy. For example, Zhang et al. (2014) are

concerned with the dynamic assignment of surgeries to multi-rooms. They develop

a two-stage stochastic programming model which identi�es the next surgery to

assign to any room that is currently available. However, they do not consider the

non-elective arrivals and the disruptions in the schedule related to these arrivals.

The random non-elective arrivals are considered in Heydari and Saoudi (2016)

who develop a two-stage stochastic model that reschedules the surgeries upon the

arrival of an emergency. They do not model the operational decisions such as

cancellation of electives or rejection of non-electives, i.e. they assume that non-

elective surgeries are always accepted. Borgman (2017) also considers a simulation

approach to evaluate di�erent non-elective surgery management strategies such

as dedicating emergency rooms or combining electives and non-electives. On the

other hand, the acceptance or rejection of non-elective patients is not considered

in this analysis.

Considering the dynamic nature of the real-time surgery management prob-

lem, the current literature lags behind in terms of the methodologies considered.

Although stochastic dynamic programming has been widely applied to model

di�erent stages of surgery management such as case-mix planning and elective

surgery scheduling (Min and Yih, 2014; Gerchak et al., 1996; Lamiri et al., 2008),

only Hosseini (2012) has used it for the real-time surgery management. The

author models two FCFS queues for the elective and non-elective surgeries sepa-

rately. The surgeries are assumed to have a random service duration. A Markov

decision process (MDP) model is developed to minimise the system-wide, long-

118



run average costs relating to patient allocations. The state space consists of the

length of queues and operating room idleness while the action space consists of

assigning a room to a patient from either queue.

Several tactical and strategic decisions regarding the surgery management

i.e. number of surgery rooms, number of hours in a shift, etc. can be incorporated

with the modelling of operational decisions in real-time surgery management, such

as cancellations, rejections and scheduling. For example, Batun (2011) consid-

ers the surgery rescheduling problem in a surgery suite. The author develops a

two-stage stochastic formulation in which the �rst-stage decision is to determine

the number of operating rooms to open in a day while the second-stage decision

is to reschedule surgeries in the middle of the day. L-shaped decomposition and

progressive hedging algorithms are used to solve the two-stage stochastic mixed-

integer programming model. The algorithms solve each scenario sub-problem

independently and enforce the non-anticipativity constraints progressively. How-

ever, the author assumes that rescheduling happens only once a day, which is not

applicable to most cases.

Instead of modelling real-time surgery management decisions for a short

planning period like a day, a longer planning horizon may also be considered as

in Addis et al. (2016). Speci�cally, they study a rolling-horizon elective surgery

scheduling problem. In the �rst step, the optimal schedule for several weeks is

found by solving an integer linear programming model. After the �rst week is

implemented, they re-optimise the schedule by adding new arrivals and cancella-

tions from the previous week. They also employ a robust optimization approach

and develop uncertainty sets around the surgery arrivals.

We develop a stochastic dynamic programming model for the real-time

surgery management problem for multiple surgery rooms during a day. Unlike the

related models in the literature, our model takes into account dynamic actions,
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uncertainties on non-elective arrivals and surgery durations as well as di�erent

criteria such as non-elective rejections, overtime, elective cancellations and waiting

time. However, the resulting model has a large state space and thus, the real-

sized instances are not solvable in reasonable time with the exact solvers. For this

reason, we develop an approximate solution approach based on ADP, a solution

framework suitable for large size stochastic dynamic programming formulations.

We design a series of computational experiments to illustrate the performance

of the ADP algorithm. The numerical results show that the proposed algorithm

provides a good approximation to optimum policy. Moreover, we compare the

performances of the ADP algorithm and a myopic heuristic for di�erent levels of

cost components. Finally, we investigate the impact of various surgery scheduling

rules on the overall operational cost.

4.2.2 Approximate Dynamic Programming for Healthcare

Applications

ADP is a very popular approximation technique to solve large dynamic program-

ming problems encountered in many real-life problems. For example, it has been

applied to resource planning (Erdelyi and Topaloglu, 2010; Schütz and Kolisch,

2011), inventory control (Simao and Powell, 2009; Roy et al., 1997), inventory

routing (Adelman, 2004), option pricing (Tsitsiklis and van Roy, 2001), game

playing (Yan et al., 2004), revenue management (Adelman, 2007) and transporta-

tion (Topaloglu and Powell, 2006). Healthcare related strategic and operational

problems, such as resource allocation and patient scheduling in particular, have

also been active application areas of ADP.

Linear programming based ADP is used by several authors to solve the

patient scheduling problem (Patrick et al., 2008; Gocgun and Puterman, 2014;

Barz and Rajarm, 2015). In these papers, further reduction techniques such as
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column generation are employed to solve the resulting linear programming formu-

lations (Patrick et al. 2008; Saure et al., 2012; Gocgun and Puterman 2014). For

example, Barz and Rajarm (2015) solve the elective patient admission/scheduling

and resource usage problem with a linear programming based ADP. They assume

that emergency patients use some of the capacity reserved for elective patients,

and that patients' health conditions follow a random trajectory. They consider

three types of cost: overtime, loss of patient goodwill, and inferior care. However,

the resulting approximate linear problem is still computationally expensive and

requires relaxation to be solved.

Due to the computational di�culties encountered in linear programming

based ADP, simulation based ADP methods have been preferred by several au-

thors to solve the patient scheduling problem (e.g. Hulshof et al. (2013), Lin et

al., (2011)). Among the simulation based methods, basis function approximation

has been used by Hulshof et al. (2013), while state aggregation is preferred by Lin

et al. (2011). Speci�cally, Hulshof et al. (2013) model elective patient admissions

and intermediate-term resource allocation in hospitals under uncertain treatment

paths and patient arrivals. The state space consists of the number of patients

waiting in the service queues and their waiting times. At each epoch, the decision

maker must decide on the number of patients to treat from each queue. The total

cost depends on the patients' waiting time. The computational experiments show

that a basis function based ADP algorithm with value iteration performs better

than two other heuristics. Lin et al. (2011) develop an MDP model for a sequen-

tial scheduling problem to optimise the performance of a clinic in the presence

of overbooking and no showing up of patients. They divide the call-in period

into discrete time intervals, such that the scheduler can handle no more than one

call within an interval. The action set is composed of scheduling a patient to a

future day or transferring the request to another day. The model is solved by a
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simulation based ADP in large instances.

ADP is especially useful for large size healthcare problems such as am-

bulance redeployment and scheduling problem (Maxwell et al., 2010; Schmid,

2012) which may even have in�nite state spaces. Schmid (2012) solves the am-

bulance relocation and dispatching problem by introducing a simulation based

ADP method. The decision-maker needs to identify which ambulance to send

to an incoming call and where to locate this ambulance after it has left the pa-

tient. The time unit between two epochs is assumed to be constant, although

the time of the triggering event (arrival of a request) is random. In other words,

requests arriving during a period are kept in a waiting list and served in the next

decision epoch. They aggregate the elements of state to overcome the computa-

tional di�culties. Maxwell et al. (2010) claim that the state aggregation may

result in multiple optimum actions, instead, they develop a basis function based

ADP to solve the ambulance redeployment problem. Speci�cally, they develop an

event-driven model to establish where to redeploy idle ambulances to maximise

the number of calls served within a certain threshold.

Other than patient and ambulance scheduling, ADP has been applied to

solve medical decision making problems (Mason, 2012). Mason (2012) develops

two MDP models to prevent adverse events and to determine the optimum timing

of adherence-improving interventions after a treatment is started. The author

develops lookup table and basis function based ADP algorithms and compares

their computational performances.

Our review shows that, considering the computational di�culties encoun-

tered in the real-sized healthcare problems, the number of ADP applications in

this area is very limited. Also, it has not been used to solve a real-time surgery

management problem. Thus, one of our contributions in this chapter is to im-

plement a tailored ADP algorithm to solve the real-time surgery management
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problem. The next section describes the underlying problem in more detail and

provides a stochastic dynamic programming formulation.

4.3 Stochastic Dynamic Programming Model for

Real-time Operating Room Planning

In this section, we present a stochastic dynamic programming model for the real-

time management of the surgery schedule of single operating room in the pres-

ence of random non-elective arrivals. We consider one day planning horizon. The

surgery room is well equipped to serve di�erent types of surgeries such as or-

thopaedic or heart operations. For each surgery type, the expected duration has

been estimated in terms of the number of required time slots where one time slot

is equal to half an hour. In the start of the day, the initial schedule of the surgery

room is available to the decision-maker e.g. a surgery suite manager. We assume

that, during the day, non-elective patients arrive randomly.

In particular, when a non-elective patient arrives, the surgery suite manager

needs to make a rapid decision on either rejecting or accepting the patient for

the surgery at that day. We are especially concerned with the patients who

need an urgent treatment. Moreover, the rejection of a non-elective causes loss

of potential pro�t that could have been obtained from this surgery if s/he was

accepted. If the patient is accepted, the scheduled surgeries may face delay, since

non-elective surgeries are usually more urgent than electives. Delays may cause in

the deterioration of patients' health as well as patient discontent and a decrease

in resource utilization. Sta� overtime, that counts for the work-hours after a �xed

time threshold (overtime threshold), may be used to accommodate the extended

shifts, which also entails additional costs. However, in any case, the last surgery

scheduled to the room must be completed before a certain time limit. When the
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expected completion time exceeds the time limit, some of the scheduled surgeries

need to be cancelled with a certain cost. In summary, the delays due to the

admission of non-electives are re�ected in the model as a source of cost. On the

other hand, rejection of non-electives are represented by an opportunity cost. The

model aims to minimize total costs of cancellation, rejection, overtime and delays

in view of the resource limitations.

Since elective patients are advised to arrive to the hospital long before the

scheduled surgery time, the delays in the starting time of elective surgeries are

usually negligible. Similarly, even though an elective patient does not show up

on the surgery day, the next surgery starts on time as initially scheduled. This

is because the surgery crew for the next surgery may be busy until the scheduled

starting time of this surgery.

4.3.1 Real-time Operating Room Planning Model under

Deterministic Surgery Duration

In this section, we introduce the formulation of a real-time operating room plan-

ning problem. The following assumptions are made for the development of the

mathematical model.

• We assume that non-elective patients have priority to be scheduled over

elective ones. In other words, if a non-elective patient is accepted, then

s/he will be operated as soon as the current surgery in the operating room

is �nished. Consequently, the starting times of the scheduled semi-urgent

surgeries are delayed (Van Riet and Demeulemeester, 2015).

• The duration of a surgery covers the time taken from the initial preparation

of the operating room for the current patient until the preparation of the

surgery room for the next patient. We initially assume that the durations

124



of all types of surgeries are certain and known in advance. However, in the

next section, this assumption is relaxed to take uncertain surgery durations

into account for modelling the real-time surgery management problem.

• The overtime cost (refers to the cost of sta� working overtime) linearly

depends on the overtime incurred (Talluri et al., 2006). Note that the other

types of costs such as cancellation and rejection are based on per surgery

rather than the duration of surgeries.

• Non-elective patients arriving after the overtime threshold are not consid-

ered since the acceptance/rejection of these non-electives usually depends

on whether the room is empty or not; if the room is empty, then the non-

elective is accepted.

The surgery types are classi�ed intoM groups, represented bym = 1, · · · ,M .

Each surgery type is associated with an expected surgery duration denoted by dm.

The planning horizon is considered as one day and discretized into T time points

(so called as decision epochs) represented with t = 1, · · · , T . The time between

decision epochs t−1 and t is called as time period t for t = 1, · · · , T . Note that a

period is the time interval when a non-elective patient may arrive. On the other

hand, a decision epoch represents the time point where a decision is made. We

assume that an equal duration length ∆ is used for all time periods and selected

by the modeller in a way that there will be at most one non-elective arrival during

∆, e.g. 15 minutes. The �nal epoch T represents the overtime threshold where

the overtime cost starts to incur. No action is taken on and after epoch T . In

other words, we assume that the surgery schedule does not change after the over-

time threshold. Although a non-elective patient arrives any time during period

t, a decision on his/her acceptance or rejection is made at decision epoch t. The

overall time limit that the last surgery should be completed is denoted by Tmax.
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The cost of cancelling a surgery is assumed to be the same for all surgeries

and shown with θc. On the other hand, θm represents the cost of rejecting a

non-elective patient with type m for m = 1, · · · ,M . This is considered as an

opportunity loss that depends on surgery type m.

Suppose that e number of surgeries are initially scheduled to the operating

room for a speci�c day. Since there can be at most one non-elective arrival during

a time period, the operating room can serve at most (e+ T − 1) surgeries during

the day. Let's represent (e + T − 1) with I and a surgery with i = 1, · · · , I.

Note that indices i = 1, · · · , e correspond to the pre-scheduled electives. Thus,

reasonably, a non-elective accepted for an operation at time t can be assigned to

index i = e + t. To formulate this assignment, we introduce a binary parameter

zti taking 1 at time t if i = e+ t and 0, otherwise,

zti =


1, if i = e+ t,

0, otherwise.

The use of parameter zti will become more clear shortly. Next, we will describe

a mathematical programming formulation of the real-time surgery management

problem in terms of states and actions.

States: At the beginning of epoch t (before any decision is taken), the

following information regarding the state of the system is available to the decision-

maker:

• Let vector Ct = (Ct
1, · · · , Ct

I) ∈ {0, · · · , Tmax} de�ne the completion times

of surgeries i = 1, · · · , I, where C0
i = 0 for i = e + 1, · · · , I. If surgery i is

cancelled at epoch t′, then Ct
i = 0 for t = t′, · · · , T . We assume that the

surgery with completion time t �nishes during epoch t before any decision is

made in this epoch, but after the state information is accrued. For example,
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if C2
1 = 2, then surgery i = 1 will be �nished before a decision is made for

the non-elective arriving during period 2 (if there is any). Note that the

completion time list is not necessarily in an increasing order.

• The type of the non-elective arrived during time period t is denoted by

mt ∈ {1, · · · ,M} for t = 1, · · · , T . The expected duration of this non-

elective is represented with dmt ∈ {0, · · · , dmax}, where dmax is the maxi-

mum possible duration that a non-elective can have. It is also possible that

there is not any non-elective arrival in this period which corresponds to

dmt = 0.

In view of all information, we denote a state space (Ct,mt) consisting of comple-

tion times of surgeries and the type of non-elective arrival.

Actions: The binary decision variable xt at epoch t shows whether we

accept a non-elective (if there is any) arrival during period t (xt = 1) or not

(xt = 0).

The order of the activities during decision epoch t can be summarized as

follows. First, the decision maker learns the type of (any) non-elective arrival.

Second, the surgery that has completion time t (if any) �nishes or not. Third, the

decision maker accepts (any) non-elective arrival in period t or not on the basis

of the current state information. Finally, if there is any surgery �nishing in the

current epoch, then the next surgery (if any) starts.

Update in state space: At the end of each decision epoch t, the comple-

tion times of all surgeries need to be updated according to action xt and the type

of the non-elective arrivalmt. In other words, the completion times in t+1 depend

on information about xt,Ct, and mt and, thus, denoted by Ct+1(Ct, xt,mt). If

the non-elective arrived during the last period t is rejected (xt = 0), then the com-

pletion times of the surgeries accepted so far do not change. When a non-elective

arrival is accepted (xt = 1), then the following updates take place:
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(a) The surgery of the accepted non-elective has given a priority in the waiting list

due to emergency of the patient's medical condition. Thus, the completion times

of the waiting surgeries are increased by the expected duration of the non-elective,

dmt . For this, we �rst need to identify the uncompleted surgeries at period t by

checking whether its completion time is larger than the current period or not.

Let's de�ne binary variable ati taking 1, if the completion time of surgery i is

larger than or equal to t and 0, otherwise,

ati =


1, if Ct

i ≥ t,

0, otherwise.

(4.1)

(b) A completion time should be assigned to the accepted non-elective patients.

To formulate this, we follow a two-step procedure. In the �rst step, we compute

the operation starting time for this surgery. Let's represent the starting time

of the operation for the non-elective with Kt ∈ {0, · · · , Tmax}. If there is any

surgery under operation at period t, then the starting time of the non-elective,

Kt, is equal to the completion time of the ongoing surgery. If no surgery is in

progress, it is simply equal to the current epoch t.

In the second step, we determine the completion time of the surgery under

operation by identifying its indice. For this purpose, we de�ne bti that is equal to

1 if surgery i is currently served in the room at time t; 0, otherwise. Note that

the surgery under operation at epoch t always has the smallest completion time

among the uncompleted surgeries (i|ati = 1):

bti =


1, if Ct

i = min
k∈{1,··· ,I}

{Ct
k|atk = 1},

0, otherwise.

(4.2)

Then, we can formulate the starting time of the accepted non-elective surgery,
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Kt, as follows:

Kt =
I∑
i=1

Ct
i b
t
i + t

(
1−

∑
i

bti

)
, t = 1, · · · , T − 1. (4.3)

The �rst term in (4.3) computes the completion time of the surgery under op-

eration at epoch t. The second term ensures that if the surgery room is idle at

time t, then the operation of the non-elective patient admitted at period t starts

immediately.

(c) When the overall completion time exceeds the daily time limit, Tmax, the

surgeries from the end of the list should be cancelled. In other words, their

completion times should be assigned to 0. In order to achieve this, we �rst

need to formulate (a) and (b) as described above and compute the (temporary)

completion times represented with Ct+1,y
i ∈ {0, · · · , Tmax + dmax} for i = 1, · · · , I

and t = 1, · · · , T − 1. We can then check whether the latest completion time is

larger than the time limit or not. In other words, Ct+1,y
i displays the updated

completion times before the cancellations and can be formulated as follows:

Ct+1,y
i =

(
1− (ati − bti)

)
Ct
i + (ati − bti)

[
Ct
i + xtdmt

]
+ xtzti

[
dmt +Kt

]
,

i = 1, · · · , I, t = 1, · · · , T − 1. (4.4)

Note that the �rst term ensures that the completion times of the completed

surgeries do not change while the second one delays the completion times of

the waiting surgeries and the last term assigns a completion time to the non-

elective (if accepted).

Finally, we identify the surgeries with a completion time larger than the

time limit. Therefore, we de�ne a new binary variable jti taking 1 if the completion
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time of i is larger than Tmax; 0, otherwise:

jti =


1, if Ct+1,y

i > Tmax, i = 1, · · · , I, t = 1, · · · , T − 1,

0, otherwise.

(4.5)

Then, we obtain

Ct+1
i = Ct+1,y

i (1− jti), i = 1, · · · , I, t = 1, · · · , T − 1. (4.6)

To facilitate the explanation of the model, we present a timeline of the decision-

making process along with the corresponding model notation in Figure 4.1.

Figure 4.1: A description of the decision-making process along with notation

Costs: The immediate cost of action xt consists of the costs of rejecting, can-

celling and waiting of surgeries at time t and is computed as follows:

η(Ct, xt,mt) = θm
t
[
1− xt

]
+ θc

I∑
i=1

jti + θwxt
I∑
i=1

(ati − bti − jti )dmt , t = 1, · · · , T − 1,

(4.7)

where θm, θc, and, θw denote, respectively, the unit cost of rejecting a surgery
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with type m, and cancelling and waiting a surgery.

Given a list of completion times in the beginning of the day, C0, the ob-

jective is to minimize the value function at epoch t = 0 which can be written as

v0(C0) =
M∑
m=1

Pr(m̃1 = m)v1(C1,m). (4.8)

Note that at epoch t = 0, there is no non-elective arrival. Thus, no action is

taken and consequently the completion times of the surgeries in the list remain

the same: that is C0 = C1. In other words, the computation of the value of

the initial state is not a�ected by the decisions, but still presented for the sake

of clarity. Given state (Ct,mt) at time t, the value function, vt(Ct,mt), can be

formulated in a recursive form as follows:

vt(C
t,mt) = min

xt∈{0,1}

{
η(xt,Ct,mt) +

M∑
m=1

Pr(m̃t+1 = m)vt+1(Ct+1(xt,Ct,mt),m)
}
,

t = 1, · · · , T − 1. (4.9)

Note that the value function for period t = 0 is di�erent than the value function

for t = 1, · · · , T − 1. For any state (Ct,mt), the value function computes the

optimum action that minimizes the overall expected cost. The expected cost of

each action (acceptance or rejection of a non-elective surgery) is computed as the

sum of the immediate cost of the action and the expected future cost after one

period assuming that the corresponding action is taken. Note that, at epoch t,

the type of the non-elective arrival, m̃t+1, at the next period t + 1 is not known.

The expected cost after one period for each non-elective type is calculated as the

multiplication of the probability of type m non-elective arrival, Pr(m), with the

value function of the state vt+1(Ct+1(xt,Ct,mt),m) given that the corresponding

type of non-elective (m) arrived in the next period, t+ 1.

The value function in the �nal epoch T consists of only the overtime cost
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and is formulated as

vT (CT ) = θo max

{
max
i=1,··· ,I

{
CT
i

}
− T, 0

}
, (4.10)

where θo denotes the overtime cost of one time period. If the maximum comple-

tion time, max
i=1,··· ,I

{
CT
i

}
, is larger than the overtime threshold T , then the overtime

is de�ned as the di�erence between the maximum completion time and T . Oth-

erwise, there is no overtime surgery.

The optimum policy, consisting of the optimum action for each possible

state, can be found by using the traditional backward value iteration technique

(Boyan and Littman, 2000). This technique starts by calculating the values of

all possible �nal states and moves to previous time periods iteratively. At a

certain state (Ct,mt), for each xt ∈ {0, 1}, we conduct a set of operations to

�nd the optimum state value and action. First, the set of future states that

would be attained by the action xt is found by �rst computing Ct+1(Ct,mt, xt)

based on Equations (4.1), · · · , (4.6), and then combining it with all possible

mt+1 ∈ {1, · · · ,M}. Since Ct does not change for rejecting the non-elective (i.e.

xt = 0), it is enough to �nd the (next period) completion times for accepting the

non-elective (i.e. xt = 1). Then, the value of each future state is multiplied with

the probability of mt+1 and summed up to �nd the expected (future) cost. This

expected cost is aggregated with the immediate cost η(xt,Ct,mt) to compute the

overall cost of xt. Finally, the value of the state (Ct,mt) becomes as equal to the

minimum of the overall costs of two actions.
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4.3.2 Real-time Operating Room Planning Model under

Surgery Duration Uncertainty

In this section, we will extend the real-time surgery management model (pre-

sented in the previous section) by taking into account the uncertainty in surgery

durations. We assume that the duration of surgery type m = 1, · · · ,M follows

a probability distribution, Pr[m] with an expected value dm. The expected com-

pletion time C0 at t = 0 is initialized as the expected duration of the surgeries

of elective patients. We represent the overall duration and the type of surgery

under operation during period t as D̃t and mt, respectively.

Let's consider a surgery that is expected to be completed in the next epoch,

t + 1: that is Ct
i = t + 1. The decision-maker collects information from the

surgery crew whether the current surgery will be delayed or completed on time

as expected. Let δt denote whether there is any delay (δt = 1) or not (δt = 0)

in the surgery under operation at t. Note that the completion time is just an

estimation and not possible to know the real surgery duration until it is realized.

Thus, it is sensible to consider only one time period as the duration of delay. If

a delay occurs in the current period, then the decision-maker is informed again

in the next period whether the surgery will be completed or not. This process

continues until the surgery is completed. We make the following assumptions

regarding with the surgery duration uncertainty:

• Even if a surgery is �nished earlier than the initial expected duration, the

next surgery cannot start immediately due to pre-surgery operations. Also,

the surgery crew for the next surgery may be unavailable until the planned

start time. For this reason, we assume that the schedule remains the same

when a surgery is �nished earlier than expected. In other words, we do not

consider the cases where a surgery �nishes before its expected completion
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time.

• The uncertainty regarding with the delay of a surgery is revealed only when

it is expected to be completed in the next epoch, because the surgery du-

ration is realized only when it is �nished. The probability of delay in a

surgery depends on the duration passed since the surgery has started.

Since the probability of delay in a surgery depends on the type of the surgery,

we need to track the types of scheduled surgeries by inserting them into the state

de�nition. Let Qt
i ∈ {1, · · · ,M} represent the type of surgery i in epoch t and

Qt = (Qt
1, · · · , Qt

I) denote a vector of all surgeries at time t. In addition to the

list of surgery types, we need to track the information regarding the delay since it

a�ects the expected completion time list, and thus, the optimum action. We make

the following changes for the description of the MDP formulation with uncertain

surgery durations:

• System state at epoch t consists of (Ct,Qt,mt, δt), where δt denotes

whether there is a delay or not for the surgery in progress at period t.

• The type of surgery under operation at period t, mt, is identi�ed by using

information Qt, as mt =
∑I

i=1 b
t
iQ

t
i, that is used to identify the probability

of delay in the current surgery. Similar to the completion times, we need

to update the list of surgery types by inserting the type of the accepted

non-elective:

Qt+1
i = mtxtzti +Qt

i, i = 1, · · · , I, t = 1, · · · , T − 1. (4.11)

• In case of a delay, the completion times of the waiting surgeries should be
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increased by one period. Thus, Ct+1,y
i is reformulated as follows:

Ct+1,y
i =

[
1− (ati − bti)

]
Ct
i + btiδ

t + (ati − bti)
[
Ct
i + δt + xtdmt

]
+ xtzti [dmt +Kt + δt],

i = 1, · · · , I, t = 1, · · · , T − 1. (4.12)

• As mentioned before, the probability of delay on the surgery under opera-

tion in period t also depends on the duration passed since this surgery has

started. Let D
t ∈ {1, · · · , dmax} represent the time passed since the surgery

under operation at epoch t has started. D
t+1

is 1 if a surgery is �nished in

epoch t. However, when there is a delay, the duration of the current surgery

is increased by one period as D
t
+ 1:

D
t+1

=


D
t
+ 1, if bt+1

i = bti, i = 1, · · · , I,

1, otherwise.

(4.13)

This is due to the fact that when a surgery �nishes, the next one, i.e. the

surgery under operation for the next epoch, starts immediately. Then, the

probability of delay at period t can be de�ned as

Pr(δ̃t = 1) =


Pr

(
D̃t+1 > D

t
+ 1|D̃t ≥ D

t
)
, if D

t ≥ dmt − 1,

0, otherwise,

(4.14)

which is a discrete function since the surgery durations are de�ned as dis-

crete units.

Given an initial state (C0,Q0), the objective is to minimize the value
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function at epoch t = 0, which can be written as

v0(C0,Q0) =

M∑
m=1

Pr(m̃1 = m)
[(

1− Pr(δ̃1 = 1)
)
v1(C1,Q1,m, 0) + Pr(δ̃1 = 1)v1(C1,Q1,m, 1)

]
.

(4.15)

Finally, for t = 1, · · · , T − 1, the optimality equation (4.9) is reformulated as

follows:

vt(C
t,Qt,mt, δt) = min

xt∈{0,1}

{
M∑
m=1

Pr(m̃t+1 = m)E
[
vt+1

(
Ct+1,Qt+1,m, δ̃t+1

)
+ η(xt,Ct,mt)

]}
,

= min
xt∈{0,1}

{
M∑
m=1

Pr(m̃t+1 = m)
[

Pr
(
δ̃t+1 = 1

)
vt+1

(
Ct+1,Qt+1,m, 1

)
+
(
1− Pr

(
δ̃t+1 = 1

))
vt+1(Ct+1,Qt+1,m, 0) + η(xt,Ct,mt)

]}
. (4.16)

Note that we need to consider the possible delay in the current surgery when com-

puting the set of future states. Since the random variables representing the type

of new non-elective arrival and possible delay in the ongoing surgery are indepen-

dent, we can separate the probabilities of these two cases in order to calculate the

overall probability of having a possible future state. Because there are only two

possibilities regarding the delay in the current surgery, the future states in the

next period can be written explicitly as
(
Ct+1,Qt+1,m, 1

)
and

(
Ct+1,Qt+1,m, 0

)
for all possible surgery types m ∈ {1, · · · ,M}. The value function in the �nal

period remains the same as in (4.10):

vT (CT ) = θo max

{(
max
i=1,··· ,I

{
CT
i

}
− T

)
, 0

}
. (4.17)

The dynamic programming formulation of the surgery room planning problem

under uncertain surgery durations can be solved by using the backward value it-

eration, similar to the MDP formulation presented in the previous section. Recall
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that the only di�erence is observed when identifying the set of all possible future

states. In other words, we have to update Qt (in addition to Ct) and also consider

all possible cases regarding the delay in the current surgery (in addition to the

non-elective types).

4.3.3 Real-time Multiple Operating Room Planning under

Surgery Duration Uncertainty

The MDP formulation of the single operating room planning problem presented in

Section (4.3.2) can be extended to the dynamic multiple operating room planning

problem. We consider R surgery rooms that are represented with r = 1, · · · , R.

In this case, we need to ensure that a non-elective patient arrived during a period

is assigned to at most one room. For this purpose, the feasible set of actions

is de�ned as X =
{
xr :

R∑
r=1

xr ≤ 1, xr ∈ {0, 1}, r = 1, · · · , R
}
. In addition,

all decision variables have an additional index representing the room index that

the corresponding variable belongs to. Let the uncertain parameter δ̃t+1
r represent

whether there exists any delay or not in room r in period t+1. We denote the delay

information for all operating rooms at time period t+1 by δ̃t+1 =
(
δ̃t+1

1 , · · · , δ̃t+1
R

)
.

The value function presented in (4.16) can be reformulated as follows:

vt(C
t,Qt,mt, δt) = min

xt∈X

{
M∑
m=1

Pr(m̃t+1 = m)E
[
vt+1

(
Ct+1,Qt+1,m, δ̃t+1

)]
+ η(xt,Ct,mt)

}
.

Let δ =
(
δ1, · · · , δR

)
denote a possible scenario regarding the delays in the cur-

rent surgeries. Then we can compute the expected value function at t + 1 as

E
[
vt+1

(
Ct+1,Qt+1,m, δ̃t+1

)]
= Pr(δ̃t+1 = δ)vt+1

(
Ct+1,Qt+1,m, δ

)
. Note that

the probability of delay in room r, Pr(δ̃t+1
r = δr), is independent from possible

delays that may occur in other rooms. Therefore, we can calculate the overall

probability of having δ = {δ1, · · · , δR}:
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Pr(δ̃t+1 = δ) =
R∏
r=1

Pr(δ̃t+1
r = δr).

Finally, we obtain the value function as

vt(C
t,Qt,mt, δt) = min

xt∈X

{
M∑
m=1

Pr(m̃t+1 = m)
∑

δ∈{0,1}R
Pr(δ̃t+1 = δ)vt+1

(
Ct+1,Qt+1,m, δ

)
+ η(xt,Ct,mt)

}
, t = 1, · · · , T − 1.

The formulations of the �nal period value function (4.17) and one-step action cost

(4.7) do not change in the multi-rooms case. The optimum policy can be found

with the backward value iteration, similar to the single room MDP formulations

presented previously.

The traditional dynamic programming (DP) algorithm uses the backward

value iteration where the optimal decisions and value functions are calculated it-

eratively starting from the �nal period and stepping backwards in time. Although

this produces the exact solution, it is a�ected by the curse of dimensionality since

the value function is computed at each state and all possible actions are evalu-

ated. On the other hand, ADP is designed to reduce action and state spaces by

adopting an approximation technique for the value function.

4.4 Simulation-based Approximate Dynamic Pro-

gramming Approach

The real-time surgery management model under uncertainty with single room is

computationally expensive to solve due to the large state space. For example, in

a very small instance with 1 surgery room, 4 time periods, 2 initial electives, and

2 possible surgery types, the state space can be as large as 18,432. Besides, the

state space increases by around 6 times as the number of rooms is increased to
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two. Note that the action space consists of only two cases at each time period,

and, thus, it is relatively small.

ADP overcomes the curse of dimensionality of traditional backward DP by

using approximations. The ADP approach uses simulation to �nd approximate

state values and policies. These estimates are generated based on Monte-Carlo

simulation of state trajectories. The value functions are evaluated for all visited

states and updated using an aggregation structure for states (such as a single

entity in a lookup table) or regression models. Simulation-based ADP algorithm

is very suitable to solve MDP problems (Powell, 2009). Thus, to solve the real-

time operating room planning model under uncertainty, we consider a simulation

based ADP method with double-pass and a lookup table. In this section, we

provide the details of the proposed ADP algorithm. A linear programming based

ADP is not applied since the value function (4.9) is complex (Powell, 2009). Also,

we implemented a value iteration instead of a policy iteration based algorithm

since the problem has a large state space and a comparatively small action set

(Sun et al., 2013). Note that the overtime cost is realized at the end of the

planning horizon. Therefore, the overtime cost should be added into the values

of the previous states in the simulated trajectory. Thus, we need a double pass

to update the state values at each iteration rather than a single-pass.

An initial list of completion times C0 and surgery types Q0, as well as the

probability distributions for the non-elective arrival types and surgery durations

are given as the inputs to the algorithm. Note that the initial state is the same

in all iterations. As we run the algorithm, each visited state and its approximate

value are inserted into the lookup table. The simulation based ADP algorithm has

�ve main modules (Powell, 2007): initialization, generator, simulator, decision

generator and value function approximator. The details of these modules are

explained below.
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• Initialization: Let n denote the iteration counter and N be the maximum

number of iterations. We set N and initialize n = 1. The value of the initial

state (C0
1, Q0

1) is de�ned as zero.

• Generator: Based on the probability distributions of non-elective types, at

each iteration n, a sample path for the type of non-elective arrivals, mn, is

randomly generated. In other words, a random non-elective type (including

the possibility of no arrival) for each time period t = 1, · · · , T − 1 in the

sample path is created.

• Simulator: At each iteration n and time period t = 1, · · · , T − 1, the algo-

rithm simulates an occurrence of a delay, δtn, based on Ct−1
n ,Qt−1

n and the

probability distributions of surgery durations.

• Decision generator: For the generated state (Ct
n,Q

t
n,m

t
n, δ

t
n), it �nds the

greedy action xtn ∈ {0, 1} as well as the state value, represented with v̂nt , by

using the optimality equation (4.16) and the approximate values stored in

the lookup table. If the value of a future state does not exist in the lookup

table, then it is simply assumed to be 0. Then Ct+1
n ,Qt+1

n can be computed

based on the greedy action xtn, Ct
n, and Qt

n.

• The value function approximator: This module does the second pass and

stores the visited states and the computed values of these states into the

lookup table.

Algorithm 2 shows the pseudo-code of the ADP algorithm with a value iteration,

lookup table and double pass for the MDP formulation with single room and

uncertain surgery durations. In each iteration n = 1, · · · , N , after all states

in the planning horizon are visited, the algorithm goes backward in time and

recursively adds the values of the future states (in the sample path) into v̂nt for
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t = T − 1, · · · , 1. If a state, (Ct
n,Q

t
n,m

t
n, δ

t
n), is visited for the �rst time by the

algorithm, then its computed value v̂nt is directly added to the lookup table. This

approximate value stored in the lookup table is shown with V
n

t (Ct
n,Q

t
n,m

t
n, δ

t
n).

Otherwise, V
n

t (Ct
n,Q

t
n,m

t
n, δ

t
n) is computed by summing v̂nt and the value of that

state most recently stored in the lookup table (shown with V
k

t (C
t
n,Q

t
n,m

t
n, δ

t
n)

in the pseudo-code), after weighting them by a smoothing parameter represented

with αn. Since the state values are expected to approach to their exact values

through iterations, αn is formulated as a positive linear function of n. The linear

form is selected because it is simple and also converges eventually (Powell, 2007).

Note that the nature of the problem allows multiple optima since di�er-

ent actions may result in the same state value. In order to increase the number

of explored states (visited by the algorithm), we employ di�erent exploration

strategies. For instance, we randomly select a greedy action in case of multiple

optima. As shown in computational experiments section (4.5), we also consider a

random strategy for the action selection in order to improve the exploration pro-

cess. Speci�cally, we check whether a randomly generated number is lower than

a �xed constant, represented with Γ. If so, then the greedy action is randomly

selected among the feasible actions. Otherwise, it is selected randomly among

the optimum actions. However, this strategy may result in suboptimal policies

and decreases the exploitation (that is de�ned as the degree of approach of the

approximate values to the exact ones). Therefore, we only apply it for the �rst

half of the iterations, i.e. for n = 1, · · · , N/2.

In addition to the lookup table based ADP algorithm, we consider other

approaches such as a basis function based ADP algorithm. The basis function

based ADP algorithm can be used to estimate the values of the states that are

not visited by the lookup table. There are two main di�erences between the

lookup table and basis function based algorithms. Instead of using the value
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Algorithm 2 Pseudo-code of the double-pass ADP algorithm with a lookup table

Step 0. Set n = 1 and maximum number of iterations N and initialize the
value of (C0

n,Q
0
n), i.e. V 1

0 , .

Step 1. Generate a sample path of mn.

for t = 1, 2, · · · , T − 1, do
Generate δtn based on Ct−1

n ,Qt−1
n .

Generate a random number γ and �nd the greedy action xtn and v̂nt by,
if n ≤ N/2, and γ ≤ Γ then
Randomly select xtn among the feasible action set {0, 1}.

else
Solve (4.16) based on;
if the value function of state (Ct+1,Qt+1,m, δ) exists in the lookup table,
represented with vj(Ct+1,Qt+1,m, δ) then
vt+1(Ct+1,Qt+1,m, δ) = vj(C

t+1,Qt+1,m, δ).
else
vt+1(Ct+1,Qt+1,m, δ) = 0.

end if
end if
Update the state variables,

Ct+1
n =Ct+1(Ct

n, x
t
n,m

t
n, δ

t
n) and Qt+1

n = Qt+1(Qt
n, x

t,mt
n)

end for
for t = T − 1, · · · , 1 do
Compute;

v̂nt = η(Ct
n, x

t
n,m

t
n) + v̂nt+1(Ct+1

n ,Qt+1
n ,mt+1

n , δt+1
n )

if the state, (Ct
n,Q

t
n,m

t
n, δ

t
n), is visited at iteration k < n, then

Update the stored value of this state, V
k

t , as

V
n

t (Ct
n,Q

t
n,m

t
n, δ

t
n) = (1− αn−1)V

k

t (C
t
n,Q

t
n,m

t
n, δ

t
n) + αn−1v̂

n
t ,

else
V
n

t (Ct
n,Q

t
n,m

t
n, δ

t
n) = v̂nt .

end if
end for

Step 2. n := n+ 1. If n ≤ N , go to Step 1. Otherwise, go to Step 3.

Step 3. Return the value function approximations (V
n

t ) for t = 1, · · · , T and
n = 1, · · · , N .
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approximations stored in a lookup table, an on-policy basis function method uses

the basis function approximations to �nd the greedy action. Also, instead of

updating the lookup table at the end of each iteration, it updates the weights

of the basis functions based on the state values computed at that iteration. To

�nd the best set of basis functions, we run the algorithm with various possible

basis functions. The experiments conducted for the basis function based ADP

algorithm are presented in the next section.

4.5 Computational Experiments

In this section, we �rst describe the design and data structure used for the numeri-

cal experiments and then present the computational results of the ADP algorithm

applied to the real-time operating room planning model under surgery duration

uncertainty.

We design a series of computational experiments in order to illustrate the

performance of the ADP algorithm. In particular, we are concerned with �nding

the approximate policies for the operating room allocation with di�erent param-

eter settings by using generated data inspired from real data. A myopic heuristic

is selected as a benchmark to compare with the performance of the ADP al-

gorithm. The computational experiments also aim to investigate the e�ect of

di�erent elective scheduling strategies on the overall cost using generated data.

All the experiments are conducted by using the ADP algorithm with lookup ta-

ble for the MDP model with single room and uncertain surgery durations, unless

stated otherwise. All computational experiments are carried out on a laptop with

Windows XP operating system, CPU 2.26 GHz Intel Corei5 and 8 Gb of RAM.
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4.5.1 Parameter Selection and Modelling Features for the

ADP Algorithm

We �rst aim to investigate the structural features of the ADP algorithm and

illustrate the impact of parameter selection and action selection strategies on its

performance. The performance of the ADP algorithm is measured by two criteria:

the convergence speed and optimality gap. The convergence speed (rate) is de�ned

as the number of iterations required to achieve the stability in state values. The

stability refers to a state value staying within 10% of the exact value (Hulshof et

al, 2013). The optimality gap is de�ned as the average relative di�erence between

the optimum and approximate values of each state visited by the algorithm. Note

that, for the �nal states (at the end of the decision horizon), the approximate and

optimum values are the same since they do not include the evaluation of the future

expected value functions. Thus, for a more rigorous comparison, we exclude the

�nal states from the optimality gap calculation.

A small problem instance to be used for this experiment consists of a

single operating room with

• 4 time periods while the daily time limit is 7 time periods,

• 2 initial electives with completion times [1, 2],

• a non-elective surgery having {0,1,2} durations with equal probabilities,

and,

• two surgery types.

In this experiment, all cost parameters are �xed to unity. The dynamic program-

ming formulation for this small problem instance involves 4484 possible states

and the optimal policy is obtained by using the backward value iteration method
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within 3 hours.

Smoothing parameter (αn) is de�ned as a linear function of iteration counter

n as αn = a + b × n. Note that a and b are continuous and can take a wide

range of values. In order to establish the e�ect of the smoothing parameter on

the convergence speed, we test the algorithm with di�erent values of a and b.

We initially conducted some preliminary trial-and-error experiments and selected

only four instances to present for an illustrative purpose. In these cases, αn varies

within intervals [0.6, 0.9], [0.3, 0.9], [0.1, 0.9] and also takes a �xed value of 0.5. We

only show the value of the initial state since the smoothing parameter a�ects the

convergence of other states in a similar fashion. Figure 4.2 presents the value of

the initial state with respect to the number of iterations for di�erent smoothing

parameters. The black solid line displays the optimum (exact) state value. We

observe that when αn varies in [0.6, 0.9] and is �xed at 0.5, the state value is not

within 10% of the optimum value. The convergence is obtained when αn varies

within [0.3, 0.9] and [0.1, 0.9].

Random greedy action selection from the feasible set (Γ): As explained

before, in order to increase the exploration of the algorithm, we added randomness

into the action selection based on parameter Γ. In order to investigate the e�ect

of Γ on the performance of the ADP algorithm, we run the algorithm with �xed

Γ levels as 0.3 and 0.5 as well as zero. Note that the case of Γ = 0 corresponds

to no randomness in the action selection procedure.

Figure 4.3 presents the performance of the algorithm in terms of the number

of states explored as well as the optimality gap, that is obtained at �xed levels

of Γ and number of iterations. During these runs, Γ is set to 0 for the second

half of the iterations to prevent the suboptimality. As these results indicate,
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(b) αn varies in [0.3, 0.9]
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(d) αn is �xed at 0.5

Figure 4.2: Value of the initial state at di�erent number of iterations obtained by
various smoothing parameters

the number of explored states increases considerably when the action selection is

a�ected by randomness (i.e. for Γ > 0). The smallest optimality gap is obtained

when Γ = 0.3. However, the optimality gap increases for Γ > 0.3. In other

words, as more states are explored, the degree of approach to the true state

values (exploitation) decreases. This is a well-known phenomenon within the

ADP literature, called as exploration vs. exploitation trade-o� (Powell, 2007).

Basis function approximation approaches: The results displayed so far are

obtained by using a lookup table based ADP algorithm. We also intend to estab-
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Figure 4.3: Optimality gap (columns) and number of states explored (lines) by
the ADP algorithm by using di�erent Γ levels and number of iterations

lish the impact of di�erent approximation approaches such as basis function with

respect to the lookup table. We �rst implemented an on-policy basis function

algorithm with di�erent basis function structures such as the number of surgeries

waiting, time period, and type of non-elective arrival. However, our results show

that the state values obtained by on-policy basis function approximations do not

converge even with a wide range of di�erent basis functions, as also encountered

in the literature (for instance, see Powell, 2007).

We also considered an o�-policy basis function aggregation. A brief de-

scription of this approach is follows. First, we obtain the approximate state

values with the lookup table based ADP algorithm, then, apply regression on

these approximate values to �nd the best weights of the basis functions. We

tested several basis functions and found the best �t for the number of waiting

surgeries, the current time period, the duration of the recent non-elective arrival

and occurrence of possible delay. In other words, the approximate value function

at state (Ct,Qt,mt, δt) is formulated as
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V t(C
t,Qt,mt, δt) = w1

I∑
i=1

(ati − bti) + w2t+ w3dmt + w4δ
t, (4.18)

where wj for j = 1, · · · , 4 are the weights of the basis functions, respectively. The

best weight levels are found as w = [0.7, 0.24, 0.88, 0.85] with the regression �tting

tool in MATLAB. To validate the accuracy of the regression �tting, we computed

the approximate values of 1000 sampled states by using the basis function struc-

ture (4.18) as well as the lookup table approximation. The t-test showed that the

basis function approximations and the state values in the lookup table are not

statistically di�erent (with a p-value of 0.39). In other words, the o�-policy basis

function method based on (4.18) approximates the value functions as good as the

lookup table method. Therefore, we conclude that the o�-policy basis function

approach based on (4.18) can be used to approximate the values of the states that

are not visited with the lookup table method.

A Brief Summary of Findings: The experiments presented in this

section indicate that the performance of the ADP algorithm highly depends on

the choice of the algorithm's parameters that need to be tailored according to

the underlying problem. Our main �ndings to be used for the remaining of the

experiments are summarized as follows.

• The smoothing parameter should be selected within an interval [0.1-0.9] or

[0.3-0.9] in order to achieve the best approximation to the state values.

• The exploration and exploitation are well balanced for Γ = 0.3.

• An o�-policy basis function structure based on the number of waiting surg-

eries, the current time period, the duration of the recent non-elective arrival

and occurrence of delay provides the best value function approximation for

the real-time surgery management problem.

Performance Comparison of Approximate and Backward DP Approaches:
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As mentioned before, we cannot obtain an optimal policy for a real-sized problem

instance by using the traditional backward value iteration approach (as an exact

algorithm) since it su�ers from the curse of dimensionality. For instance, recall

that the problem instance (as allocation of 2 types of patients to a single operat-

ing room over 4 time periods) consists of 4484 possible states, and can be solved

by the exact method (backward value iteration) in 3 hours. On the other hand,

the ADP algorithm with the best selection of parameters identi�ed can solve the

same problem in less than a minute. Moreover, we reach 96% of match between

the actions determined in the optimal and greedy policies (by using the exact and

ADP approaches, respectively) over all states. This can also be interpreted as

follows: the ADP approach misses the optimal action only for 4% of all states.

Also, the optimality gap (the average relative di�erence between the state values

found by two approaches) is 5%.

4.5.2 Performance Comparison of the ADP Algorithm and

A Myopic Approach

In this section, we illustrate the performance of the approximate policy obtained

by the ADP algorithm using generated data inspired from real data. For per-

formance comparison purposes, we implement a myopic heuristic that is used as

a benchmark strategy in MATLAB. The myopic strategy selects a greedy ac-

tion based on the lowest one-step-cost, η(Ct, xt,mt), for each non-elective arrival.

However, it does not take into account the expected future cost.

We design computational experiments for a single room using generated

data inspired from the publicly available sources (University of Twente, 2017). A

description of the data set is presented in Table 4.2. This data set is referred as

the base data in the rest of the experiments. One time period (slot) is assumed

to be half an hour which is found to be reasonable for at most one non-elective
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arrival. The cost parameters are not available in the real data set, thus, they

are estimated based on the literature sources (Zonderland et al., 2010). The

statistical analysis on the real data shows that log-normal distribution �ts well to

the surgery durations as also stated in the literature; for instance, see Strum et

al., (1998), Strum et al., (2000), and May et al. (2000). The �rst two moments

of log-normal distributions for each type of patient, that are also estimated from

the real data, are used to compute the delay probabilities for surgery types. Both

the myopic heuristic and the ADP algorithm are run with 1000 sample paths

generated by using the real data. Next, we analyze the performances of the

myopic and approximate policies in terms of the solution time and the overall

cost.

E�ciency of Solution Approaches: We can report that the CPU time

taken to obtain a policy by the ADP algorithm is about 30 minutes. On the

other hand, the myopic heuristic provides a greedy action within a couple of

seconds. As the nature of methods, the ADP policy provides the greedy actions for

every decision epoch of the whole planning horizon whereas the myopic heuristic,

as a reactive approach, is run whenever a non-elective patient arrives to the

hospital in the generated scenarios. Still, the average CPU time taken to solve

a problem instance by the myopic heuristic is much smaller than the one by the

ADP algorithm. On the other hand, the overall cost (the value of the initial state)

computed via the myopic approach is much higher than the one obtained by the

ADP algorithm as presented in the next set of experiments.
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Table 4.2: Input data

Description of parameters Fixed level
Type of surgeries 3
Initial elective schedule (completion times in terms of slot) [2, 4, 6, 10, 14, 16]
Mean (and std. deviation) of surgery duration

[2 (1), 4 (1), 6 (1)]
distribution for each surgery type
Overtime threshold (slots) 16
Daily time threshold (slots) 22
Cost of cancellation, rejection, overtime, waiting time (¿) [1, 1, 1, 0.2]
Non-elective arrival rates for each surgery type (surgery/slot) 0.125, 0.1875, 0.0625

Overall Cost: In order to show how each cost component, namely over-

time, rejection, cancellation and waiting time, a�ects the overall cost obtained

by the policies, we consider 3 cases for each cost component where only one cost

component is changed at a time while the others are kept at their base levels

as given in Table 4.2. For those cases labelled as `Decreased and Increased', the

corresponding cost component is decreased and increased, respectively, by 50%

from its base level. The other case (labelled as `Base-case') uses the same cost

levels as given in Table 4.2. Note that the cost of waiting is smaller than the

others. For that reason, when it is increased and decreased by 50%, we could not

observe a signi�cant change in the overall cost. Therefore, the waiting time cost

component is varied in a larger interval so that the decreased and increased levels

correspond to 0.01 and 1, respectively.

Figure 4.4 shows the box plots for the overall costs obtained with the ADP

policy and the myopic heuristic for di�erent levels of the cost components. The

statistical analysis shows that the ADP policy performs signi�cantly better than

the myopic heuristic in most of the cost levels, except when the cancellation cost is

low. As the level of a cost component increases, the di�erence between the overall

costs obtained by the myopic and ADP policies gets larger. Another observation

is that the rejection cost coe�cient has the biggest e�ect on the overall cost, while
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the waiting time cost coe�cient has the smallest e�ect.

Structural Features of the Approximate and Myopic Policies: We

analyze the structural characteristics of both (ADP and myopic) policies in terms

of the acceptance rates (of non-electives) during the planning horizon and the

e�ect of the non-elective duration on the acceptance decision. With this experi-

ment, we aim to derive insights of di�erent policies, such as when and what type

of non-elective patients to accept, that will support the decision-making process

of the operating room manager. The base data are used to obtain both policies.

Non-elective admissions: To investigate the e�ect of the (non-elective) ar-

rival rates on the acceptance decision, we considered two cases where the arrival

rates are doubled and reduced to the half of the base rate: those cases are abbre-

viated as `overloaded' and `underloaded' cases, respectively. Figure 4.5 shows the

relative frequency of the accepted non-elective patients at each time period that

is measured as the number of iterations where the non-elective arrival is accepted

divided by the overall number of iterations with a non-elective arrival, both at the

corresponding time period. The graphs show that the ADP policy tends to accept

more non-electives at early and later time periods during the day and more likely

to reject towards the mid-day. When the arrivals are overloaded, the acceptance

frequencies do not change much, unlike the underloaded case where the accep-

tance rates around the mid-day are larger than the base case. We can interpret

this situation as follows. For the base arrival case, there are more available slots

for non-electives to schedule during the early time periods. As more non-electives

are accepted early in the day, the schedule is �lled up quickly. Consequently, the

risk of delay increases towards the mid-day and rejections become more likely

to be realised. On the other hand, when the number of waiting surgeries and

the risk of overtime decrease over time, the ADP policy starts accepting more

non-electives arriving towards the end of the day.
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Figure 4.4: Box plots for the total costs obtained with the ADP policy and the myopic
heuristic in di�erent levels of cost components
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Figure 4.5: Frequency histograms for time periods with an acceptance decision
by ADP and myopic policies under di�erent arrival rates

As opposed to the ADP policy, the myopic policy rejects the non-electives

arrived in the earlier periods and usually accepts them afterwards. This is be-

cause, in the earlier periods, the cost of acceptance is higher than that of rejection

due to a large waiting cost. However, after a certain time period, the cost of accep-

tance gets lower than that of rejection, therefore, the non-electives are accepted

without considering the future risk of overtime.

Maximum completion time: We also investigate whether the latest surgery

completion time in the schedule (so-called maximum completion time) can be

used in practice as a decision-making rule for the acceptance or rejection decision

of non-elective patients. For this, we compare the maximum completion times

when an acceptance and rejection decisions are made in the ADP and myopic

policies. The statistical signi�cance tests show that, both policies tend to accept

the non-elective patient if the maximum completion time is low at his/her arrival

time. However, it is not possible to identify a threshold maximum completion

time level over which the non-electives are always rejected.

Surgery duration of non-elective: Intuitively, the acceptance or rejection
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decision for a non-elective may depend on the type of surgery as well as the

expected surgery duration. The statistical analysis shows that the average ac-

ceptance rates in both policies are the same if the non-elective patient possesses

an expected surgery duration of 2 and 4 time slots. On the other hand, if the

expected surgery duration is about 6 time slots, the acceptance rates drop by 42%

compared to other types of surgeries.

4.5.3 Impact of Various Elective Scheduling Strategies

In practice, hospitals may prefer to use di�erent elective scheduling strategies. In

this section, we investigate the e�ect of alternative elective scheduling policies on

the overall cost.

Strategies based on separating/combining surgery types: When there are

multiple operating rooms available, the surgery suite manager may apply dif-

ferent strategies for assigning elective patients. For instance, the same type of

surgeries may be scheduled to the same operating room using a `divided' strat-

egy. Alternatively, the same type of surgeries can be shu�ed across the rooms,

named as `shu�ed' strategy. In order to establish the possible impact of these

elective scheduling strategies on the overall performance, we consider two operat-

ing rooms with di�erent initial schedules. The initial schedules of surgery types

in the �rst and second rooms are set as [1,1,1,1,1,1] and [2,2,2], respectively, for

the divided strategy; [1,1,2,1,1] and [2,1,2,1], for the shu�ed strategy. Note that

the expected completion times of the rooms are �xed as 12 time slots in both

strategies. Figure 4.6 shows the relative frequency of time periods in which a

non-elective patient is accepted by the ADP policy in two strategies.

In the divided case, the policy initially tends to assign a non-elective into

the second room, possibly because this room has a lower risk of delay due to

smaller number of surgeries. Later during the day, the non-electives are assigned
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Figure 4.6: Frequency histogram for time periods with an acceptance decision in
two rooms with di�erent initial schedules

mostly to the �rst room since the schedule of the second room is already tight

with the earlier non-elective additions. However, in the shu�ed case, the time

period of acceptance disperses evenly throughout the day. Moreover, the shu�ed

case results in 41% lower overall cost than the divided case.

Leaving bu�er times within the elective schedule: An alternative elective

scheduling strategy is to leave bu�er times within the elective schedule to ac-

commodate the non-elective arrivals (Van Riet and Demeulemeester, 2015). In

this way, the elective schedule would be less interrupted, and, consequently, the

waiting time of the electives would be reduced. In order to test the e�ect of such

policy on the overall cost, we construct a new instance of the base data (given

in Table 4.2) by considering the same initial schedule with two empty time slots

(bu�er) in the middle of the day. Recall that the schedule in the base data do

not have any bu�er. The ADP algorithm is run with two data instances (with

and without bu�er) by changing the level of one cost component and keeping the

others at the same levels as in the base data.
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Table 4.3 displays the (statistically signi�cantly) better strategy (leaving

vs. not leaving a bu�er) in terms of the overall cost for varying cost component

levels. If both strategies produce not (statistically signi�cantly) di�erent costs,

then it is shown with `ND' to represent `no di�erence'. As it can be seen from

Table 4.3, having no bu�er provides better performance in terms of the overall

cost in more cases. If the relative cost of waiting is as low as 0.01, leaving a bu�er

is worse than not leaving. As the cost of waiting is increased, leaving bu�er is

less costly.

Table 4.3: Performance comparison of both strategies with and without bu�er at
various levels of cost components

Cost Waiting Overtime Cancellation Rejection

Doubled With bu�er Without bu�er Without bu�er ND
Base-case ND ND ND ND

Half reduced ND ND ND Without bu�er

Elective Sequencing Rules (schedule longest or shortest surgery �rst): Next,

we implement two elective sequencing rules, namely longest surgery �rst (LF) and

shortest surgery �rst (SF) that have been widely applied in practice (Testi et al.,

2007). There is no clear preference among these two strategies in practice but in

the literature, it is claimed that SF produces smaller overtime and cancellations

(Testi et al., 2007). We solve the operating room planning problem with LF and

SF elective surgery sequencing rules using the base data except with the di�erent

initial schedules (completion times) of [6, 12, 14, 16, 18] for a LF schedule and

[2, 4, 6, 12, 18], for a SF schedule.

Table 4.4 shows the better rule (LF vs. SF) that provides the smaller

overall cost under di�erent levels of cost components. When the overtime cost is

doubled, the LF rule produces a lower overall cost. On the other hand, for the

cases of high rejection and low waiting costs, the SF rule performs better than
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the LF.

Table 4.4: Performance comparison of the LF and SF elective sequencing rules at
various cost component levels

Cost Waiting Overtime Cancellation Rejection

Doubled ND LF ND SF
Base-case ND ND ND ND

Half reduced SF ND ND ND

A Brief Summary of Findings: Our �ndings observed from the second part of the

computational results are summarized below:

• An acceptance of the non-elective patient at early and late periods during

a day is less costly.

• There is no threshold latest completion time level after which any non-

elective patient will be always rejected.

• Shu�ing di�erent types of surgeries among the operating rooms is less costly

than assigning same type of surgeries into one room.

• The performance of the SF and LF rules for scheduling elective patients

highly depends on the levels of cost components. On the other hand, there

is no signi�cant di�erence between di�erent sequencing strategies if the cost

levels are �xed as the original levels presented in Table 4.2.

4.6 Conclusions

Surgeries are the major sources of the costs and revenues in hospitals. The real-

time management of a surgery suite is a dynamic problem a�ected by several

uncertainties such as non-elective arrivals and surgery durations. It requires to
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take several decisions related to acceptance/rejection of non-electives and cancel-

lation of electives. In this chapter, we develop an MDP model for the real-time

surgery management problem. However, due to `curse of dimensionality', the

real-sized instances cannot be solved to optimality. Thus, we apply a simulation-

based ADP algorithm with lookup table and double-pass approaches to obtain

approximately optimum policy for the real-sized instances. To obtain a better

algorithm performance, di�erent parameter settings are tested by using the op-

timum solution of a small instance. The numerical comparisons show that the

exact and approximate policies coincide in 96% of the states.

We also consider the myopic heuristic as a benchmark for the performance

comparison of the ADP approach. The computational results show that the

approximate policy provides lower overall cost than the myopic policy produces.

We also test the e�ect of di�erent scheduling policies such as leaving bu�ers

within the initial schedule or longest/shortest surgery �rst. The experiments

show that leaving bu�ers may be bene�cial if the cost of waiting is very high. The

experiments also suggest that `shortest surgery �rst' rule is better than `longest

surgery �rst' in most of the cost combinations.

The modelling framework introduced in this chapter can be extended to

a longer planning horizon than one day. In this case, the decisions made on the

admission of a patient today will have an impact on the next day's schedules. The

problem would be larger and more complex in this case which may require further

approximations to obtain a solution. Another possible extension is, instead of

assigning an accepted non-elective to the �rst place in the schedule, the order of

this non-elective in the schedule can be a decision variable. However, this would

increase the size of the action space considerably.
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Chapter 5

Conclusions

Healthcare processes are subject to several uncertainties such as patient arrivals,

operation durations, test results, etc. To obtain robust solutions for healthcare

management problems, the planning and management of healthcare processes

should take these uncertainties into account. This thesis models and solves three

healthcare decision-making problems under uncertainty. We use robust optimiza-

tion, queuing theory, scenario-based modelling, and MDP to model these prob-

lems. This section concludes the thesis by summarizing the research and the

main �ndings, mentioning several limitations encountered during the research,

and �nally providing some future research directions.

5.1 Summary of Research and Findings

In Chapter 2, we study the capacity planning problem in a network of stem-cell

donation centres. The uncertainties in patient arrivals, results of blood tests,

donor travel times, and the number of donors are incorporated into the model

with a scenario-based approach. The advanced blood testing is modelled as a

multi-server, �rst-come �rst-served queue with general interarrival and service

time distributions. We consider the maximum waiting time in this queue since
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the worst-case, the patient death, should be avoided as much as possible. The

maximum waiting time is approximated with a robust queuing approach. The

resulting non-linear integer programming model is reformulated into a linear one

and solved with branch-and-bound. We design out-of-sample and in-sample ex-

periments to investigate the real-life performance of the optimum solution. The

approximate maximum waiting times calculated by the optimization model are

very close to the simulated maximum waiting times, indicating accuracy of the

approximation. The computational experiments show that increasing the number

of stem-cell donation centres is more cost-e�ective. Also, the results indicate that

increasing the budget more than a certain level does not a�ect the maximum

waiting time in the network. Lastly, we analyze the service performance of the

network for di�erent budget levels and patient arrival rates.

Chapter 3 introduces the resource allocation problem in a healthcare out-

sourcing network. Given a �xed budget, a central healthcare authority needs to

decide the capacities to outsource from available providers in several regions and

allocate the patient demand in the network accordingly. Each service provider

is modelled as a multi-server, �rst-come �rst-served queue where the patient ar-

rivals and service durations are assumed to follow general distributions. The

maximum waiting time in each provider is approximated with the robust queuing

approach, same as in the second chapter. To solve the resulting non-linear inte-

ger programming model, we propose an alternating optimization based heuristic

combined with the bisection search. In the computational experiments, we show

that the heuristic performs better than the available commercial solvers especially

for medium and large size instances. The sensitivity analysis provides several im-

portant managerial insights. First, the results suggest that larger regions with

more providers is better than the smaller ones. Secondly, de�ning the budget for

a larger network with more regions results in a smaller maximum waiting time.
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These results are possibly due to the increased risk sharing with larger regions and

networks. The �nal part of the experiments uses the real data obtained from an

NHS audiology network. These experiments show that the current access times

in the network can be reduced.

Chapter 4 focuses on the real-time management of a surgery schedule while

non-elective patient arrivals and surgery durations are uncertain. We develop an

MDP model with a single-day planning horizon where the action set consists of

accepting or rejecting a non-elective arrival. The overall cost is a weighted sum of

the costs of surgery cancellation, rejection, and waiting time and sta� overtime as

well. The real-sized instances of the model cannot be solved within a reasonable

time with the exact method. Thus, we develop a backward-pass ADP algorithm

with a lookup table. The comparison of the optimum and approximate solutions

for a small instance shows that the optimality gap of the algorithm is less than

5%. The experiments with the generated data illustrate that the approximate

policies result in signi�cantly lower costs than the myopic policies in almost all of

the cost levels considered. The analysis of the approximate policies shows that the

non-elective patients arriving in earlier or later during a day are more likely to be

accepted. Also, it is found that leaving bu�er times within the elective schedule

does not always result in less cost. Another signi�cant observation is that the

shortest-�rst scheduling of electives results in less cost than the longest-�rst in

most of the cases. Finally, the results indicate that assigning di�erent types of

surgeries to a room is more cost-e�ective than assigning same type of surgeries.
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5.2 Methodological and Practical Limitations of

Thesis

During the research, we encountered with several limitations as summarized be-

low:

• The stem-cell donation centres in the UK and Turkey were quite reluctant

to release their data due to the sensitivity of donation operations and donor safety

issues. Thus, the input data for the experiments in Chapter 2 are generated with

simulation based on the average values publicly available. The impact of the

generated data on the solution was then analyzed through the sensitivity analysis.

Also, we had to make several assumptions to simplify the search operations and

to develop tractable models.

• Real data of the budget and unit-capacity prices for the computational

experiments of Chapter 3 were not available. Thus, we identi�ed plausible ranges

for these parameters and obtained the results for these ranges. We also assumed

that unit-capacity prices are given as inputs to the model while in the reality, these

may be subject to negotiations between the central authority and providers, thus,

may be decision variables. Including these negotiations into the modelling would

require a di�erent approach such as game theory and would make the model

highly complex.

• Real data of cost coe�cients for the computational experiments of Chap-

ter 4 were not available. These data can be deduced from decision-makers by

applying a multi-criteria decision analysis that is out of the scope of this thesis.

Instead, we obtained the approximate policies for possible combinations of cost

coe�cient levels that may be applicable to a range of decision-makers.

• Finally, the solutions obtained in these chapters are not implemented in

the real-life. Instead, we used simulation to imitate the reality and investigate the
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solution performances. However, it should be noted that the real-life performances

of the solutions can be di�erent than the simulated ones. On the other hand,

implementation of the �ndings usually encounters with many practical challenges

and was not the main aim of this thesis.

5.3 Future Research Directions

As suggested by the previous section, there are several future research directions

for this thesis that are summarized below.

• Some of the assumptions made in Chapter 2 to simplify the model can be

relaxed in the future considering the rapid development of the powerful solvers.

The most signi�cant one of these assumptions is that one patient can only make

one search process. Sometimes, a patient can initiate another search process

after an initial failed attempt. Thus, the search duration of these patients would

consist of several cycles, instead of a single one. Secondly, the model presented in

this chapter can be extended by considering the operations in the donor-side of

a stem-cell donation centre which would a�ect the donor database level and the

number of donors found for each patient.

• Chapter 3 can be extended by considering the incentives and pricing

issues between providers and a central authority. Also, the network can be mod-

elled as a network of queues instead of modelling each provider as a separate single

queue. However, note that the analysis of queuing networks is more challenging.

Additionally, di�erent patient referral strategies such as patient choice-based can

be investigated. This would require to extend the model with the choice issues.

Moreover, di�erent types of medical services, such as cardiology and audiology

can be included in the model. Finally, we can easily extend the model to analyze

di�erent types of payment methods between providers and the central authority.
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• To obtain the real cost coe�cient levels for the experiments of Chapter

4, a case study can be conducted in a hospital. This would require to use a

weight elicitation technique. Secondly, the multiple objectives in the model can

be handled with multi-objective optimization methods such as genetic algorithm.

The problem can be expanded by considering the decision-making in a week while

the decisions in a day a�ect the future schedules in a rolling horizon fashion.

Finally, instead of assigning an accepted non-elective surgery just after the current

one is �nished, the slot to assign the non-elective can be a decision variable which

would make the model even more complex.

As a conclusion, this thesis aims to assist the decision-making for three

healthcare management problems under uncertainty. For this purpose, we use

various modelling and solution approaches under OR that is proven to be helpful

for many decision-making problems under uncertainty (Brandeau et al., 2004).

Speci�cally, we focus on three capacity planning and resource allocation problems

in healthcare management. The models developed in the thesis are quite generic

and applicable to many cases with slight modi�cations, if needed. Re�ecting the

complexity of the problems considered, the models are non-linear and hard to

solve. Thus, we consider possible approximate solution methods for these models

and compare them as an attempt to identify the best one.

In my opinion, the current healthcare management practices are generally

not supported by analytical methods like the research presented in this thesis.

Considering the highly uncertain nature of these practices, the lack of analyti-

cal support results in deterioration in patients' health and even their death, as

well as the waste of resources. Our research has indicated that especially the

capacity planning and resource allocation in healthcare settings can be signi�-

cantly improved by OR methods such as stochastic programming. We believe

that the resulting managerial insights can be very bene�cial for healthcare man-
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agers. However, we are also aware of the special challenges of the implementation

of the results in real-life.
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