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AN ALGEBRAIC MODEL FOR RATIONAL TORUS-EQUIVARIANT
SPECTRA

J. P. C. GREENLEES AND B. SHIPLEY

Abstract. We provide a universal de Rham model for rational G-equivariant cohomology
theories for an arbitrary torus G. More precisely, we show that the representing category, of
rational G-spectra, is Quillen equivalent to the explicit small and calculable algebraic model
dA(G) of differential graded objects in the category A(G) introduced in [24].
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Part 1. Introduction

1. Overview

1.A. Preamble. Cohomology theories are contravariant homotopy functors on topological
spaces satisfying the Eilenberg-Steenrod axioms (except for the dimension axiom), and any
cohomology theory E∗(·) is represented by a homotopy theoretic spectrum E in the sense
that E∗(X) = [X,E]∗. Accordingly, the category of spectra gives an embodiment of the
category of cohomology theories in which one can do homotopy theory. The complexity of
the homotopy theory of spectra is visible even in the homotopy endomorphisms of the unit
object: this is the ring of stable homotopy groups of spheres, which is so intricate that we
cannot expect a complete analysis of the category of spectra in general. However, most
of the complication comes from Z-torsion so we can simplify things by rationalizing. The
resulting category of rational spectra represents cohomology theories with values in rational
vector spaces. The simplicity of this rationalized category is apparent by Serre’s theorem:
the rationalization of the stable homotopy groups of spheres simply consists of Q in degree 0,
and it is a small step to see that there is nothing more to the topology of rational cohomology
theories than their graded rational vector space of coefficients. On the other hand, de Rham
cohomology shows that a large amount of useful geometry remains even when we rationalize.
Accordingly, the study of rational cohomology theories and rational spectra is both accessible
and useful.

These facts are well-known, and it is natural to ask what happens when we consider spaces
with an action of a compact Lie group G. Once again, a G-equivariant cohomology theory is
a contravariant homotopy functor on G-spaces satisfying suitable conditions, and each such
G-equivariant cohomology theory is represented by a G-spectrum [51]. In the equivariant
case, when we rationalize a G-spectrum, considerably more structure remains than in the
non-equivariant case. It is natural to expect rational representation theory to play a role
in understanding rational equivariant cohomology theories, and when G is finite this is the
only ingredient. However in general, the other significant piece of structure is exemplified
by the Localization Theorem: for a torus G this states that (for finite complexes) there is
no difference between the Borel cohomology of a G-space and its G-fixed points once the
Euler classes are inverted. These ingredients can be used to build the algebraic model [24]
for rational G-spectra described in Section 2 below.

The archetype for giving an algebraic model for the homotopy theory of topological origin is
Quillen’s analysis of simply connected rational spaces [58]. To prove the result, he introduced
the axiomatic framework of model categories which underly the homotopy category, and the
notion of a Quillen equivalence between model categories preserving the homotopy theories.
The use of these ideas is now widespread, and we refer to [44] and [43] for details.

Our main result is a Quillen equivalence between the category of rational G-spectra for
a torus G and an explicit and calculable algebraic model. In the course of our proof, we
introduce a number of techniques of broader interest, in equivariant homotopy theory and
in the theory of model categories. In the rest of the introduction, we give a little history,
and then describe our results, methods and conventions.

1.B. Equivariant cohomology theories. Non-equivariantly, rational stable homotopy the-
ory is very simple: the homotopy category of rational spectra is equivalent to the category
of graded rational vector spaces, and all cohomology theories are ordinary in the sense that
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they are naturally equivalent to ordinary cohomology with coefficients in a graded vector
space. The first author has conjectured [23] that for each compact Lie group G, there is
an abelian category A(G), so that the homotopy category of rational G-spectra is equiva-
lent to its derived category D(A(G)), i.e., to the homotopy category of the category dA(G)
consisting of differential graded objects of A(G):

Ho(G-spectra/Q) ' Ho(dA(G)) = D(A(G)).

In general terms, the objects ofA(G) are sheaves of graded modules with additional structure
over the space of closed subgroups of G, with the fibre over H giving information about
the geometric H-fixed points. The conjecture describes various properties of A(G), and in
particular asserts that its injective dimension is equal to the rank of G. According to the
conjecture one may therefore expect to make complete calculations in rational equivariant
stable homotopy theory, and to classify cohomology theories. Indeed, one can construct
a cohomology theory by writing down a differential graded object in A(G): this is how
SO(2)-equivariant elliptic cohomology was constructed in [26], and it is hoped to construct
cohomology theories associated to generic curves of higher genus in a similar way using the
results of this paper.

The conjecture is elementary for finite groups, where A(G) =
∏

(H) QWG(H)-mod [30,

Theorems A.7, A.8, A.9], where the product is over conjugacy classes of subgroups H and
WG(H) = NG(H)/H. This means that any cohomology theory is again ordinary in the sense
that it is a sum over conjugacy classes (H) of ordinary cohomology of the H-fixed points
with coefficients in a graded QWG(H)-module. The conjecture has been proved for the rank
1 groups G = SO(2), O(2), SO(3) in [21, 20, 22], where A(G) is more complicated. It is
natural to go on to conjecture that the equivalence comes from a Quillen equivalence

G-spectra/Q ' dA(G),

for suitable model structures. The second author proved that for G = SO(2) the Quillen
equivalence would follow from a triangulated equivalence on the derived categories [64]. It
was claimed in [21] that the equivalence of homotopy categories was in fact a triangulated
equivalence, but the proof is incomplete, and subsequent work of Patchkoria [56] shows that
the method of [21] is insufficient. In any case, there is no prospect of extending the methods
of [21] or [64] to higher rank. Even if one only wants an equivalence of triangulated categories,
it appears essential to establish the Quillen equivalence when r ≥ 2. Building on the present
work, Barnes [2, 3] has shown how to deduce the Quillen equivalence for G = O(2) from a
suitable proof for G = SO(2) (such as the one we use here), and Kedziorek [48] has done so
for G = SO(3).

Recently, Barnes, Kedziorek and the present authors have given a separate account of a
Quillen equivalence for the case G = SO(2) [5]. This has the merit of avoiding the massive
complication due to the complexity of the space of connected subgroups for a general torus,
and also gives a stronger conclusion than the specialization of our result here, since the
equivalence is monoidal.

1.C. The classification theorem. The present paper completes the programme begun in
[24, 25] and supported by [35, 36, 37, 28]. The purpose of the series is to provide a small
and calculable algebraic model for rational G-equivariant cohomology theories for a torus
G of rank r ≥ 0. Such cohomology theories are represented by rational G-spectra, and in
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this paper we show that the category of rational G-spectra is Quillen equivalent to the small
and concrete abelian category A(G) introduced in [24] (its definition and properties are
summarized in Section 2). The category A(G) is designed as a natural target of a homology
theory

πA∗ : G-spectra −→ A(G);

the idea is that A(G) is a category of sheaves of modules, with the stalk over a closed
subgroup H being the Borel cohomology of the geometric H-fixed point set with suitable
coefficients. A main theorem of [24] shows that A(G) is of finite injective dimension (shown
in [25] to be r).

The main theorem of the present paper and the culmination of the series is as follows.
Model structures will be described in Sections 3 and 11 below.

Theorem 1.1. For any torus G, there is a Quillen equivalence

G-spectra/Q 'Q dA(G)

of model categories. In particular their homotopy categories are equivalent

Ho(G-spectra/Q) ' Ho(dA(G)) = D(A(G))

as triangulated categories.

Remark 1.2. The functors involved in these Quillen equivalences are monoidal, but their
interaction with the model structures is not straightforward. For this reason, the extension
of this result to Quillen equivalences on the associated categories of monoids will be discussed
elsewhere (as done in [5] in the rank 1 case).

Because of the nature of Theorem 1.1, it is easy to impose restrictions on the isotropy
groups occurring in topology and algebra, and one may deduce versions of this theorem for
categories of spectra with restricted isotropy groups. For example we recover a special case
of the result of [33], which states that if G is any connected compact Lie group there is a
Quillen equivalence

free-G-spectra/Q 'Q DG-torsion-H∗(BG)-modules,

with a quite different proof. The methods of the present paper are used to extend the result
on free G-spectra to disconnected groups G in [34].

1.D. Applications. Beyond the obvious structural insight, the type of applications we an-
ticipate may be seen from those already given for the circle group T (i.e., the case r = 1).
For example [21] gives a classification of rational T-equivariant cohomology theories, a pre-
cise formulation and proof of the rational T-equivariant Segal conjecture, and an algebraic
analysis of existing theories, such as K-theory. More significant is the construction in [26] of
a rational equivariant cohomology theory associated to an elliptic curve C over a Q-algebra,
and the identification of a part of T-equivariant stable homotopy theory modelled on the de-
rived category of sheaves over C. The philosophy in which equivariant cohomology theories
correspond to algebraic groups is expounded in [27], and there are encouraging signs suggest-
ing that one may use the model described in the present paper to construct torus-equivariant
cohomology theories associated to generic complex curves of higher genus.
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1.E. Outline of strategy. The general strategy makes use of the existence of a good sym-
metric monoidal model category of spectra, allowing us to talk about commutative ring
spectra and modules over them. However, it is convenient that the commutative monoids
in our category should include spectra that are only E∞-rings (i.e., algebras over a non-
equivariant E∞-operad, which is to say E ′∞ in the sense of McClure [53]). Accordingly we
work in the Blumberg-Hill category of L-spectra in orthogonal spectra. The particular prop-
erties we need are summarized in Proposition 3.3. The rest of this introduction will outline
the strategy without mentioning detailed requirements of the model.

There are two ingredients at the core of our argument, that led us to believe we could
establish a Quillen equivalence. The first author’s [24] construction of the algebraic category
A(G) giving the basis of an effcient algebraic Adams spectral sequence suggested differential
objects in A(G) as an algebraic model. However it is the second author’s results [65] (giving
Quillen equivalences between commutative algebras over the Eilenberg-Mac Lane spectrum
HQ and differential graded commutative Q-algebras, and between the module categories
of the corresponding algebras) that gives the bridge allowing us to pass from topology to
algebra.

In outline, what we have to achieve is to move from the category of rational G-spectra to
the category of DG objects of the abelian category A(G). There are five main stages to this,
which we first describe and then illustrate on a chain of Quillen equivalences.

(1) Isotropy separation (Sections 4 to 6): Rational G-spectra are modules over
the rational sphere spectrum S. The rational sphere spectrum is the homotopy pull-

back of a diagram R̃top of isotropically simpler commutative ring G-spectra. Accord-
ingly, by the methods of [37], the category of S-modules is equivalent to a category
of diagrams of modules over the pullback diagram of ring G-spectra.

The diagram R̃top has the shape of a punctured (r + 1)-cube, which we call the
‘formal’ punctured cube PCf . The module category of each individual ring spectrum
captures isotropical information about subgroups with a specified dimension and the
diagram shows how to reassemble this isotropically local information into a global
spectrum.

(2) Removal of equivariance (Section 7): At each point in the diagram, we re-
place the commutative ring G-spectrum by a commutative non-equivariant ring spec-
trum by passage toG-fixed points, and show that the module categories are equivalent
using the general methods described in [36].

(3) Transition to algebra (Section 8): At each point in the diagram, we apply the
machinery of [65] to replace all the commutative ring spectra in the diagram by com-
mutative DGAs, and the category of module spectra by the corresponding category
of DG-modules over the DGAs.

(4) Rigidity (Section 9): The diagram of commutative DGAs is intrinsically formal
in the sense that it is determined up to equivalence by its homology. Accordingly
the diagram of commutative DGAs may be replaced by a diagram of commutative
algebras.

(5) Simplification (Sections 11 and 12): At each stage so far, we have used cellu-
larization to pick out the relevant homotopy category as the localizing subcategory
built from certain specified ‘cells’. The final step is to replace this cellularization of
the category of DG-modules over the diagram of commutative rings by a much smaller
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category of modules with special properties, so that no cellularization is necessary;
using apparatus from [28], this category turns out to be A(G).

These steps correspond to the following sequence of Quillen equivalences, several of which
are themselves zig-zags of simple Quillen equivalences. The cellularizations are all with
respect to the set of images of the cells G/H+ as H runs through closed subgroups, and the
diagrams of rings are all punctured (r + 1)-cubes.

G-spectra
(1)
' cell-R̃top-mod-G-spectra

(2)
' cell-Rtop-mod-spectra

(3)
' cell-Rt-mod

(4)
' cell-Ra-mod

(5)
' pqce-Ra-mod

(5)
' A(G)

It is worth highlighting some of the techniques of more general applicability.
First, we constantly use the Cellularization Principle [35]. The idea is that a Quillen

adjunction induces a Quillen equivalence between cellularized model categories, provided we
cellularize with respect to cells that are small and correspond under the adjunction. The
hypotheses are mild, and it may appear like a tautology, but it has been useful innumerable
times in the present paper and deserves emphasis. It can be directly compared to another
extremely powerful formality: a natural transformation of cohomology theories that is an
isomorphism on spheres is an equivalence.

Second, we make extensive use of categories of modules over diagrams of rings [37], and
prove that up to Quillen equivalence and cellularization, we can replace a category of modules
over a diagram of rings by the category of modules over its pullback.

Third, the fact that if A is a ring G-spectrum, passage to categorical K-fixed points
establishes a close relationship between the category of A-module G-spectra and the category
of AK-module G/K-spectra [36]. More precisely, we consider a Quillen adjunction

A⊗AK (·) : AK-mod-G/K-spectra
//
A-mod-G-spectra : (·)Koo .

This is especially effective in conjunction with the Cellularization Principle.
Finally, we note that at the centre of the proof is rigidity: any two model categories with

suitable specified homotopy level properties are equivalent. The equivariant sphere ring
spectrum should be viewed as the sheaf of functions on a non-affine variety; we find a cover
by affine varieties which are individually rigid, and the configuration of the cover is also
rigid.

In effect, we have used only one basic rigidity result: any two commutative DGAs which
have the same polynomial cohomology are quasi-isomorphic. This elementary result has far
reaching consequences. Our main use of it here is to patch together local rigidity results
(each based on polynomial rings) to give a global rigidity result. In [33] we applied it to
prove rigidity of Koszul duals. We also need a rigidity result for modules, that by an Adams
spectral sequence argument, the standard cells are determined by their homology [24, 12.1].

1.F. Relationship to other results. We should explain the relationship between the strat-
egy implemented here and that used for free spectra in [33]. Both strategies start with a
category of G-spectra and end with a purely algebraic category, and the connection in both
relies on finding an intermediate category which is visibly rigid in the sense that it is de-
termined by its homotopy category (the archetype of this is the category of modules over a
commutative DGA with polynomial cohomology).
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The difference comes in the route taken. Roughly speaking, the strategy in [33] is to move
to non-equivariant spectra as soon as possible, whereas that adopted here is to keep working
in the ambient category of G-spectra for as long as possible.

The advantage of the strategy of [33] is that it is close to commutative algebra, and
should be adaptable to proving uniqueness of other algebraic categories. However, it is
hard to retain control of the monoidal structure, and adapting the method to deal with
many isotropy groups makes the formal framework very complicated. This was our original
approach to the result for tori.

The present method appears to have several advantages. It uses fewer steps, and the
monoidal structures are visible throughout. Furthermore, it reflects traditional approaches
to the homotopy theory of G-spaces in that it displays the category of G-spectra as built
from categories of spectra with restricted isotropy group using Borel cohomology.

Finally, we should explain that early versions of the present paper (specifically arXiv:1101.2511
v1, v2, v3 posted in 2011) differed from the present one in two important respects. Firstly,
they included in condensed form the parts of [35, 36, 37] that they required; we separated
out those papers partly to improve readability and partly because they appeared to be of
wider interest. During the process of revising this paper to take advantage of the separation,
we found a signficant simplification, and this led to the second main difference. The method
for dealing with the equivalence between the category of G-spectra and a category of dia-
grams is much simpler here than in the earlier versions because the diagrams themselves are
finite. In the present version, the manipulations with diagrams are now largely replaced by
an equivalence of G-spectra showing how the sphere spectrum S can be constructed from
isotropically simpler pieces. Having made that change, it was necessary to refer to the paper
[28] for the behaviour of an algebraic torsion functor.

1.G. Conventions. Certain conventions are in force throughout the paper. The most im-
portant is that everything is rational: henceforth all spectra and homology theories are
rationalized without comment. For example, the category of rational G-spectra will now
be denoted ‘G-spectra’. Whenever possible we work in the derived category; for example,
most equivalences are verified at this level. We also use the standard conventions that ‘DG’
abbreviates ‘differential graded’ and that ‘subgroup’ means ‘closed subgroup’. We attempt
to let inclusion of subgroups follow the alphabet, so that G ⊇ H ⊇ K ⊇ L.

We often have to discuss classifying spaces of quotient groups, such as G/K. We omit
brackets and write BG/K = B(G/K). This should cause no confusion because the only nat-
ural action of K on BG is the trivial action (so we never have cause to make the construction
(BG)/K).

We focus on homological (lower) degrees, with differentials reducing degrees; for clarity,
cohomological (upper) degrees are called codegrees and may be converted to degrees by
negation in the usual way. Finally, we write H∗(X) for the unreduced cohomology of a space
X with rational coefficients.

We have adopted a number of more specific conventions in our choice of notation, and it
may help the reader to be alerted to them.

• There are several cases where we need to talk about ring G-spectra R̃ and their fixed

points R = (R̃)G. The equivariant form is indicated by a tilde on the non-equivariant
one.
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• We need to discuss rings in various categories of spectra, and then modules over them.
Since it often needs to be made explicit, we write, for example, R-module-G-spectra
for the category of R-modules in the category of G-spectra.
• The purpose of this paper is to give an algebraic model of a topological phenomenon.

Accordingly, characters arise in various worlds, and it is useful to know they play
corresponding roles. We sometimes point this out by use of subscripts. For example
Ra (with ‘a’ for ‘algebra’) might be a (conventional, graded) ring, Rtop its counterpart

in spectra, R̃top its counterpart in G-spectra, and Rt its counterpart in DG-algebra
(a large DGA, that is only described indirectly).
• We often have to discuss diagrams of rings and diagrams of modules over them, but

we will usually say ‘R is a diagram of rings’ and ‘M is an R-module’ (leaving the fact
that M is also a diagram to be deduced from the context).

1.H. Organization of the paper. Section 2 recalls the definition of the algebraic model
A(G). Section 3 discusses the properties we need of our monoidal model of equivariant
spectra, and introduces the Blumberg-Hill model we use (L-spectra in orthogonal spectra):
beyond the good properties of orthogonal spectra this has the property that E∞-ring G-
spectra are the commutative monoids.

Section 4 introduces the formalism for discussing modules over diagrams of rings.
In Section 5 we explain that the sphere spectrum is the homotopy pullback of a punctured

(r + 1)-cube of isotropically simpler ring spectra, and in Section 6 we explain that it is the

homotopy pullback of a closely related punctured (r + 1)-cube diagram R̃top of ring spectra
which are formal in the sense that they are determined by their homotopy. This punctured
cube is PCf , and all the subsequent diagrams have this shape. The results of [37] then
establish Equivalence (1), showing that the category of rational G-spectra is equivalent to a

category of module G-spectra over the diagram R̃top of ring G-spectra. This completes the
isotropy separation step of the proof.

Until this point, all arguments and calculations are within the category of G-spectra. The
remaining steps change ambient categories. We not only need to recognize the categories of
modules, but we also need to recognize the cells we use to cellularize them. The fact that
the natural cells G/H+ are characterized by their homology ([24, 12.1]) means that we do
not need to comment further on the cells.

Having shown the category of G-spectra is equivalent to a category of modules over the

diagram R̃top of ring G-spectra, we can move from G-spectra to non-equivariant spectra in
Section 7, using the results of [36] to establish that this category is equivalent to a category

of modules over the diagram Rtop = (R̃top)
G of ring spectra (i.e., Equivalence (2)). In Section

8 we use the results of [65] to establish that the category of Rtop-modules is equivalent to a
category of modules over the diagram Rt of DGAs (i.e., Equivalence (3)). It is then quite
straightforward to establish Equivalence (4), showing in Section 9 that the PCf -diagram
Ra = H∗(Rt) is intrinsically formal, so that the category of modules over Rt and Ra are
equivalent.

In Section 10 we recognize our progress by seeing that A(G) can be viewed as a category
of modules over the diagram Ra of graded rings. Finally Sections 11 and 12 establish Equiv-
alence (5), showing that the cellularization is equivalent to the particular category A(G) of
DG-Ra-modules.
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2. The algebraic model

In this section we recall relevant results from [24] which constructs an abelian category
A(G) giving an algebraic reflection of the structure of the category of G-spectra and an
Adams spectral sequence based on it; the present account is very compressed and readers
may need to refer to [24] for details. The structures from that analysis will be relevant to
much of what we do here.

This model is based on pairs of connected subgroups and is denoted Apc(G) in the more
precise notation of [28], and we use this form of the model since it is the most convenient
and practical model for calculations. In fact the first output of the topological argument is
a model based on flags of dimensions of subgroups which is denoted Afd(G) in [28]. This was
introduced and shown to be equivalent to Apc(G) in [28]; building on [28], we show in Section

10 how to move directly from the algebraic model coming from our proof (namely Afd(G))
to Apc(G).

2.A. Definition of the category. First we must construct the category A(G), which is a
category of modules over a diagram of rings. For a category D and a diagram R : D −→
Rings of rings, an R-module is given by a D-diagram M such that M(x) is an R(x)-module
for each object x in D, and for every morphism a : x −→ y in D, the map M(a) : M(x) −→
M(y) is a module map over the ring map R(a) : R(x) −→ R(y).

The shape of the diagram for A(G) is given by the partially ordered set ConnSub(G) of
connected subgroups of G. To start with we consider the single graded ring

OF =
∏
F∈F

H∗(BG/F ),

where the product is over the family F of finite subgroups of G. To specify the value of the
ring at a connected subgroup K, we use Euler classes: indeed if V is a complex representation
of G with V G = 0, we may define c(V ) ∈ OF by specifying its components. In the factor

corresponding to the finite subgroup F we take c(V )(F ) := c|V F |(V
F ) ∈ H |V F |(BG/F ) where

c|V F |(V
F ) is the classical Euler class of V F in ordinary rational cohomology.

The diagram of rings ÕF is defined by the following functor on ConnSub(G)

ÕF(K) = E−1
K OF

where EK = {c(V ) | V K = 0} ⊆ OF is the multiplicative set of Euler classes of K-essential
representations. This localization is again a graded ring.

Next we consider the category of modules M over the diagram ÕF . Thus the value M(K)
is a module over E−1

K OF , and if L ⊆ K, the structure map

M(L) −→M(K)

is a map of modules over the map

E−1
L OF −→ E

−1
K OF

of rings. Note this map of rings is a localization since for any complex representation V of G,
V L = 0 implies V K = 0 so that EL ⊆ EK . The category A(G) is formed from a subcategory
of the category of ÕF -modules by adding structure. There are two requirements which we
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briefly indicate here. Firstly they must be quasi-coherent, in that they are determined by
their value at the trivial subgroup 1 by the formula

M(K) := E−1
K M(1).

The second condition involves the relation between G and its quotients. Choosing a
particular connected subgroup K, we consider the relationship between the group G with
the collection F of its finite subgroups and the quotient group G/K with the collection F/K
of its finite subgroups. For G we have the ring OF and for G/K we have the ring

OF/K =
∏

K̃∈F/K

H∗(BG/K̃)

where we have identified finite subgroups of G/K with their inverse images in G, i.e., with
subgroups K̃ of G having identity component K. Combining the inflation maps associated
to passing to quotients by K for individual groups, there is an inflation map

OF/K −→ OF .
The second condition is that the object should be extended, in the sense that for each

connected subgroup K there is a specified isomorphism

M(K) ∼= E−1
K OF ⊗OF/K

φKM

for some OF/K-module φKM , which is a given part of the structure. These identifications
should be compatible when we have inclusions of connected subgroups. If we choose a
subgroup L then the modules φKM for K ⊇ L fit together to make an object of A(G/L).

2.B. Diagrams of quotient pairs. For some purposes it is useful to have an alternative
view of A(G) as introduced in [25] making more of the structure explicit. Here the values
φHM are all displayed in a single diagram indexed by pairs of quotient groups. Pairs of
quotient groups are equivalent to pairs of subgroups, but here we will stick with the indexing
by quotients G/K as in [25] since it is the quotients that enter most directly into the model.
We use the notations Rp

c for the ring and Apc(G) for the category as in [28], since this is
descriptive of the fact that we use pairs of connected subgroups.

Definition 2.1. The diagram of quotient pairs of G is the partially ordered set with objects
(G/K)G/L for L ⊆ K ⊆ G, and with two types of morphisms. The horizontal morphisms

hHK : (G/K)G/L −→ (G/H)G/L for L ⊆ K ⊆ H ⊆ G

and the vertical morphisms

vKL : (G/H)G/K −→ (G/H)G/L for L ⊆ K ⊆ H ⊆ G.

One particular diagram will be of special significance for us.

Definition 2.2. The structure diagram for G is the diagram of rings Rp
c defined by

Rp
c(G/K)G/L := E−1

K/LOF/L.

Since V K = 0 implies V H = 0, we see that EH/L ⊇ EK/L, so it is legitimate to take the
horizontal maps to be localizations

hHK : E−1
K/LOF/L −→ E

−1
H/LOF/L.

10



To define the vertical maps, we begin with the inflation map inf
G/L
G/K : OF/K −→ OF/L,

and then observe that if V is a representation of G/K with V H = 0, it may be regarded
as a representation of G/L, and Euler classes correspond in the sense that inf(eG/K(V )) =
eG/L(V ). We therefore obtain a map

vLK : E−1
H/KOF/K −→ E

−1
H/LOF/L.

Illustrating this for a group G of rank 2, we obtain

OF/G

��

OF/K //

��

E−1
G/KOF/K

��

OF // E−1
K OF // E−1

G OF
At the top right, of course OF/G = Q, but clarifies the formalism to use the more complicated
notation.

In discussing modules, we need to refer to the structure maps for rings, so for an Rp
c-module

M , if L ⊆ K ⊆ H ⊆ G, we generically write

αLK : M(G/H)G/K −→M(G/H)G/L

for the vertical map, and

α̃LK : E−1
H/LOF/L ⊗OF/K

M(G/H)G/K = (vLK)∗M(G/H)G/K −→M(G/H)G/L

for the associated map of OF/L-modules. Similarly, we generically write

βHK : M(G/K)G/L −→M(G/H)G/L

for the horizontal map, and

β̃HK : E−1
H/LM(G/K)G/L = (hHK)∗M(G/K)G/L −→M(G/H)G/L

for the associated map of E−1
H/LOF/L-modules, which we refer to as the basing map after [21].

Definition 2.3. If M is an Rp
c-module, we say that M is extended if whenever L ⊆ K ⊆ H

the vertical map αLK is an extension of scalars along vLK : E−1
H/KOF/K −→ E

−1
H/LOF/L, which

is to say that

α̃LK : E−1
H/LOF/L ⊗OF/K

M(G/H)G/K
∼=−→M(G/H)G/L

is an isomorphism of E−1
H/LOF/L-modules.

If M is an Rp
c-module, we say that M is quasi-coherent if whenever L ⊆ K ⊆ H the

horizontal map βHK is an extension of scalars along hHK : E−1
K/LOF/L −→ E

−1
H/LOF/L, which is

to say that

β̃HK : E−1
H/LM(G/K)G/L

∼=−→M(G/H)G/L

is an isomorphism.
We write qc-Rp

c-mod, e-Rp
c-mod and Apc(G) := qce-Rp

c-mod for the full subcategories of
Rc-modules with the indicated properties.
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Next observe that the most significant part of the information in an extended object is
displayed in its restriction to the leading diagonal. For example in our rank 2 example they
take the form

M(G/G)G/G

��

M(G/K)G/K //

��

E−1
G/KOF/K ⊗OF/G

M(G/G)G/G

��

M(G/1)G/1 // E−1
K OF ⊗OF/K

M(G/K)G/K // E−1
G OF ⊗OF/G

M(G/G)G/G

In effect our description of the category A(G) abbreviates such a diagram by just writing
the final row and taking φKM = M(G/K)G/K :

φ1M // E−1
K OF ⊗OF/K

φKM // E−1
G OF ⊗OF/G

φGM,

leaving it implicit that the particular decomposition as a tensor product is part of the
structure.

Lemma 2.4. [25, 5.5] The functor

i : A(G) −→ Apc(G) = qce-Rp
c-mod

defined by
i(M)(G/K)G/L := E−1

K/Lφ
LM.

is an equivalence
A(G) ' Apc(G).

�

Henceforth we will identify the two, thinking of A(G) as given by the values of Apc(G) on
the objects (G/K)G/K with additional structure given by the horizontal and vertical maps.

2.C. Connection with topology. The homotopy level connection between G-spectra and
A(G) is given by a homotopy functor

πA∗ : G-spectra −→ A(G)

with the exactness properties of a homology theory. It is rather easy to write down the value
of the functor as a diagram of abelian groups.

Definition 2.5. For a G-spectrum X we define πA∗ (X) on K by

πA∗ (X)(K) = πG∗ (DEF+ ∧ S∞V (K) ∧X).

Here EF+ is the universal space for the family F of finite subgroups with a disjoint basepoint
added and DEF+ = F (EF+, S

0) is its functional dual (the function G-spectrum of maps
from EF+ to S0). For any closed subgroup K of G, the G-space S∞V (K) is defined by

S∞V (K) =
⋃

V K=0

SV ,

12



where V runs through finite dimensional subrepresentations of a complete G-universe, U .
When K ⊆ H, we find V H ⊆ V K so there is a map S∞V (K) −→ S∞V (H), and this induces
the map πA∗ (X)(K) −→ πA∗ (X)(H). �

The definition of πA∗ (X) shows that quasi-coherence for πA∗ (X) is just a matter of under-
standing Euler classes. The extendedness of πA∗ (X) is a little more subtle, and will play
a significant role later. Extendedness follows from properties of the geometric fixed point
functor. We may take

φKπA∗ (X) = πG/K∗ (DEF/K+ ∧ ΦK(X)),

where ΦK is the geometric fixed point functor using the map inf(DEF/K+) −→ DEF+ ∧
S∞V (K) (see [24, 9.2] for details).

To see that πA∗ (X) is a module over O, the key is to understand S0.

Theorem 2.6. [24, 1.5] The image of S0 in A(G) is the structure functor:

ÕF = πA∗ (S0),

with the canonical structure as an extended module.

Some additional work confirms that πA∗ has the appropriate behaviour.

Corollary 2.7. [24, 1.6] The functor πA∗ takes values in the abelian category A(G).

2.D. The Adams spectral sequence. The homology theory πA∗ may be used as the basis
of an Adams spectral sequence for calculating maps between rational G-spectra. The main
theorem of [24] is as follows.

Theorem 2.8. ([24, 9.1]) For any rational G-spectra X and Y there is a natural Adams
spectral sequence

Ext∗,∗A(G)(π
A
∗ (X), πA∗ (Y ))⇒ [X, Y ]G∗ .

It is a finite spectral sequence concentrated in rows 0 to r (the rank of G) and strongly con-
vergent for all X and Y . �

This was what led us to attempt to prove the main theorem of the present paper, and
many of the methods used to construct the Adams spectral sequence are adapted to the
present work. Nonetheless, it appears that the only way we explicitly use the Adams spectral
sequence is in the fact that cells are characterized by their homology.

Corollary 2.9. [24, 12.1] If X is a G-spectrum with πA∗ (X) ∼= πA∗ (G/H+) then X ' G/H+.

The proof proceeds by giving an explicit resolution of πA∗ (G/H+) in A(G), and then
observing that this gives appropriate vanishing at the E2-page so as to ensure an isomorphism
πA∗ (X) ∼= πA∗ (G/H+) lifts to a homotopy class of maps G/H+ −→ X. Since πA∗ detects weak
equivalences, this suffices. Evidently, this argument applies in any model category with a
similar Adams spectral sequence.

In the present paper, we often need to know how our chosen cells behave under functors
between model categories. We will apply the corollary repeatedly to see that each cell maps
to the obvious object up to equivalence.
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3. Cochain ring spectra

The purpose of this section is to discuss the particular model of G-spectra that we use.
Much of our argument takes place at the level of homotopy categories, but we need several
formal properties that depend on properties of functors at the model category level. In
various ways these are all associated to monoidal structure.

The required properties of the model category of G-spectra itself are standard properties
of monoidal model categories, enjoyed by all models that we might consider. Next, we need
certain properties of the change of groups functors relating the properties of G-spectra to
those of Q-spectra for subquotients Q of G. One could imagine formalizing the required
properties of all these model categories and functors, but we will just use models for which
fixed point and inflation functors have good behaviour with respect to the smash product.

Finally, we might ask for properties of the monoidal structures themselves. For homotopy
level arguments we just need to know standard properties (bilinearity, compatibility with
suspension and space level constructions etc). The delicacy arises from the need to consider
arguments modelled on those of commutative ring theory, in precisely the sense that the ring
spectra are E∞-rings (i.e., algebras over a non-equivariant E∞-operad, which is to say E ′∞
in the sense of McClure [53]). It is convenient for our arguments that the commutative rings
are the commutative monoids for the smash product. However, the commutative monoids
for the smash product on orthogonal G-spectra have additional structure (such as norms)
that are incompatible with the homotopy type of some commutative rings. Accordingly,
it is convenient to use a different smash product, but one which has the same underlying
homotopy type.

In Subsections 3.A and 3.B we introduce some of our basic decisions about coefficients. In
Subsection 3.C we discuss some of the ring spectra that we need in general terms. Finally,
in Subsection 3.D we describe the Blumberg-Hill model of spectra that we use, and explain
why it has the properties we require.

3.A. The sphere spectrum. Just as abelian groups are Z-modules, giving Z a special
role, so too spectra are modules over the sphere spectrum S. Although S is the suspension
spectrum of S0, we will generally use the special notation S to emphasize its special role.
Since we are working rationally, S will denote the rational sphere spectrum, a commutative
ring constructed as a localization of the unit object.

3.B. Choice of coefficients. Central to our formalism is that we consider ‘rings of func-
tions’ on certain spaces, and then consider modules over these. In effect we take a suitable
model for cochains on the space with coefficients in a ring. The purpose of the present
subsection is to describe the options at the level of the homotopy category, and explain why
we end up simply using the functional dual DX = F (X, S) rather than one of the natural
alternatives.

If X is a G-space and k is a ring G-spectrum then we may write

C∗(X; k) := DkX+ := FS(X+, k)

for the G-spectrum of functions from X to k. The first notation comes from the special
case of an Eilenberg-Mac Lane spectrum, which gives a model for cohomology. The second
notation comes from the special case k = S of the functional dual. This spectrum has a ring
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structure using the multiplication on k and the diagonal map of X. If k is a commutative
ring spectrum then so is C∗(X; k).

There are a number of related ring spectra of this form associated to different choices of
k and we briefly discuss their properties before explaining which is most relevant to us.

First, we could take k to be the rational sphere G-spectrum S, alternatively, we could take
it to be one of two Eilenberg-Mac Lane G-spectra associated to Green functors. The first
Green functor is the Burnside functor A, whose value on G/H is the Burnside ring of H,
and the second Green functor is the constant functor Q.

To start with we observe that there are maps

S −→ HA −→ HQ
of ring G-spectra where the first map kills higher homotopy groups and the second kills the
augmentation ideal. It is elementary to construct these by killing homotopy groups in the
category of E∞-rings. In fact A and Q are Tambara functors, and one expects such maps
can be constructed by the process of killing homotopy groups conducted in the category of
commutative ring G-spectra1. Any G-space X has a diagonal and a map to the terminal
object, making it a cocommutative coring, adding a disjoint basepoint and mapping into our
sequence of maps of commutative ring spectra we obtain the sequence

DSX+ −→ DHAX+ −→ DHQX+

of ring spectra. These are very far from being equivalences in general. For the second map
that is clear since A(G/H) 6= Q if H is a non-trivial finite subgroup. For the first, it is clear
from the fact that S has non-trivial higher homotopy (even rationally) when G is not finite.

Lemma 3.1. (i) If X is free, the above maps are equivalences

DSX+ ' DHAX+ ' DHQX+

of G-spectra.
(ii) If X has only finite isotropy, then the first map is an equivalence

DSX+ ' DHAX+

of G-spectra.

Proof: For Part (i) we note that S, HA and HQ all have non-equivariant homotopy Q in
degree 0.

For Part (ii), S is (rationally) an Eilenberg-Mac Lane spectrum for any finite group of
equivariance by tom Dieck splitting (see [30, Appendix A]). �

The functor DHQ has the convenient property that there is an equivalence

(DHQY )G ' DHQ(Y/G)

for any based G-space Y . On the other hand, this lets us calculate values which show the
functor is not the one we want to use (specifically, the homotopical analysis of [24] makes clear

1A full justification would involve generalizing the arguments of [68] to the compact Lie case. Essentially
we need to know that there are free EG

∞-ring spectra (i.e., free as equivariant E∞-rings) and that ordinary
cohomology with coefficients in a Tambara functor is represented by a commutative ring spectrum. However
in this section we are only explaining why we discard some options, so it suffices to consider the underlying
maps of spectra.

15



that the homotopy groups of the cochains on EF+ should be those of DSEF+). Henceforth
we simply write

D(·) = DS(·)
for the rational functional dual.

3.C. Some commutative ring spectra. Our arguments use ideas from commutative al-
gebra, so we want to work in a context where certain G-spectra R behave like commutative
rings. What we need is a symmetric monoidal category of R-modules with a well behaved
homotopy category, which behaves well under various change of groups constructions. It
is conceptually simplest if we work in a category of G-spectra where the relevant rings R
actually are commutative monoids, and we will describe such a context in Subsection 3.D.

For now we identify ring structures by operad actions. We are essentially recording the
observations of McClure [53], but updating terminology. We say that a G-spectrum X is an
E∞-ring if it has an action of a non-equivariant E∞-operad (viewed as a G-fixed G-space),
such as the linear isometries operad on a G-fixed universe. This is the least restrictive type
of N∞-operad (in the sense of Blumberg-Hill [10]), the one that is as free as possible (so
that the n-th term is universal for the family of all subgroups of G×Σn of the form H × 1).
A G-spectrum is an EG

∞-ring if it has an action of a G-equivariant E∞-operad (such as the
linear isometries operad on a complete G-universe). This is the most restrictive type of
N∞-operad, with isotropy as large as possible (so that the n-th term is universal for the
family of all subgroups of G×Σn intersecting Σn in the trivial group). The ring spectra we
need are rather obviously E∞-ring spectra, whereas in some cases it requires extra work to
show that they are EG

∞-ring spectra. McClure observes that EG
∞-rings have more structure

that E∞-rings; this structure is used in [31] to define multiplicative norm maps, and the
relationship between the EG

∞ structure and the norm maps is studied systematically by Hill
and Hopkins [40]. In particular this shows that for a finite group F , an EG

∞-ring spectrum
which is non-equivariantly contractible must be F -equivariantly contractible (since the norm
of the unit is the unit).

Our examples start with the function spectrum DEF+. This is an EG
∞-ring by [53, Lemma

4 (a)] since it consists of maps from a G-space of the form X+ (which has a strictly cocommu-
tative diagonal) into the EG

∞-ring S. We then wish to consider the spectra S∞V (H) ∧DEF+

for connected subgroups H, where

S∞V (H) =
⋃

V H=0

SV .

The homotopy type S∞V (H) ∧ DEF+ can be obtained as a smash product as written, or
as the Bousfield localization of DEF+ with respect to S∞V (H). The importance of S∞V (H)

is firstly that it has geometric isotropy consisting of precisely the subgroups containing H,
and secondly that because of the way it is built from spheres it gives a close connection to
algebraic localizations.

Furthermore S∞V (H) also has excellent multiplicative properties. It is clear that it is a
commutative ring up to homotopy, and by the argument of [53, Lemma 3] it is a based
E∞-space. Alternatively one may apply [40] to see that Bousfield localization preserves
the existence of an action by a non-equivariant E∞-operad. Because G acts trivially on the
operad, an E∞-ring G-spectrum has the property that its categorical H-fixed point spectrum
is a G/H-spectrum which is also an algebra over an E∞-operad. To avoid having to discuss
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flatness, if R is an E∞-ring, we will always construct S∞V (H)∧R as an E∞-ring by Bousfield
localization. The derived smash product gives the homotopy type, and we use the notation
S∞V (H)∧R for the localization to remind us of this.

The other construction we will need corresponds to taking countable products of commu-
tative rings. It is clear that if objects Ai admit an action of an operad O, then so does the
product

∏
iAi. This only uses categorical properties of products. If this is to be homotopi-

cally meaningful we need to assume as usual that the objects Ai are fibrant. We will apply
this when O is an E∞-operad.

Remark 3.2. The geometric isotropy of the spectrum S∞V (H) consists of the subgroups
containing H. If H is not connected, the norm from the identity component He to H shows
that the spectrum S∞V (H) does not admit the structure of and EG

∞-ring. However, if H is
connected, any inclusion L ⊆ K from outside the geometric isotropy (i.e., L 6⊇ H) to inside
the geometric isotropy (i.e., L ⊆ H) is of infinite index, so the norm obstructions vanish.
In fact [29] one may generalize McClure’sargument to show that in this case S∞V (H) is an
EG
∞-ring. This means that in fact all the rings we need to discuss are EG

∞-rings.

3.D. The category of orthogonal L-spectra. We wish to work in a monoidal category
of G-spectra in which the rings we work with are commutative monoids. In this section we
describe our chosen category. One option is to work with orthogonal G-spectra: in view of
Remark 3.2 the rings we work with are EG

∞-rings, and these are precisely the the commutative
monoids in orthogonal G-spectra. As shown in Remark 3.4, this would provide foundations
for our work. However, since [29] is not yet in final form, we have followed an alternative
route.

We retreat to E∞-rings and use a category of spectra in which the commutative monoids
are the E∞-rings. It is natural to use the ‘operadic smash product’ approach of Elmendorf-
Kriz-Mandell-May [16] applied to orthogonal G-spectra. Such a category has been set up
by Blumberg and Hill in [11]; their main concern is to understand the homotopy theory of
different types of norm and different degrees of commutativity. Since we are only concerned
with the simplest type of commutativity and not with norms at all, we only need the more
formal parts of their argument, which apply to all compact Lie groups [11, Appendix B].

We are very grateful to Blumberg and Hill for discussions about their category, and for
explicitly including statements from which the properties we require are apparent. We would
also like to thank Blumberg for suggestions which led to the current approaches to Properties
(11) and (12) in Proposition 3.3 below.

The construction starts with the category GSpO of orthogonal G-spectra based (additively)
on a complete orthogonal G-universe U as usual. For the multiplicative properties, we now
choose a G-fixed universe V (i.e., infinite dimensional but with trivial G-action) with a view
to constructing an operadic smash product based on the V-linear isometries operad.

More precisely, we let L denote the non-equivariant linear isometries operad defined by

L(n) = Isom(Vn,V).

There is an associated monad L given by smashing with L(1)+ and we consider the category
GSpO[L] of L-algebras in orthogonal G-spectra. Applying L is left adjoint to the forgetful
functor relating orthogonal G-spectra to those with an L action. Since L(1) is contractible,
the functors relate objects with the same underlying homotopy type. Precisely as in [16],
the category of L-spectra has a symmetric monoidal smash product ∧L and we restrict to
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those which are unital in the sense that the unit map S ∧L X −→ X is an isomorphism.
This category GSpOL of unital L-orthogonal G-spectra (denoted GSU in [11]) is analogous to
the category referred to as S-modules in [16], and is a monoidal model category satisfying
the monoid axiom.

Proposition 3.3. For a compact Lie group G, the category of orthogonal G-equivariant
L-spectra, GSpOL , has the following properties

(1) It is a weakly symmetric, monoidal, proper, G-topological model category satisfying
the monoid axiom with weak equivalences detected by the forgetful functor

U : GSpOL −→ GSpO

to orthogonal G-spectra.
(2) The functor U is a right Quillen functor inducing an equivalence of homotopy cate-

gories, and preserves and detects all weak equivalences.
(3) The functor U is lax monoidal, so the smash product is compatible with this equiva-

lence of homotopy categories, and in the non-equivariant setting is monoidally equiv-
alent to the usual smash product of orthogonal spectra.

(4) The monoids in GSpOL are non-Σ algebras over the linear isometries operad L
(5) The commutative monoids in GSpOL are algebras over the linear isometries operad L,

and hence E∞-ring spectra.
(6) The Bousfield rationalization S of the sphere spectrum (see Property (8)) is a com-

mutative monoid in GSpOL .
(7) The category of commutative monoids in GSpOL is cotensored over unbased spaces.
(8) All left Bousfield localizations preserve commutative monoids, so that if A is a com-

mutative monoid, for any E the map A −→ LEA is a map of commutative monoids.

The equivariant categories for G and its quotients are related as follows.

(9) For any closed normal subgroup K, inflation

infGG/K : G/KSpOL −→ GSpOL

from G/K-spectra to G-spectra is strong symmetric monoidal and therefore takes
commutative monoids to commutative monoids. Inflation is a left Quillen functor.

(10) The K-fixed point functor (·)K : GSpOL −→ G/KSpOL is lax symmetric monoidal and
hence preserves commutative monoids. The K-fixed point functor is a right Quillen
functor.

(11) There is a zig-zag of Quillen equivalences between commutative monoids in 1-spectra
and commutative monoids in symmetric spectra. Let

F : Ho(comm-mon-SpOL) −→ Ho(comm-mon-SpΣ)

denote the derived functor.
(12) For a commutative monoid A in 1-spectra, there is a Quillen equivalence

A-mod-SpOL 'Q FA-mod-SpΣ

between the categories of A-modules over 1-spectra and FA-modules over symmetric
spectra.
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Proof: (1) is [11, 4.2, 4.6].
(2) is [11, 4.3, 4.8].
(3) is [11, 4.3, 4.9].
(4) and (5) are [11, 3.18].
(6) is a special case of (8) given the fact that the sphere spectrum is a commutative

monoid.
(7) is [11, 3.19].
(8) is [41, 6.4]. This shows that the non-equivariant proof in [16, VIII.2.2] extends to the

equivariant case.
(9) and (10) are [11, 3.24, 4.18].
(11): First, [11, 3.18], referring to [16, II.4.6], shows that commutative monoids in non-

equivariant L-spectra are isomorphic to the category of E∞-algebras in orthogonal spectra.
Then [55, 0.14] shows that E∞-algebras in orthogonal spectra and in symmetric spectra are
Quillen equivalent and both are Quillen equivalent to the respective categories of commuta-
tive monoids.

(12): The category of modules over a commutative monoid A in non-equivariant L-spectra
is isomorphic to the category of operadic modules over the associated E∞ orthogonal spec-
trum UA from [11, 3.18]. As above, this follows by an analogue of the argument in [16,
II.5.1]. See also [17] for a careful definition of operadic modules via multicategories.

Next we use the monoidal Quillen equivalence between orthogonal spectra and symmetric
spectra from [55, 0.4] to show that the category of operadic modules over an E∞-algebra
in orthogonal spectra is Quillen equivalent to the category of operadic modules over an as-
sociated E∞-algebra in symmetric spectra by [8, 2.14]. Note that the condition in [8, 2.14]
about units is satisfied because the map in question is an isomorphism, and hence a cofibra-
tion. Finally, [17, 1.4] shows that this category of modules over an E∞-algebra is Quillen
equivalent to the category of modules over a commutative monoid in symmetric spectra. The
commutative monoid here may differ from the image of F, but the two are weakly equivalent.
The statement then follows by [46, 5.4.5]. �

Remark 3.4. Properties (1) - (12) embody very natural requirements of equivariant spec-
tra. We would expect our general strategy to be effective in other models when analogous
properties hold.

In particular, for the category GSpO of orthogonal G-spectra itself, properties (1), (2) and
(3) are obvious (since U is replaced by the identity functor), and similarly properties (11) and
(12) become trivial. Properties (7), (9) and (10) are basic properties of orthogonal spectra
[54]. Property (6) is true because the rational sphere is inflated from a fixed spectrum.

The counterparts of Properties (4) and (5) for orthogonal G-spectra replace the linear
isometries operad L on the G-fixed universe V by the linear isometries operad LG on a
complete G-universe V . This uses the traditional argument of [55, 15.5], using [42, B.117],
which in turn corrects [54, III.8.4]. We note that the statement in [42] is only given for
finite groups, but their argument applies to arbitrary compact Lie groups giving the full
replacement for the statement in [54].

Property (8) is not true in GSpO for general A: this is the topic of [40]. We need it for
A = S∞V (H) with H connected: [29] shows S∞V (H) is a commutative ring and we may obtain
the localization by taking tensor product with S∞V (H).
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Part 2. Formality of the sphere spectrum

4. Diagrams of rings and modules

Throughout this paper we consider categories of modules over diagrams of rings in three
contexts: differential graded modules over DGAs, module spectra over ring spectra, and
module G-spectra over ring G-spectra. In this section we describe the context and the basic
Quillen equivalences arising from a pullback diagram of rings. These and related results are
discussed more fully and proved in [37].

4.A. The archetype. Given a diagram shape D, consider a diagram of rings R : D −→ C
in a symmetric monoidal category C. Each map R(a) : R(s) −→ R(t) gives rise to an
extension of scalars functor

R(s)-mod
a∗−→ R(t)-mod

defined by a∗(X) = R(t)⊗R(s) X, with right adjoint the restriction of scalars functor

R(s)-mod
a∗←− R(t)-mod.

Now consider a category of R-modules; the objects are diagrams X : D −→ C for which
X(s) is an R(s)-module for each object s, and for every morphism a : s −→ t in D, the
map X(a) : X(s) −→ X(t) is a module map over the ring map R(a) : R(s) −→ R(t).
More precisely, there is a map X(s) −→ a∗X(t) of R(s)-modules (the restriction form) or,
equivalently, there is a map

R(t)⊗R(s) X(s) = a∗X(s) −→ X(t)

of modules over the ring R(t) (the extension of scalars form). Despite the simplicity of
restriction of scalars, we view the left adjoint a∗ as the primary one, following the convention
that the left Quillen functor dicates the direction of a Quillen pair.

4.B. Model structures. We say that a pseudo-functor M : D −→ Cat is a diagram of
model categories if each category M(s) has a model structure, the functors a∗ all have right
adjoints and the adjoint pair a∗ a a∗ of functors relating the model categories form a Quillen
pair.

For instance, the motivating example of a diagram of ring spectra (or DGAs) gives a
diagram of model categories if we use the projective model structure on the category M(s)
of R(s)-modules; see, for example, [61, 4.1].

When M is a diagram of model categories, there are two ways to attempt to put a model
structure on the category of M-diagrams {X(s)}s∈D. The diagram-projective model structure
(if it exists) has its fibrations and weak equivalences defined objectwise. The diagram-
injective model structure (if it exists) has its cofibrations and weak equivalences defined
objectwise. It must be checked in each particular case whether or not these specifications
determine a model structure. When both model structures exist, it is clear that the identity
functors define a Quillen equivalence between them.

We will apply [37, Theorem 3.1] to show that the diagram-projective and diagram-injective
model structures exist in the cases of interest to us.
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4.C. Pullback diagrams of rings. The basic input from the diagrams of model categories
from [37] is as follows. Recall from [44, 5.1.1] that an inverse category, D, requires a linear
extension from Dop to an ordinal. This is dual to the notion of a direct category.

Proposition 4.1. [37, Proposition 4.1] For D a finite, inverse category with at most one
morphism in each D(s, t) and R a D-diagram of ring spectra with homotopy inverse limit
R, there is a zig-zag of Quillen equivalences between the category of R-modules and the
cellularization with respect to R of R-modules (with the diagram-injective model structure):

R-mod 'Q R-cell-R-mod

We will apply this when D is a punctured cube, and R = S is the sphere spectrum. Indeed
the category of G-spectra is equivalent to the category of module-G-spectra over the sphere
spectrum S. By Proposition 4.1, this is in turn equivalent to the cellularization of a category
of modules over a diagram of ring G-spectra. The rest of the work will be based on diagrams
of this punctured cube shape. The argument proceeds by replacing the diagram of ring
G-spectra successively by diagrams of nonequivariant ring spectra, DGAs and finally graded
commutative rings.

Our next task is the homotopical core of the paper. We show that the sphere is the
pullback of a diagram of spectra which are both isotropically simpler and very rigid.

5. The sphere as an isotropic pullback

Our analysis is based on expressing the sphere spectrum as the homotopy pullback of an
(r + 1)-cube of ring G-spectra. When G is the circle group this is the F -Tate square [30]

S0 //

��

ẼF

��

DEF+
// ẼF ∧DEF+,

but usually it is more complicated. In fact we will construct a diagram R̃top : C −→
Ring-G-spectra where the cube C is the poset of subsets of {0, . . . , r}, where S is the value
on the initial vertex (the empty set) and so that this is equivalent to the homotopy pullback

of the restriction of R̃top to the punctured cube PC of non-empty subsets.

5.A. Strategy. In the course of the proof, we will need to consider an extension of R̃top

to a bigger diagram, and we introduce this extended diagram as we go along. The cube C
above will appear as C = Cf in due course. The letter f stands for ‘formal’ though the word
‘affine’ or the word ‘rigid’ would be sensible alternatives. Corollary 6.2 will show that the

sphere spectrum is the homotopy pullback of R̃top restricted to the punctured cube PCf ,
so that the results of [37] (as quoted in Proposition 4.1) show that the category of modules
over the sphere spectrum is equivalent to the cellularization of the category of modules over
the PCf -diagram of ring G-spectra. The reason this is useful is that the ring G-spectra A
at the vertices of the punctured cube PCf have two very special rigidity properties. Firstly,
as in [36] passage to G-fixed points gives an equivalence between categories of A-module-G-
spectra and categories of AG-module-spectra. This means we can reduce from considering

R̃top-modules in G-spectra to considering modules over the PCf -diagram Rtop = (R̃top)
G
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of non-equivariant ring spectra. We can then use the second author’s results to move to
considering modules over a PCf -diagram Rt of DGAs. The second feature of the spectra
A is that πG∗ (A) = π∗(A

G) is intrinsically formal in that any commutative DGA with this
homology is equivalent to πG∗ (A) with zero differential. As shown in Section 9, the proof
of this is compatible with the PCf -diagram, so we are reduced to considering DG-modules
over a PCf -diagram Ra of graded rings. We may then show the cellularized category of
Ra-modules is equivalent to the category A(G) of [24].

Our first task (Sections 5 and 6) is to describe the (r + 1)-cube Cf of ring spectra with
the sphere spectrum at the initial vertex and to show it is a homotopy pullback. We will do
this in steps: we identify Cf inside a larger diagram Cif containing a second cube Ci, giving
inclusions of diagrams

Ci ⊆ Cif ⊇ Cf ,

and we will prove equivalences

S0 1

'
// holim
← v∈PCi

R̃top(v) holim
← v∈PCif

R̃top(v)
2

'
oo 3

'
// holim
← v∈PCf

R̃top(v).

Of these, Equivalence 2 is elementary, since PCi is cofinal in PCif . Equivalence 1 (Proposi-
tion 5.6) is the essential one, since in fact Equivalence 3 (Proposition 6.1) is essentially given
by using Equivalence 1 repeatedly for quotient groups of lower rank.

For this reason we will begin with the cube Ci of ring spectra constructed purely on
isotropical principles, and Equivalence 1. Since the ring G-spectra at the vertices of the
punctured cube PCi do not have the rigidity properties we need, we will then take the
further step of reducing to the diagram on the punctured cube PCf .

For the rest of Sections 5 and 6 we simpify notation and write R̃ = R̃top.

5.B. The isotropic cube. We consider the coordinates (a0, a1, . . . , ar) where each coordi-
nate ai can take the value 0 or 1. For 0 ≤ c ≤ r − 1 the cth coordinate refers to connected
subgroups of codimension c. The rth coordinate also refers to codimension r (i.e., to finite
subgroups), but these must be treated differently, and in effect it refers to whether or not
the ring is complete (roughly speaking, whether it is S0 or DEF+). Throughout the rest
of Part 2, subgroups H,K,L will be connected, and the disconnected subgroups only enter
through the final factor DEF+ and its counterparts for quotient groups.

To a first approximation, the idea is that the cube is obtained by smashing together r+ 1
maps of rings, with S0 = Ai(0) −→ Ai(1) in the ith coordinate, so that R̃(a0, . . . , ar) =∧r
i=0Ai(ai). However we need to refine this, so as to assemble information from individual

subgroups, and reflect containments of subgroups.
The simplest coordinates are the 0th and rth, where we have A0(1) = S∞V (G) and Ar(1) =

DEF+. In the rank 1 case, this is everything, so we obtain the usual diagram

S0 ∧ S0 //

��

S∞V (G) ∧ S0

��

S0 ∧DEF+
// S∞V (G) ∧DEF+.

To get a diagram of commutative rings, smashing with S∞V (G) is replaced by localization
with respect to it.
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Supposing r ≥ 2 we now move on to the other coordinates. For 1 ≤ i ≤ r − 1, for each
connected subgroup K, we take

AK(1) = S∞V (K),

and then

Ai(1) =
∏

codim(K)=i

AK(1) =
∏

codim(K)=i

S∞V (K).

The formula for codimensions 0 and r fits the same pattern, although there is only one term in
the product and containment imposes no restrictions. To make the formulae typographically
manageable we need to introduce some more notation. Indeed, in the ith spot we need to
have index sets I(i, 0) and I(i, 1) for certain products. The index set I(i, 0) is a singleton
and

(5.1) I(i, 1) = {H | H is connected and codim(H) = i}.
Now we can define the ring spectrum to be placed at the (ar, . . . , a0) vertex. We recall
that S∞V (H)∧A denotes the Bousfield localization of a E∞-ring spectrum A with respect to
S∞V (H), and that this has the homotopy type of the ordinary smash product S∞V (H) ∧ A.
The functor S0∧ is the identity.

R̃(a0, . . . , ar) = A0(a0)∧
∏

H1∈I(1,a1)

[
AH1(a1)∧

∏
H2∈I(2,a2),H2⊂H<2

[
AH2(a2)∧ · · ·

· · · ∧
∏

Hr−1∈I(r−1,ar−1),Hr−1⊂H<r−1

[
AHr−1(ar−1)∧Ar(ar)

]
· · ·
]]

Remark 5.1. (a) To help parse this, note that in the sth term we have S0 if as = 0 and
otherwise it is the product of copies of S∞V (H) as H runs through codimension s subgroups
contained in the earlier subgroups (the notation Hs ⊂ H<s allows for the fact that only
terms with at = 1 correspond to actual subgroups).

(b) Note that the products include everything to the right of them so the ordering of the
vertices is important. From now on, we will often omit parentheses, relying on the ‘products
include everything to the right’ convention to simplify typography.

(c) This notation shows all structure maps clearly, but the formula is easier to digest if
we pick out just those indices with ai 6= 0, say ic0 < ic1 < . . . < ics . In this case if cs < r we
have

R̃(a0, . . . , ar) =
∏

codimH0=c0

[
S∞V (H0)∧

∏
codimH1=c1,H1⊂H0

[
S∞V (H1)∧

∏
codimH2=c2,H2⊂H1

[
S∞V (H2)∧ · · · ∧

∏
codimHs=cs,Hs⊂Hs−1

[
S∞V (Hs)

]
· · ·
]]]

and if cs = r we have

R̃(a0, . . . , ar) =
∏

codimH0=c0

[
S∞V (H0)∧

∏
codimH1=c1,H1⊂H0

[
S∞V (H1)∧

∏
codimH2=c2,H2⊂H1

[
S∞V (H2)∧ · · · ∧

∏
codimHs−1=cs−1,Hs⊂Hs−2

[
S∞V (Hs−1)∧DEF+

]
· · ·
]]]
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The notation somewhat obscures the simplicity of this construction. Thus in rank 2, we
have

R̃(a0, 0, a2) = A0(a0)∧S0∧A2(a2)

and

R̃(a0, 1, a2) = A0(a0)∧
∏

dim(H)=1

[
AH(1)∧A2(a2)

]
.

It is worth writing the diagram completely in this case. The layout is

(010) //

��

(110)

��

(000) //

��

;;wwwwwwwww
(100)

��

;;wwwwwwwww

(011) // (111)

(001) //

;;wwwwwwwww
(101)

;;wwwwwwwww

and the diagram of ring spectra is as follows:∏
H S

∞V (H) //

��

S∞V (G)∧
∏

H S
∞V (H)

��

S0 //

��

66mmmmmmmmmmmmmmm
S∞V (G)

��

44hhhhhhhhhhhhhhhhhhh

∏
H S

∞V (H)∧DEF+
// S∞V (G)∧

∏
H S

∞V (H)∧DEF+

DEF+
//

66mmmmmmmmmmmmm
S∞V (G)∧DEF+

44iiiiiiiiiiiiiiiii

One r dimensional face will play a preferred role in our proof that this cube is a homotopy
pullback, so we give a special name to the a0 = 0 face (the left hand face in the above
illustration). The r-cube diagram R′ is defined by

R′(a1, . . . , ar) = R(0, a1, . . . , ar).

We note that

R = (S0 −→ S∞V (G))∧R′.
This notation will be even more convenient when we refine the filtration S0 −→ S∞V (G).

5.C. Observations about isotropy. It is natural to consider a filtration of all subgroups
by dimension, so we let

F≤i = {H | dim(H) ≤ i} and C≥i = {H | dim(H) ≥ i}
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The first is a family and the second is a cofamily. We also need to consider the subgroups
above and below a fixed group K:

Λ(K) = {H | H ⊆ K} and V (K) = {H | K ⊆ H}.

Again, the first is a family and the second is a cofamily.
The point is that the category of spectra with geometric isotropy in the cofamiliy V (K) of

subgroups (the spectra “over K”) is equivalent to the category of G/K-spectra. To obtain
good inductive arguments we want to express the naturally occurring sets of isotropy in
terms of those of the form V (K).

We are burdened with a standard notation in which the geometric isotropy is given by

GI(ẼF) = All \ F , so we adopt the convention that for any cofamily C

XC := X ∧ Ẽ(All \ C),

so that

GI(XC) = GI(X) ∩ C

and in particular

SC = Ẽ(All \ C), giving GI(SC) = C.

This notation extends naturally to families, and indeed to any collection of subgroups which
can be expressed as an intersection between a family and a cofamily.

We abbreviate further, taking

S≥i = SC≥i
and consider the filtration

S = S≥0 −→ S≥1 −→ S≥2 −→ · · · −→ S≥r = S∞V (G).

More precisely we realise this filtration by cofibrations in the category of commutative ring
spectra by a process of localization; this is possible by Proposition 3.3 (8).

Lemma 5.2. For any map f : X −→ Y of G-spectra which is which is an equivalence in
ΦH-fixed points for H of dimension i then the square

S≥i ∧X //

��

S≥i+1 ∧X

��
S≥i ∧ Y // S≥i+1 ∧ Y

is a homotopy pullback. If the map X −→ Y is a map of commutative ring spectra and ∧ is
replaced by ∧ then this is a homotopy pullback of commutative ring spectra.

Proof: The space S≥i+1/S≥i has geometric isotropy concentrated on subgroups H of dimen-
sion exactly i. This means it can be built from cells G/K+ where K has dimension ≤ i. �

We will apply this to a large number of slightly different maps, but it is worth highlighting
one which embodies the philosophy.

25



Corollary 5.3. For any G-spectrum X, the square

S≥i ∧X //

��

S≥i+1 ∧X

��

S≥i ∧
∏

dim(H)=i S
∞V (H) ∧X // S≥i+1 ∧

∏
dim(H)=i S

∞V (H) ∧X

where the products are over connected subgroups of dimension i, is a homotopy pullback. If
the map X is a commutative ring spectrum and ∧ is replaced by ∧ then this is a homotopy
pullback of commutative ring spectra.

Remark 5.4. (i) The bottom left hand entry is equivalent to
∏

dim(H)=i S
∞V (H) ∧ X since

all terms are F≤i−1-contractible.
(ii) The essence of the corollary is that we can start with S≥r∧X = S∞V (G)∧X, and build

X = S≥0 ∧ X in steps. At each stage S≥i ∧ X can be constructed as a homotopy pullback
from S≥i+1 ∧X by using only spectra of the form S∞V (H) ∧X for subgroups H of dimension
i.

Since the category of module G-spectra over S∞V (H) is equivalent to the category of G/H-
spectra, this establishes an inductive scheme.

Proof of 5.3: We apply Lemma 5.2 to the map X −→
∏

H S
∞V (H) ∧ X, so we need to

verify this is a non-equivariant equivalence in geometric K-fixed points for K of dimension
≤ i.

If K is a subgroup of dimension less than i then all terms are K-contractible. If K is of
dimension i, there is precisely one factor in the product which is not K-contractible (namely
with H the identity component of K), and ΦKS∞V (H) = S0, so that X −→ S∞V (H) ∧X is
an equivalence after applying ΦK . �

The variant that we will apply is obtained by adapting a special case of this corollary.

Corollary 5.5. For X = R̃(a0, . . . , ai−1, 0, ai+1, . . . , ar) and Y = R̃(a0, . . . , ai−1, 1, ai+1, . . . , ar),
the square

S≥i∧X //

��

S≥i+1∧X

��
S≥i∧Y // S≥i+1∧Y

is a homotopy pullback of commutative ring spectra.

Proof: First note that if as 6= 0 for some s < i, this is immediate, since if H is of dimension
s > i then S∞V (H) is F≤i-contractible.

Now consider the case a0 = · · · = ai−1 = 0. This is very close to the special case of
Corollary 5.3 in which

X =
∏

Hi+1∈I(i+1,ai+1)

[
AHi+1(ai+1) ∧

∏
Hi+2∈I(i+2,ai+2),Hi+2⊂H<i+2

[
AHi+2(ai+2) ∧ · · ·

· · · ∧
∏

Hr−1∈I(r−1,ar−1),Hr−1⊂H<r−1

[
A
Hr−1

r−1 (ar−1) ∧ Ar(ar)
]
· · ·
]]
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This is the value of X in the present corollary. The main difference is that instead of taking
Y to be given as

∏
H S

∞V (H) ∧ X, the products in the Hth factor are now restricted to
subgroups of H.

To see that this does not alter the fact that we have a pullback square, we need only
observe that the omitted factors in the products in the Hth factor are F/H-contractible.
Indeed, if K is a connected subgroup with K 6⊆ H, and H̃ has identity subgroup H then
K 6⊆ H̃ and so S∞V (K) is H̃-contractible. �

5.D. The isotropic cube is a homotopy pullback. We are ready to prove that the
isotropic cube is a homotopy pullback.

Proposition 5.6. The Ci-diagram R̃ is a homotopy pullback, which is to say that the sphere
spectrum S is the homotopy pullback of R̃ restricted to the punctured cube PCi:

S ' holim
← v∈PCi

R̃(v).

Remark 5.7. The corresponding statement is also true for the diagram in which the products
in the definition of the ring spectrum are over all S∞V (H) with H connected of a fixed
codimension (the proof is the same, except that one applies Corollary 5.3 instead of Corollary
5.5). The reason for restricting to products over decreasing flags is to obtain an algebraically
tractable result.

Proof of Proposition 5.6: Some readers may find it helpful to refer to the case of Rank
2 made explicit in Subsection 5.E whilst reading this proof.

The method is to use a succession of intermediate homotopy pullbacks inside the cube.
We place the terms of the intermediate homotopy pullbacks along the a0 edges of PCi. It is
helpful to describe first the basic filtration we are using.

The general reconstruction process works by enlarging the diagram to permit the 0th
coordinate to run through the entire filtration

S = S≥0 −→ S≥1 −→ S≥2 −→ · · · −→ S≥r = S∞V (G).

We do this by letting a0 take on the fractional values 0 = 0/r, 1/r, . . . , r/r = 1 and take

R̃(i/r, a1, . . . , ar) = S≥i∧R̃′(a1, . . . , ar);

For brevity we write
R̃′(i/r) = S≥i∧R̃′

for these r-cube diagrams.
The idea is to imagine filling in the values of the diagram from scratch. To start with,

we are given the values at PCi (this includes all entries with a0 = 1 = r/r). We then
show successively for a0 = (r − 1)/r, (r − 2)/r, . . . , 1/r, 0/r = 0 that the entries in the
diagrams of ring spectra R̃′(a0) can be filled in (using only homotopy equivalences and
homotopy pullbacks) from values already filled in. The only value of real importance is
S = S≥0 = R̃(0, . . . , 0), but it is easier to describe a uniform procedure which fills in other
entries on the way.

At the start, we are given the ring spectra R̃(a0, . . . , ar) for vertices of PCi. This means
all vertices with ar ∈ {0, 1} and not all entries ai zero. We observe first that the entries at
many other points are equivalent to these.
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Lemma 5.8. Provided aj = 1 for some j ≤ i we have an equivalence

S≥i∧R̃′(a1, . . . , ar) ' R̃′(a1, . . . , ar)

of commutative ring spectra.

Proof: The mapping cone of the comparison map is EF≤i−1
+ ∧ R̃′(a1, . . . , ar). If dim(H) = j

then S∞V (j) is F≤i−1-contractible so the mapping cone is contractible. �

Now suppose that the entries of R̃′((i+ 1)/r) are filled in. To fill in the entries of R̃′(i/r)
with ai = 1 we use Lemma 5.8, and for the points with ai = 0 we apply Corollary 5.5, with
X = R̃′(a1, . . . , ai−1, 0, ai+1, . . . , ar) and Y = R̃′(a1, . . . , ai−1, 1, ai+1, . . . , ar). �

5.E. The case of rank 2. The above inductive scheme is sufficiently complicated that it
seems worth making one case explicit.

Consider the following diagram.∏
H S

∞V (H) ' //

��

ẼF∧
∏

H S
∞V (H) //

��

ẼP∧
∏

H S
∞V (H)

��

S0 //

��

66mmmmmmmmmmmmmmm
ẼF //

��

55jjjjjjjjjjjjjjjjjjj
ẼP

��

55jjjjjjjjjjjjjjjjjjj

∏
H DEF+∧S∞V (H) ' // ẼF∧

∏
H DEF+∧S∞V (H) // ẼP∧

∏
H DEF+∧S∞V (H)

DEF+
//

66nnnnnnnnnnnnnn
ẼF∧DEF+

//

55jjjjjjjjjjjjjj

ẼP∧DEF+

55jjjjjjjjjjjjjj

We have used traditional names S0 = S≥0, ẼF = S≥1 and ẼP = S≥2, where F is the
family of finite subgroups and P is the family of proper subgroups. The zeroth coordinate is
horizontal (left to right on the printed page), the first coordinate is into the paper (diagonally
on the printed page) and the rth coordinate is vertical (downwards on the printed page).
The left hand square is R̃′(0/2), the central square is R̃′(1/2) and the right hand square is
R̃′(2/2).

Thus the left and right hand end (except for S0) are in the PCi-diagram of which we want
to identify the homotopy limit. The back central entries can be filled in by the equivalences
illustrated on the two left hand horizontals without affecting the homotopy limit. Now the
top and bottom faces of the right hand cube are homotopy pullbacks. This means that we
can fill in the two central entries on the front face without affecting the whole homotopy
limit. Finally the front face of the left hand cube is a homotopy pullback, so that S0 is the
homotopy limit of the original PCi-diagram.

6. The sphere as a formal pullback

We now move towards introducing the formal cube. As described above, we will define
this by extending Ci to a larger diagram Cif and then finding Cf inside it. We briefly explain
the motivation.

The Ci-diagram does not do what we require, since the terms S∞V (K) are not formal unless
K = G. However a strategy is already apparent from our work on the isotropic cube in lower
ranks. To see the idea, we may imagine that we have already completed the proof for lower
ranks, and constructed theG/K-sphere S0 from formal ringG/K-spectra B. Accordingly, we
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can construct S∞V (K) = S∞V (K)∧S0 from formal G-spectra S∞V (K)∧B. Most of the spectra
B that occur are products of those of the form S∞V (H/K) (and since S∞V (K)∧S∞V (H/K) '
S∞V (H) these correspond to ring spectra in our diagram) which have already been constructed
in lower rank. There is only one other spectrum B, namely DEF/K+, and it is the most
important one. This outlines why the sphere can be constructed from spectra of the form
S∞V (K)∧DEF/K+, and we will give a detailed proof below.

We will extend the Ci-cube to a larger poset Cif also containing the formal cube Cf , and

we will extend R̃ to Cif . Now the ar = 1 face of the Ci cube is the ar = 1 cube of Cf and R̃

already takes formal values on that face. The values of R̃ on the ar = 0 face of Ci are not
formal, and for each point we give a new value at the corresponding point of Cf . The new
formal ring is obtained by identifying the smallest codimension c for which S∞V (K) (rather
than S0) occurs with codim(K) = c and then smashing with DEF/K+.

We flesh out this sketch in the course of the next few subsections, starting by describing
the larger diagram Cif and then identify Cf inside it.

6.A. A subdivision of the isotropic cube. The diagram Cif is obtained from Ci by
inserting new layers in the ar direction. It may be helpful to refer to the rank 2 pictures in
Subsection 6.C whilst reading this account.

Altogether we have r+1 layers placed at ar = i/r for i = 0, 1, . . . , r, interpolating between
the ar = 0 and ar = 1 layers, which are just as before.

We will be using maps to relate the various ring spectra DEF/K+ as K varies. Indeed,
DEF/K+ is a commutative ring G/K-spectrum by Proposition 3.3 (9) and if L ⊆ K there
is a map

inf
G/L
G/KDEF/K+ −→ DEF/L+

of ring G/L-spectra. To see where this comes from, we observe that its adjunct

EF/L+ ∧ inf
G/L
G/KDEF/K+ −→ S0

is obtained by composing the G/L-map EF/L+ −→ EF/K+ with evaluation.
If we have any decreasing sequence

G = H0 ⊇ H1 ⊇ · · · ⊇ Hr−1 ⊇ Hr = 1

of connected subgroups with codim(Hi) = i, then, omitting notation for inflation, we have a
sequence of maps of ring G-spectra

S0 = DE(F/G)+ −→ D(EF/H1)+ −→ . . . −→ D(EF/Hr−1)+ −→ D(EF/1)+ = DEF+

To define the Cif diagram of rings we use the same formula as before except that the range
of values of ar is extended to the fractional values and the rth entry becomes dependent on
other coordinates. More briefly, Ar(ar) is replaced by Ai1,...,irr (a0, . . . , ar). Thus, with I(i, 0)
a singleton and I(i, 1) = {H | H is connected and codim(H) = i} as before, we define the
ring G-spectrum to be placed at the (a0, . . . , ar) vertex:

R̃(a0, . . . , ar) = A0(a0)∧
∏

H1∈I(1,a1)

[
AH1(a1)∧

∏
H2∈I(2,a2),H2⊂H<2

[
AH2(a2)∧ · · ·

· · · ∧
∏

Hr−1∈I(r−1,ar−1),Hr−1⊂H<r−1

[
AHr−1(ar−1, )∧Ai0,...,irr (a0, · · · , ar)

]
· · ·
]]
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For the last term, we take

Ai1,...,irr (a0, · · · , ar) = infGG/HDEF/H+

where the subgroup H = H(i1, . . . , ir; a0, . . . , ar) is determined as follows. When ar = s/r,
we consider the sequence a0, . . . , as; if it is zero we take H = Hi0 = G, and otherwise we find
the last nonzero term at and take the codimension t subgroup Ht:

H(i1, . . . , ir; a0, . . . , ar−1, s/r) := Hlnz(a0,...,as)

where

lnz(a0, . . . , as) = max({t | at 6= 0} ∪ {0}).
Note that since lnz(a0, . . . , as) ≤ lnz(a0, . . . , as, as+1) we have an inclusion

H(i0, . . . , ir−1; a0, . . . , ar−1, s/r) ⊇ H(i0, . . . , ir−1; a0, . . . , ar−1, (s+ 1)/r)

so that we do have the appropriate comparison maps.
The diagram Cif is not a cube, so we should state explicitly that the punctured diagram

PCif is obtained by omitting the r points (0, . . . , 0, ar) with ar 6= 1, which are the points

where R̃ takes the value S.

6.B. Selecting the formal cube. The formal cube Cf consists of the ar = 1 face together
with an opposite face that we need to describe. First, the initial vertex is the point (0, . . . , 0).
Next, the point in the opposite face corresponding to a non-zero (a0, . . . , ar−1) can be found
by looking for the least value of ar for which the entry at (a0, . . . , ar−1, ar) is formal. The
formal entries in the diagram are those with a term DEF/K+ for some K, where we take this
to include the terms DEF/G+ = S0 when a0 = 1. Thus the least value of ar with a formal
entry is ar = lnz(a0, . . . , ar−1)/r. Continuing with the convention that lnz(0, . . . , 0) = 0,

Cf = {(a0, . . . , ar) | ar = 1 or ar =
lnz(a0, . . . , ar−1)

r
}.

As a poset, these vertices form a cube. To see this, we identify the vertex (a0, . . . , ar) of
Cf with the subset

S(a0, . . . , ar) = {i | ai = 1}.
To see that the morphisms correspond to containment of subsets (so that Cf is a cube) we

note that if (a0, . . . , ar−1) and (b0, . . . , br−1) differ only by changing some entries ai = 0 to
bi = 1 (so S(a) ⊆ S(b)) then ar := lnz(a0, . . . , ar−1) ≤ lnz(b0, . . . , br−1) =: br, so that there
is a path from (a0, . . . , ar−1, ar) to (b0, . . . , br−1, br) in Cif .

Proposition 6.1. The inclusion Cf ⊆ Cif induces an equivalence

holim
← v∈PCf

R̃(v) ' holim
← v∈PCif

R̃(v).

Before proving Proposition 6.1, we note that with Proposition 5.6 and the fact that PCi
is cofinal in PCif , it implies that S is the homotopy pullback of the formal ring spectra.

Corollary 6.2. The Cf -diagram R̃ is a homotopy pullback, which is to say that S is the

homotopy pullback of the PCf -diagram R̃:

S ' holim
← v∈PCf

R̃(v). �
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It then follows from Proposition 4.1 that we have the desired Quillen equivalence. For this

statement we revert to the full notation R̃top = R̃.

Corollary 6.3. There is a Quillen equivalence between equivariant G-spectra, modelled by
the category of S-modules, and the cellularization of the diagram-injective model structure

on R̃top-modules.

G-spectra ' cell-R̃top-mod-G-spectra

It remains to give the proof comparing the limits over PCf and PCif .

Proof of Proposition 6.1: Some readers may find it helpful to refer to the case of Rank
2 made explicit in Subsection 6.C whilst reading this proof.

We will work in the diagram Cif (i.e., permitting ar ∈ {0/r, 1/r, . . . , r/r}). In Subsection

6.A we defined R̃(v) for all vertices v. The proof here consists of showing how we could
recover all of them from the entries in PCf alone, using homotopy pullbacks. This will show

in particular that the entry R̃(0, . . . , 0) = S at the initial vertex is the homotopy pullback of
the PCf -diagram R̃.

We view this as starting with an empty slate, adding the entries at points of PCf and
steadily filling in the values at different vertices by using homotopy pullbacks of entries filled
in previously.

First, we fill in all the points of PCif which admit a map from an entry of PCf ; this
does not change the homotopy pullback, since PCf remains cofinal. For example, since
(1, 0, . . . , 0) is in PCf , we may fill in all vertices (1, 0, . . . , 0, ar) with ar 6= 1, which all have
value S∞V (G)∧DEF/G+ ' S∞V (G).

The Cif -diagram R̃ takes the value S at (0, 0, . . . , 0, ar) for ar 6= 1. The rest of the diagram
is called PCif and has r + 1 initial points, namely the vertices vc = (0, . . . , 0, 1, 0, . . . , 0)
(where the 1 in the cth position) for 0 ≤ c ≤ r. The entries at vr = (0, . . . , 0, 1) (viz DEF+)
and v0 = (1, 0, . . . , 0) (viz S∞V (G)) lie in PCf and are therefore already filled in. The entry
when 0 < c < r is S∞V (c) :=

∏
codim(H)=c S

∞V (H), and we need to explain how this is filled
in by homotopy pullbacks.

Note first that S∞V (c) is also the entry at the points (0, . . . , 0, 1, 0, . . . , ar) for ar =
0/r, 1/r, . . . (c− 1)/r. The point with ar = c/r lies in PCf , and the entry there is therefore
filled in at the start. To fill in the entry at the initial vertex vc = (0, . . . 0, 1, 0, . . . 0) we
consider a (c+ 1)-cube Cf (c) with initial vertex at (0, . . . , 0, 1, 0, . . . , 0). More precisely

Cf (c) = {(a0, a1, . . . , ac−1, 1, 0, . . . , 0, ar) | ar = 0 or c/r}.

We note that entries at PCf (c) are already filled in, and the following lemma shows that the
entry S∞V (c) can be filled in as a homotopy pullback of entries on PCf (c).

Lemma 6.4. The Cf (c)-diagram R̃ is a homotopy pullback, which is to say that S∞V (c) is

the homotopy pullback of the PCf (c)-diagram R̃.

Proof: The proof follows precisely the same pattern as Proposition 5.6 above. The cube
is rather similar to a product of copies of the isotropic pullback diagrams for the rank c
quotients, but it is slightly different, so we provide some reference points for the proof.
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We first note that S∞V (c) = S≥c∧S∞V (c) and then filter the 0th coordinate by

S≥r−c −→ S≥r−c+1 −→ . . . −→ S≥r = S∞V (G).

We refine the map from a0 = 0 to a0 = 1 into c steps. The structure of the proof
is precisely like that of Proposition 5.6. The only difference is that our application of
Corollary 5.5 is in the special case X = R̃(a0, . . . , ai−1, 0, ai+1, . . . , ac−1, 1, 0, . . . , 0, ar) and
Y = R̃(a0, . . . , ai−1, 1, ai+1, . . . , ac−1, 1, 0, . . . , 0, ar). �

Since we have now filled in the initial points of PCif , we may fill in the remaining vertices
without changing the homotopy pullback. Accordingly the homotopy pullback over PCf
agrees with that over PCif as required. �

6.C. The case of rank 2. The above account is again sufficiently complicated that it is
worth making one case explicit. For typographical reasons we have only illustrated the case
r = 2, though in fact some features only appear at rank 3. As before, we have used traditional

names S0 = S≥0, ẼF = S≥1 and ẼP = S≥2, where F is the family of finite subgroups and
P is the family of proper subgroups.

Consider the diagram∏
H S

∞V (H) //

��

ẼP∧
∏

H S
∞V (H)

��

S0 //

66lllllllllllllllll

��

ẼP

44iiiiiiiiiiiiiiiiiiii

��

∏
H S

∞V (H)∧DEF/H+
//

��

ẼP∧
∏

H S
∞V (H)∧DEF/H+

��

S0 //

66lllllllllllllllll

��

ẼP

44iiiiiiiiiiiiiiiiiiii

��

∏
H S

∞V (H)∧DEF+
// ẼP∧

∏
H S

∞V (H)∧DEF+

DEF+
//

66mmmmmmmmmmmmmm
ẼP∧DEF+

44jjjjjjjjjjjjjjjj

The whole diagram is Cif . The top square has a2 = 0/2 the middle square has a2 = 1/2 and
the bottom square has a2 = 2/2. The cube Cf consists of the bottom square, the middle
horizontal on the back face and the top front edge.

Wiping the slate clean, and starting with the entries in PCf we describe how to fill in the

other entries. First, we may fill in ẼP∧
∏

H S
∞V (H) at the top right back position without

changing the homotopy pullback since it admits a map from ẼP at the top right front. Now
Lemma 6.4 with c = 1 states that the top back square is a homotopy pullback so that we
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have filled in
∏

H S
∞V (H) at the top, back left. This gives all vertices of PCi from those of

PCf , and S0 is the homotopy pullback of PCi by Proposition 5.6.

6.D. Diagrams. Now that we have a PCf -diagram R̃top of ring G-spectra we should explic-
itly introduce the corresponding diagrams in other contexts.

Definition 6.5. From the PCf diagram R̃top of commutative ring G-spectra we form

(1) the PCf diagram Rtop = (R̃top)
G of commutative ring spectra,

(2) the PCf diagram Rt of commutative DGAs obtained from Rtop using the fact [65]
that the category of commutative HQ-algebras is equivalent to commutative DGAs
over Q (see Section 8),

(3) the PCf diagram Ra = πG∗ (R̃top) = π∗(Rtop) = H∗(Rt) of graded rings.

Part 3. From G-spectra, through spectra to algebra

7. Fixed point equivalences for module categories

The category of G-spectra is modelled by S-modules in G-spectra, and since S is a ho-

motopy pullback of the PCf -diagram R̃top of ring G-spectra, G-spectra is also modelled by

a category of R̃top-modules in G-spectra. Our next step is to remove equivariance and find
a model in terms of a category of non-equivariant module spectra over a PCf -diagram of
non-equivariant ring spectra.

7.A. The fixed point adjunction for module spectra. We briefly recall some results of
[36] for an individual ring G-spectrum.

The context is that when we are given a fibrant ring G-spectrum, Ã with fixed point
spectrum A = ÃG there is a Quillen adjoint pair

ΨG : Ã-mod-G-spectra // A-mod-spectra : ĩnf
G

1
oo .

Here ΨG takes Lewis-May fixed points and then uses the fact that the fixed point functor is
lax monoidal by Proposition 3.3 (10) to view the result as a module over A. The inflation
functor views a non-equivariant spectrum as a G-spectrum by pullback along the quotient
and then extends scalars along infA −→ Ã to give an Ã-module. The tilde on infG1 refers to
this extension of scalars (this was omitted in [36]).

Remark 7.1. We note that in [36] we worked with orthogonal spectra, but we may com-
pose that Quillen adjunction with the Quillen equivalence between orthogonal spectra and
orthogonal L-spectra noting that the two adjunctions have the same direction and therefore
give a single Quillen pair to which the discussion of [36] applies without change.

In [36] we did not discuss monoidal structures on the module categories, since we weren’t
assuming the rings were commutative. However we remark here that the Quillen pair is
monoidal. Indeed, we are composing (1) the adjunction between orthogonal spectra and
orthogonal L-spectra (2) the fixed point-inflation adjunction and (3) a change of rings ad-
junction all of which are weak symmetric monoidal Quillen adjunctions.
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Since the category A-mod-spectra is generated by A, the Cellularization Principle gives a
Quillen equivalence

Ã-cell-Ã-mod-G-spectra ' A-mod-spectra.

Surprisingly often (in particular [36, 4.4] when G is a torus and A has Thom isomorphisms),
the category Ã-mod-G-spectra is generated by Ã, so that we obtain a Quillen equivalence

Ã-mod-G-spectra ' A-mod-spectra

showing that a category of equivariant module spectra is equivalent to a category of non-
equivariant module spectra.

Before turning to our applications it will be helpful to mention three special cases.

Example 7.2. (Eilenberg-Moore Theorem [36, 8.1]) We take Ã = DEG+, so that A =
DBG+ and obtain a version of the Eilenberg-Moore theorem: when G is a torus, there is a
Quillen equivalence

DEG+-mod-G-spectra ' DBG+-mod-spectra.

We emphasize that no cellularization is necessary here for a torus.

Example 7.3. (Spectra over G [54, VI.5.3], [36, 3.3]; no rationalization is necessary) We
take Ã = S∞V (G) so that A = S0 and note that the category modules over S∞V (G) is a model
for spectra over G (i.e., for spectra with geometric isotropy in {G}), whilst the category of
S0-modules is the category of spectra. Thus we recover the well known result that there is
a Quillen equivalence

G-spectra/G ' spectra.

The variant of the first example with all finite isotropy collected together is directly relevant
to us.

Example 7.4. (Almost free spectra [36, Corollary 9.2]) Continuing with G a torus and taking
Ã = DEF/K+ we obtain

DEF/K+-mod-G/K-spectra ' D(EF/K+)G/K-mod-spectra.

7.B. Fixed point adjunctions for diagrams of ring G-spectra. We now move to the
case of diagrams of ring spectra. Suppose R̃ is a diagram of ring G-spectra, fibrant in
the diagram-injective model structure and consider the corresponding diagram R = R̃G of
spectra where fixed points are applied objectwise. We may again consider the diagram-
injective model categories of R̃-module G-spectra and R-module spectra and once again
form the Quillen pair

ΨG : R̃-mod-G-spectra // R-mod-spectra : ĩnf
G

1
oo .

Lemma 7.5. The Quillen adjunction on diagrams with the diagram-injective model structure
is a Quillen equivalence provided it is a Quillen equivalence objectwise.

Proof: We note that unit and counit when evaluated at any vertex give the unit and counit
of the adjunction for a single ring G-spectrum. We claim this is also true for the derived
unit and counit. Since weak equivalences are detected objectwise, this will suffice.
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To see that the statement about the derived unit and counit follows from that about the
underived ones, we need to consider fibrant and cofibrant replacement. For fibrant replace-
ment the implication is clear since fibrancy is defined objectwise. For cofibrant replacement,
we note that cofibrant diagrams are objectwise cofibrant. Finally, weak equivalences of equi-
variant orthogonal spectra are defined in terms of homotopy groups of fixed points so in the
light of Proposition 3.3 (2), fixed points preserve all weak equivalences. It follows that the
derived unit and counit of the Quillen pair on diagram categories are objectwise the derived
unit and counit. �

7.C. The fixed point adjunction for R̃top. We consider the special case R̃ = R̃top of the
above discussion. The category of spectra is generated by the cells G/H+ as H varies over
closed subgroups of G and the cellularization in the following statement is with respect to
the images of these generating cells.

Theorem 7.6. There is a Quillen equivalence

ΨG : R̃top-mod-G-spectra // Rtop-mod-spectra : ĩnf
G

1
oo .

It follows by cellularizing both categories that there is a Quillen equivalence

ΨG : cell-R̃top-mod-G-spectra // cell-Rtop-mod-spectra : ĩnf
G

1
oo .

Proof of 7.6: Without changing notation, we take the fibrant replacement of R̃top in
the diagram-injective model category of PCf -diagrams of commutative ring G-spectra [44,
5.1.3]. By [37, Lemma 4.2] the category of modules over this fibrant replacement is Quillen

equivalent to the original category R̃top-mod-G-spectra.
By Lemma 7.5 it suffices to deal with the individual G-spectra at a particular vertex v of

PCf , so we take Ã = R̃(v) for some vertex v.

For any ring G-spectrum Ã we get the equivalence

Ã-cell-Ã-mod-G-spectra ' A-cell-A-mod-spectra.

It is clear that A generates the category of A-modules so that the A-cellularization on the
right is a Quillen equivalence. It remains only to show that the cellularization on the left
has no effect.

To establish that the Ã-cellularization on the left is also a Quillen equivalence, it suffices
to show that Ã generates the category of Ã-modules. The argument (as in [36, 4.4]) is to
show that cells G/H+ are all built from complex representation spheres.

If Ã has Thom isomorphisms this is exactly as in [36, 4.4], but we need the slightly more
general argument from [36, Section 9]. We will show that for each complex representation
W we may express Ã as a finite product Ã '

∏
i Ãi of factors Ãi so that Ãi∧SW is a G-fixed

suspension of Ãi. This will show that Ã ∧ SW is in the thick category generated by Ã as
required.

Now, turning to the proof, Ã = R̃top(v) and suppose that the last non-zero entry of v is

of codimension c. Then Ã takes the form

Ã =
∏

codimH0=c0

S∞V (H0)∧
∏

codimH1=c1

· · ·
∏

codimH=c

S∞V (H)∧DEF/H+
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Furthermore DEF/H+ '
∏

H̃ DE〈H̃〉, where the product is indexed by closed subgroups

H̃ with identity component H. First note that SW admits the structure of a finite G-
CW complex, and therefore can be moved inside all the products. For each H, we have
W = WH ⊕W ′(H) and S∞V (H) ∧ SW ' S∞V (H) ∧ SWH

so that

Ã ∧ SV '
∏

codimH0=c0

S∞V (H0)∧
∏

codimH1=c1

· · ·
∏

codimH=c

S∞V (H)∧DEF/H+∧SV
H

Now if H̃ has identity component H, we use the Thom isomorphism for Borel cohomology
of H-fixed points [24, 8.1] to give an equivalence

DE〈H̃〉 ∧ SV H ' DE〈H̃〉 ∧ S|V H̃ |.

Collecting together all the factors with the same suspension:

Σi = {H̃ | codim(H̃) = c and dim(V H̃) = i}

we obtain a decomposition Ã '
∏

i Ãi as required. �

7.D. Modules over product rings. We are repeatedly working with infinite products
R =

∏
iRi of ring spectra Ri, and we let ei be the idempotent projecting onto the ith factor.

Even in algebra, such infinite products are poorly behaved (for example infinite products
of Noetherian rings need not be Noetherian). If M is a module over

∏
iRi and we take

Mi = eiM then we have maps ⊕
i

Mi −→M −→
∏
i

Mi.

The first is a monomorphism, but typically neither will be an isomorphism (for example if
we take M =

∏
iRi/

⊕
iRi then Mi = 0 for all i).

It seems worth observing that from the point of view of model categories we may rather
generally apply the Cellularization Principle [35] to recover the more familiar product of
module categories from the category of modules over the product ring by suitable cellular-
ization.

Lemma 7.7. We have a Quillen equivalence

{Rs}s-cell-(
∏

sRs)-modules '
∏
i

[Ri-modules] .

Proof: For each s we have the projection πs : R −→ Rs inducing a restriction on module
categories. This has both a left and a right adjoint, and the natural map from the extension
of scalars to coextension of scalars is an isomorphism (the idempotent subobject agrees with
the idempotent quotient object). Combining these we obtain

p : R-mod −→
∏
s

[Rs-modules]

whose right adjoint pR takes the product of the terms and whose left adjoint pL takes the
sum.
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The adjoint pair (pL, p) is a Quillen pair if the categories have the injective model struc-
tures. The adjoint pair (p, pR) is a Quillen pair if the categories are given the projective
model structures.

In the second case, the objects Rs are small generators in
∏

s [Rs-modules] . Since both
p and pR preserve all weak equivalences, the unit and counit are equivalences on the gen-
erators Rs and we may apply the Cellularization Principle to give the desired conclusion. �

8. From spectra to DGAs

In this section we observe that the results from [65] show very directly that the category
of module spectra over the diagram Rtop of commutative ring spectra is Quillen equivalent
to a category of differential graded modules over a diagram Rt of commutative DGAs. It
then follows that the cellularizations of these model categories are also Quillen equivalent.
Since [65] is based on symmetric spectra, we use Proposition 3.3 (12) to show that there is
a Quillen equiavlence between the respective categories of modules over Rtop and FRtop.

We next apply the functors from [65] to move from symmetric spectra to differential
graded modules. In more detail, in [65, 1.1] a composite functor Θ is defined which produces a
Quillen equivalence between HZ-algebra spectra and DGAs. Given an HZ-algebra spectrum,
B, it is shown in [65, 2.15] that the category of module spectra over B is Quillen equivalent to
the category of differential graded modules over a DGA ΘB. Furthermore, rationally there
is a second functor Θ′ which is symmetric monoidal, so that it takes rational commutative
rings spectra to rational commutative DGAs. Finally, over the rationals the two functors
are naturally equivalent, so that by [65, 1.2], if B is a commutative HQ-algebra then ΘB is
naturally weakly equivalent to the commutative DGA Θ′B.

Definition 8.1. Applying functors to the PCf -diagram of commutative rational ring spectra
Rtop, we define Rt to be the PCf -diagram Θ′(HQ ∧ FRtop) of commutative DGAs.

Note, throughout this section we are implicitly considering the standard (diagram projec-
tive) model structures from [37, 3.1(i)] on modules over diagrams of rings.

Proposition 8.2. There is a zig-zag of Quillen equivalences

Rtop-mod 'Q Rt-mod

between the category of module spectra Rtop-mod and the category of differential graded mod-
ules Rt-mod.

Proof: As mentioned above, the first step is a Quillen equivalence between Rtop-mod over 1-
spectra and FRtop-mod over symmetric spectra by Proposition 3.3 (12) extended to diagrams
of rings. Since Rtop is rational, the unit map FRtop → HQ ∧ FRtop is a weak equivalence
which induces a Quillen equivalence on the associated module categories by extension and
restriction of scalars, [37, 4.2] and [46, 5.4.5].

Combining these steps with [65, 2.15] produces a Quillen equivalence between Rtop-mod
and Θ(HQ ∧ FRtop)-mod. Since HQ ∧ FRtop is a diagram of commutative HQ-algebras, it
follows from the proof of [65, 1.2] that Θ′(HQ∧FRtop) is a diagram of commutative rational
DGAs which is weakly equivalent to the diagram Θ(HQ ∧ FRtop).

By [37, 4.2] and [46, 5.4.5], extension and restriction of scalars over these weak equiva-
lences produce the last steps in the stated zig-zag of Quillen equivalences. �
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The Cellularization Principle, [35, Corollary 2.8] shows that cellularization preserves zig-
zags of Quillen equivalences as long as the cells in the target category are taken to be the
images under the relevant derived functors of the cells in the source category. Here we begin
with the cellularization of Rtop-mod with respect to the images of G/H+ as H runs through
closed subgroups. Then, at each of the next steps, the cells are the images of G/H+ under
the appropriate derived functor.

Corollary 8.3. There is a zig-zag of Quillen equivalences

cell-Rtop-mod-spectra 'Q cell-Rt-mod-spectra

between the cellularizations of the model categories in Proposition 8.2.

9. Formality

We have shown that the category of rationalG-spectra is equivalent to the cellularization of
modules over a suitable PCf diagram of commutative DGAs. On the other hand, we know
very little about the diagram except its homology and that the terms are commutative.
The purpose of this section is to show that this is enough to determine the diagram up to
equivalence.

9.A. Terminology. A map f : R̃ −→ R̃′ of commutative DGAs inducing an isomorphism
in homology is called a homology isomorphism. Two commutative DGAs related by a zig-zag
of homology isomorphisms of commutative DGAs are said to be quasi-isomorphic.

A commutative DGA which is quasi-isomorphic to its homology is said to be formal. A
graded commutative ring R is said to be intrinsically formal if every commutative DGA
R̃ with H∗(R̃) ∼= R is formal. We say that R̃ is strongly formal if there is a homology
isomorphism H∗(R̃) −→ R̃. A commutative graded ring is strongly intrinsically formal if
every commutative DGA with homology R is strongly formal.

All of these notions apply similarly to diagrams of commutative DGAs, and it is our

purpose to show that the PCf -diagram Ra = πG∗ (R̃top) is intrinsically formal. This is based
on the fact that polynomial rings are strongly intrinsically formal amongst commutative
rings. This single fact is extended in generality in both the algebraic and diagrammatic
senses.

9.B. Constructing new formal objects from old. The general form of the results is not
surprising, but care is necessary in their formulation.

Lemma 9.1. (i) For any commutative ring k, the k-algebra k[x1, . . . , xr] on even degree
generators is strongly intrinsically formal amongst commutative DG k-algebras.

(ii) If Ri is intrinsically formal for all i then
∏

iRi is intrinsically formal.
(iii) If R is strongly intrinsically formal and E is a multiplicatively closed subset of R then

E−1R is intrinsically formal relative to R in the sense that if R̃ −→ R̃E−1 is a map of
DGAs inducing R −→ E−1R in homology, then there exists a homology isomorphism
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R̃E−1 → R̃′E−1 such that the diagram

R̃ // R̃E−1

'
��

R̃′E−1

R

OO

// E−1R

OO�
�
�

can be completed by a dotted arrow which is a homology isomorphism.

Proof : (i) If H∗(R) = k[x1, . . . , xr] then we may pick representative cycles x̃1, . . . , x̃r for
x1, . . . , xr in R and then since k[x1, . . . , xr] is free as a commutative ring, there is a map
k[x1, . . . , xr] −→ R taking xi to x̃i, and this induces an isomorphism in homology.

(ii) Suppose H∗(R̃) =
∏

iRi. First, we replace R̃ by a DGA which is actually a product.
Indeed, we may choose cycles ẽi representing the idempotents for the factors. Now form
R̃i = R̃[1/ẽi], so that H∗(R̃i) = Ri. We therefore have a quasi-isomorphism R̃ −→

∏
i R̃i,

and then we may take the product of the individual zig zags of quasi-isomorphisms connecting
R̃i and Ri.

(iii) Since R is strongly intrinsically formal, we have a map R→ R̃; let Ẽ denote the image
of the multiplicatively closed subset E in R̃. Then the map R̃E−1 −→ Ẽ−1R̃E−1 is a quasi-
isomorphism and by the universal property of localization we may extend R −→ Ẽ−1R̃E−1

to a quasi-isomorphim E−1R
∼=−→ Ẽ−1R̃E−1 . �

When using these facts in diagrams we frequently apply the following observation.

Lemma 9.2. Suppose given a partially ordered set A, a subset B ⊆ A with no maps out of
it, and a diagram R : A −→ DGAs. If we have a B-diagram R′ : B −→ DGAs and a map
θB : R|B −→ R′, we may extend R′ to an A-diagram R̂′ (taking R̂′(a) = R(a) if a 6∈ B) and

extend θB to a map θ : R −→ R̂′. If θB is a homology isomorphism, so is θ. �

Example 9.3. (Extending a diagram of rings along a map at a vertex v.) Suppose v is a
vertex in a poset A and we have a map R(v) −→ R′(v). We may take B to be the set of
vertices with a map from v, and define R′ on B by taking

R′(b) = R′(v)⊗R(v) R(b).

We obtain a map R|B −→ R′ by identifying R|B(b) as R(v)⊗R(v) R|B(b) and using the map
R(v) −→ R′(v) at each point.

Applying Lemma 9.2 we obtain a map of A-diagrams R −→ R̂′. This is a pointwise
homology isomorphism provided it is a homology isomorphism at v and all the rings R(b)
are flat over R(v).

9.C. The intrinsic formality of the diagram Ra. We are now prepared to prove the

intrinsic formality of the PCf -diagram Ra = πG∗ (R̃top) of graded rings.
The reader may find it helpful to refer to Subsections 9.D and 9.E where the rank 1 and

rank 2 cases are made rather explicit.
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Proposition 9.4. The PCf -diagram Ra is intrinsically formal, and in particular Rt is
formal.

Proof: The punctured cube PCf is a poset (indeed, it is the barycentric subdivision of the
r-simplex ∆r; we may identify each vertex v of PCf with the non-empty subset S(v) =
{i | ai = 1} of {0, . . . , r}). The collection of vertices is ordered by the size of S(v), and we
will work in order of increasing size.

More precisely, we let PC
(d)
f denote the d-skeleton of the subdivided r-simplex (i.e., it

contains all vertices v with |S(v)| ≤ d+ 1.
Given a PCf diagram R̃ with homology isomorphic to Ra, we replace it by an equivalent

cofibrant diagram without change in notation, and then proceed to construct a succession
of homology isomorphisms

R̃ = R̃0
i0−→ R̃1

i1−→ · · · ir−1−→ R̃r = R̃

of PCf -diagrams of DGAs, where id−1 : R̃d−1 −→ R̃d is constant on PC
(d−1)
f . As we do this,

we construct maps

θd : Ra|PC(d)
f
−→ R̃d|PC(d)

f

for d ≥ 1 which are homology isomorphisms on the diagram on which they are defined. For
d ≥ 1, the map θd extends id−1 ◦ θd−1.

After r + 1 steps we obtain a homology isomorphism

Ra = Ra|PC(r+1)
f
−→ R̃r+1|PC(r+1)

f
= R̃.

To start with, we construct R̃1. Note first that for each of the r + 1 vertices v of ∆r

the DGA Ra(v) is a product of polynomial rings indexed by i (if the vertex corresponds
to connected subgroups of codimension c, then we take a product of all the OF/H with H

connected of codimension c, each of which is a product of the cohomology rings H∗(BG/H̃)
as H̃ runs through the subgroups with identity component H. Altogether, i will run through
all subgroups of codimension c, connected or not).

As in Lemma 9.1 (ii) we construct DGAs R̃(v)i with homology Ra(v)i and a quasi-
isomorphism

R̃(v) −→
∏
i

R̃(v)i.

Choosing some ordering of the vertices, we extend R̃0 along each of these quasi-isomorphisms
(as in Example 9.3) in turn to obtain R̃1. We note that since there are no maps from one
vertex to another, all r+ 1 vertices end up with a product of DGAs. Now using Lemma 9.1
(i) at each vertex we obtain a map

θ1 : Ra|PC(1)
f
−→ R̃1|PC(1)

f
.

We continue inductively, supposing that after d steps we have defined R̃s for s ≤ d, and

θd : Ra|
PC

(d)
f
−→ R̃d|PC(d)

f
.

Once again we will form R̃d+1 from R̃d by extending the diagram of rings along ring maps
at the

(
r+1
d+1

)
vertices v with |S(v)| = d + 1 in turn. When it comes to the turn of v, since
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there are no maps between these vertices, we still have R̃d(v) at v. This has homology

H∗(R̃d(v)) = H∗(R̃(v)) = Ra(v)

and this is obtained from polynomial rings by alternately taking products and localizing
with respect to sets of Euler classes. Furthermore, we note that the Euler classes concerned
come from the vertices w with |S(w)| ≤ d, so that θd gives their images in the DGAs. We
now form a new PCf -diagram of DGAs by extending R̃d(v) along the alternate products
and localizations using Lemma 9.1. When we have extended along all these vertices we have
obtained R̃d+1 from R̃d, and the products and localizations let us extend θd to θd+1. �

9.D. The example of rank 1. The argument proceeds as follows. We start with the
cofibrant PCf -diagram R̃ as in the top row. Extending along the top left hand vertical we
form the second row. The upward maps from the two outer vertices of Ra on the bottom
row can then be defined. The Euler classes are defined by the image of Ra(0, 1), and those
are inverted to form the third row, after which the middle vertical can be filled in.

R̃

��

R̃(0, 1) //

��

R̃(1, 1)

��

R̃(1, 0)oo

��

R̃1

��

∏
i R̃(0, 1)i //

=

��

∏
i R̃(0, 1)i ⊗R̃(0,1) R̃(1, 1)

��

R̃(1, 0)oo

=

��

R̃2

∏
i R̃(0, 1)i // E−1

G

∏
i R̃(0, 1)i ⊗R̃(0,1) R̃(1, 1) R̃(1, 0)oo

Ra

OO

OF //

OO

E−1OF

OO

Qoo

OO

Rtop (DEF+)G // (S∞V (G)∧DEF+)G (S∞V (G))Goo

R̃top DEF+
// S∞V (G)∧DEF+ S∞V (G)oo

9.E. The example of rank 2. It is too typographically complicated to display the full

argument in the way we did for rank 1, but it still seems worth displaying Ra and R̃top. This
lets one see the way that extending along (say) a map of rings at the top vertex only affects
the three other points not on the bottom face, and then extending along (say) the middle
vertex on the bottom face only affects the central vertex.
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∏
F Q[c, d]

))TTTTTTTTTTTTTTT

ttiiiiiiiiiiiiiiii

∏
H E

−1
H

∏
F Q[c, d]

**UUUUUUUUUUUUUUUU
E−1
G

∏
F Q[c, d]

uujjjjjjjjjjjjjjj

E−1
G

∏
H E

−1
H

∏
F Q[c, d]

∏
H

∏
H̃ Q[c]

<<yyyyyyyyyyyyyyyyyyyyyyy
// E−1
G

∏
H

∏
H̃ Q[c]

OO

Qoo

\\9999999999999999999

The subgroups F run through finite subgroups, the subgroups H run through circle sub-
groups, and the subgroups H̃ run through subgroups with identity component H. The
polynomial rings Q[c, d] are the cohomology rings of B(G/F ) (all different but isomorphic),
and the polynomial rings Q[c] are the cohomology rings of B(G/H̃). The polynomial ring
Q is the cohomology ring of B(G/G).

The above diagram is obtained by taking homotopy groups of the following diagram R̃top

of ring G-spectra.

DEF+

++VVVVVVVVVVVVVVVVVVVV

ssgggggggggggggggggggggg

∏
H S

∞V (H)∧DEF+

++VVVVVVVVVVVVVVVVVVV
S∞V (G)∧DEF+

tthhhhhhhhhhhhhhhhhh

S∞V (G)∧
∏

H S
∞V (H)∧DEF+

∏
H S

∞V (H)∧DEF/H+

99ssssssssssssssssssssssssss
// S∞V (G)∧

∏
H S

∞V (H)∧DEF/H+

OO

S∞V (G)oo

__????????????????????

Part 4. Algebra

We have now established that the category of G-spectra is equivalent to the cellularization
of the category of DG-Ra-modules, where Ra is a PCf -diagram of rings. It remains to show
this is Quillen equivalent to the category dA(G) of DG objects in A(G).

10. Modules over Ra and the standard model Apc(G)

In this section we make the punctured (r+1)-cube of rings Ra explicit and recall a number
of basic structures from [28].

10.A. Strategy. We will use the algebraic machinery and terminology set up in [28]. As
described in Section 2 above, A(G) = Apc(G) is a category of modules over the diagram Rp

c

of rings based on pairs of connected subgroups. However the topological argument delivers
a category of modules over the diagram Ra based on subsets of [0, r] = {0, 1, . . . , r} which
are the dimensions of subgroups. For a totally ordered poset like [0, r] there is no distinction
between subsets and flags: taking a subset of [0, r] with s elements in decreasing order, we
obtain a flag d0 > d1 > · · · > ds. We will make the diagram Ra explicit in Subsection 10.B,
and observe that Ra = Rf

d in the notation of [28].
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It is shown in [28] that there is a subcategory Afd(G) of Rf
d-modules equivalent to Apc(G),

namely pqce-modules, which is to say that satisfy a quasi-coherence condition (qc) an ex-
tendedness condition (e) and whose values on vertices are products (p). There is in fact a
diagram of categories and adjoint pairs

Apc(G) Afc (G) Afd(G)

qce-Rp
c-mod oo

'
p,f
// qce-Rf

c -mod oo
' //

i
��

pqce-Rf
d-mod

��

Rf
c -mod

d∗ //

Γf
c

OO

d∗ //

Γf
c

OO

Rf
d-mod

e
oo

Γf
d

OO

The absence of a label on the functor left adjoint to Γfd is intentional: the functor is obtained
by following round the other three sides of the square, and is not the inclusion (the inclusion

does not preserve sums). In fact, there is no need to give further details of pqce Rf
d-modules

here, since we will proceed directly between Rf
d-modules and qce-Rf

c -modules. The relevant
result from [28] is as follows.

Proposition 10.1. [28, Subsection 11.C] There is an adjoint pair

l : qce-Rp
c-mod

// Rf
d-mod : Γoo

where l = d∗if and Γ = pΓfc e. �

We will briefly describe the functors in Subsection 10.F below.

10.B. The diagram Ra. We will make explicit the diagram Ra = πG∗ (R̃top) of homotopy

rings of our PCf -diagram R̃top of ring spectra as in Definition 6.5. It will appear that this

is a special case of the machinery of [28], so that Ra = Rf
d in the notation of [28].

Since πG∗ (S∞V (H)∧DEF/H+) = OF/H and since the map S0 −→ SV induces multiplica-
tion by the Euler class c(V ) in πG∗ (DEF+) = OF , it is straighfroward to read off from the

definition of R̃top in Subsection 6.A an explicit and totally algebraic account.
At the point (a0, . . . , as, 0, . . . , 0) with as = 1, we form a ring from the product∏

codim(H)=s

OF/H

by taking retracts and alternating products and localizations. To write this down, we recall
from Equation 5.1 the indexing set I(t, at) which is a singleton if at = 0 or all codimension
t connected subgroups otherwise. We also recall that EK consists of Euler classes of all
representations W with WK = 0, and adopt a convention to let us refer to a vacuous
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localization in a similar notation: we take EK,1 = EK and EK,0 = {1}. Now we may write

Ra(a0, . . . , as, 0, . . . , 0) =

E−1
G,a0

∏
H1∈I(1,a1)

E−1
H1,a1

∏
H2∈I(2,a2)

E−1
H2,a2

· · ·
∏

Hs−1∈I(s−1,as−1)

E−1
Hs−1,as−1

∏
Hs∈I(s,as)

OF/Hs .

To save on the notation required to say we have nested subgroups, we use the convention that
inverting EH is deemed to annihilate factors corresponding to lower dimensional subgroups
K not contained in H.

We will say more about what is meant by inverting Euler classes in Subsection 10.C, but
first it is helpful illustrate the definition in low ranks to show its simplicity.

Example 10.2. (The diagram Ra in rank 1.) In rank 1, if the objects of PCf are layed out
as

v1 = (01) −→ (11)←− (10) = v0

the rings are
OF −→ E−1

G OF ←− OF/G = Q

Example 10.3. (The diagram Ra in rank 2.) In rank 2, if the objects are layed out as

v2 = (001)

%%LLLLLLLLLL

yyrrrrrrrrrr

(011)

%%LLLLLLLLLL
(101)

yyrrrrrrrrrr

(111)

v1 = (010)

BB������������������
// (110)

OO

(100) = v0
oo

\\999999999999999999

the diagram of rings is

OF

''OOOOOOOOOOOOO

vvmmmmmmmmmmmmmm

∏
H E

−1
H OF

((QQQQQQQQQQQQ
E−1
G OF

wwooooooooooo

E−1
G

∏
H E

−1
H OF

∏
H OF/H

@@��������������������
// E−1
G

∏
H OF/H

OO

OF/G = Qoo

\\:::::::::::::::::::

Example 10.4. (The diagram Ra in rank 3.) The diagram in rank 3 is that of a subdi-
vided 3-simplex, and a little too complicated to display in print. However we note that
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a new phenomenon occurs in rank 3 since not every circle subgroup is contained in every
2-torus subgroup (in lower ranks, containment of connected subgroups was determined by
dimension). This means that at points of the form (a011a3), we have

Ra = · · ·
∏
H

E−1
H

∏
K

· · · .

where H is of codimension 1 and K of codimension 2. In view of our convention about
inverting EH , the second product is in fact over circle subgroups K contained in H (and not
over all circle subgroups).

10.C. Internal and external Euler classes. The G-equivariant homotopy of S∞V (H)∧X
is always the G/H-equivariant homotopy of the geometric fixed point spectrum ΦHX. Some-
times this is calculated from geometric knowledge of X, but if X has Thom isomorphisms
for representations V with V H = 0 it can also be calculated from πG∗ (X) by inverting Euler
classes when they are defined. However, some slightly extended use of the algebraic notation
for inverting Euler classes requires some explanation.

The issue first arises at (110) in rank 2. A brief explanation of this special case will make
plain the general meaning.

The notation suggests we are inverting G-equivariant Euler classes (elements of OF) on
something (viz

∏
H OF/H), but the object in question is not an OF -module. Considering the

geometry of the situation we see that what is really happening is passage to a direct limit
along maps SW1 −→ SW2 coming from inclusions W1 ⊆ W2 with WG

1 = WG
2 = 0. Since the

spheres are finite complexes this passes inside the product. To see what happens on the Hth
factor we write W = WH⊕W ′, and note that SW ∧S∞V (H) ' SW

H ∧S∞V (H). Thus when we
write E−1

G

∏
H OF/H , this means a direct limit over multiplication by the product elements∏

H c(W
H
2 /W

H
1 ), which is the Euler class of the inclusion WH

1 −→ WH
2 , as an element of

OF/H .

Note that this discussion also explains why the S∞V (G) does not lead to any algebraic
inversion at (100).

10.D. Structure maps for rings. Next we describe the structure maps in Ra more pre-
cisely. Once again, the main complication is notational.

If we have an inclusion iτσ : σ −→ τ of subsets of {0, . . . , r} then we have a structure map

Ra(i
τ
σ) : Ra(σ) −→ Ra(τ).

Suppose s is the largest element of σ. We start by describing the case when τ has exactly
one more element than σ, say τ = σ ∪ {t}. There are two cases.

Case 1: t > s. In this case t is the last non-zero term in τ and we may concentrate on
the contribution of the last two non-trivial terms, namely the sth and tth. Thus we must
describe

jts :
∏

Hs∈I(s,1)

OF/Hs −→
∏

Hs∈I(s,1)

E−1
Hs

∏
Ht∈I(t,1)

OF/Ht

in the sense that the map is obtained from this by applying alternating products and local-
izations for the 0th to the (s − 1)st terms. Now jts is itself a product over I(s, 1) of terms
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given as the composite

OF/Hs −→
∏

Ht∈I(t,1)

OF/Ht −→ E−1
Hs

∏
Ht∈I(t,1)

OF/Ht .

The first map has components given by inflations for Hs ⊇ Ht and the second is localization.
Case 2: t < s. In this case s is the last non-zero term in both σ and τ and the only

change is to replace the expression
∏

Ht∈I(t,0) E
−1
Ht,0

(which actually means take the product

over a singleton of a localization doing nothing!) with
∏

Ht∈I(t,1) E
−1
Ht

, and here a diagonal
map is used.

More precisely if

Ra(at+1, . . . , as, 0, . . . , 0) =∏
Ht+1∈I(t+1,at+1)

E−1
Ht+1,at+1

∏
Ht+2∈I(t+2,at+2)

E−1
Ht+2,at+2

· · ·
∏

Hs−1∈I(s−1,as−1

E−1
Hs−1,as−1

∏
Hs∈I(s,as)

OF/Hs

we take the map into the product whose components are localizations

{lit} : Ra(at+1, . . . , as, 0, . . . , 0) −→
∏

Ht∈I(t,1)

E−1
Ht
Ra(at+1, . . . , as, 0, . . . , 0)

and then apply alternate products and localizations to incorporate the terms from the 0th
to the (t− 1)st.

When τ has more than one extra vertex than σ the map Ra(i
τ
σ) is the composite of the

maps adding one vertex at a time. It is apparent from the description above that the order
in which this is done makes no difference.

10.E. The algebraic diagram Ra is the diagram Rf
d from [28]. We briefly recall the

framework of [28], so that we may observe that Ra is precisely the diagram of rings appearing

there as Rf
d .

The diagram Rc is the contravariant functor on the poset ConnSub(G) of connected
subgroups ofG with valueOF/K atK, and with inflation maps between them. The dimension
function d : ConnSub(G) −→ [0, r] gives rise to a dimension function on the posets of flags.
In [28] it is explained that such a function induces a map de! collecting together the subgroups
of the same dimension, and extends to flags using localizations and products. This specializes
precisely to the description of Ra, so that Rf

d = Ra.

10.F. Description of the functors. We now briefly recall from [28] the functors appearing
in the diagram from Subsection 10.A above.

The left hand horizontal translates between indexing over pairs and indexing over flags.
For qce-modules the value of a module on a flag only depends on the largest and smallest
subgroup in the flag, so this translation is nugatory; the letter p is for the translation to
pairs and the letter f for the translation to flags.

The vertical i is the inclusion of qce-modules in all Rf
c -modules, and the functor Γfc is the

right adjoint to i constructed in [28, Section 11] following the pattern of [25]; we will not
need to use an explicit construction.

The functor e is obtained by taking idempotent pieces. Indeed, if M is an Rf
d-module

and F = (K0 ⊃ K1 ⊃ · · · ⊃ Ks) is a flag of connected subgroups with dimension dF =
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(d0 > d1 > · · · > ds) there is an idempotent eF ∈ Rf
d(dF ) picking out the flag F ; we take

(eM)(F ) = eF (M(dF )) (see [28, Section 6] for further details).
The functor d∗ is left adjoint to e. The natural idea is to take direct sums: if N is an

Rf
c -module then (d∗N)(d) =

⊕
dF=dN(F ). However this is not compatible with structure

maps and one must take the submodule of the product it generates. There is a little work to
be done to check this makes sense, and the construction is described in detail in [28, Section
6].

11. Model structures and equivalences on the algebraic categories

The output of Parts 1-3 is a Quillen equivalence between the category of rational G-spectra
and an algebraic category cell-Ra-mod, the cellularization of the category of modules over
the diagram Ra of rings. The purpose of this section and the next is to simplify the model
by avoiding the need for cellularization: we show that the cellularization of the category
of Ra-modules is Quillen equivalent to the smaller category of objects in the category of
qce-Rc-modules, Apc(G).

This section gives a model structure on dA(G) and recalls some facts about the torsion
functor relating it to the appropriate category of Rp

c-modules.

11.A. Two examples. Before turning to general results we give two examples of this phe-
nomenon in a simpler context: the first for free spectra in general, and the second for semifree
spectra for the circle group.

Algebraically, the first example is for modules over a single polynomial ring.

Example 11.1. (Free G-spectra and torsion modules over a polynomial ring.) If G is a
connected compact Lie group, the category of free rational G-spectra is Quillen equivalent
to the category of torsion modules over the polynomial ring H∗(BG) [33].

The topology gives a Quillen equivalence with the model category cell-H∗(BG)-modp:

the category H∗(BG)-modp of DG-modules over H∗(BG) with the algebraically projective
model structure cellularized with respect to the residue field Q. This in turn is Quillen equiv-
alent to the model category cell-H∗(BG)-modi, the category H∗(BG)-modi of DG-modules
over H∗(BG) with the algebraically injective model structure cellularized with respect to the
residue field Q. The model structure H∗(BG)-modp is well known: it is the cofibrantly gener-

ated structure right-lifted from vector spaces. Similarly, the model structure H∗(BG)-modi
may be constructed by left-lifting from vector spaces using [38, Theorem 2.2.3].

Finally, if m is the ideal of positive codegree elements in H∗(BG), we consider the adjunc-
tion

i : tors-H∗(BG)-mod
//
H∗(BG)-modi : Γmoo

where Γm is the m-power torsion functor. The category of torsion modules has an injec-
tive model structure (weak equivalences are homology isomorphisms and cofibrations are
monomorphisms). This can be constructed by left lifting from the injective model structure
on all modules using [38, Theorem 2.2.1]. Accordingly, i preserves cofibrations and acyclic
cofibrations and the adjunction is a Quillen adjunction. Finally, Q is a small generator of the
torsion modules, so the Cellularization Principle [35] shows this induces a Quillen equivalence

tors-H∗(BG)-mod ' cell-H∗(BG)-modi.
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This example is directly relevant to the algebraic model A(G) for a torus G. Indeed, if
we consider objects of A(G) which are concentrated at the connected subgroup 1, and for
which there is no contribution from other finite subgroups, the quasicoherence condition on
Rc-modules in A(G) implies that objects concentrated at the subgroup 1 are precisely the
torsion H∗(BG)-modules.

Algebraically, the second example works with a rather small diagram of rings, with each
of the rings Noetherian.

Example 11.2. (Semifree T-spectra.) For the circle group T, our models are over a punc-
tured square of rings. If we simplify the category by restricting attention to semifree spectra,
the rings that occur are much smaller and we can see the issues introduced by diagrams with-
out having the infinite number of subgroups to complicate matters.

The diagram of rings for semifree T-spectra is

Ra =

 Rv

↓
Rn −→ Rt

 =

 Q
↓

Q[c] −→ Q[c, c−1]


An Ra module M consists of a diagram

M =

 M v

↓
Mn −→ M t

 =

 V
↓

N −→ P


where V is a Q-module, N is a Q[c]-module and P is a Q[c, c−1]-module.

There are four relevevant model categories. To start with, on each of the three objectwise
module categories we can choose either the algebraically projective model structure or the
algebraically injective model structure. We need to make the same choice at each vertex
so that the maps in the diagram respect the model structures. Secondly, having made that
choice, we may choose either the diagram theoretically projective or injective model. Since
the diagrams are both direct and inverse, the results of [37] show these models all exist, and
it is clear there are Quillen equivalences between either of the two binary choices by using the
identity functors. In fact, we only need three of the four possibilities; a diagram-projective,
algebraically-injective model structure does not appear.

Having made a choice, we cellularize with respect to the two modules corresponding to
basic geometric generators

S = Ra =

 Q
↓

Q[c] −→ Q[c, c−1]

 and G+ =

 0
↓

Q −→ 0


By [35, Corollary 2.8], cellularization preserves the Quillen equivalences mentioned above.

Finally, for qce-R-mod, the underlying category consists of quasi-coherent extended mod-
ules. The quasi-coherence condition is that the horizontal map is localization in the sense
that

M t ∼= Mn[1/c].

The extendedness is the condition that the vertical is induction in the sense that

M t ∼= Q[c, c−1]⊗ V.
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The inclusion of this category of modules has a right adjoint, and we may argue as in the
previous example. We will give the category of qce-modules a model structure so that it is
Quillen equivalent to the cellularization of the doubly injective model structure.

11.B. Construction of model structures. In the remainder of this section we turn to
the full PCf -diagram Ra of rings. We saw in Section 10 that Ra = Rf

d in the notation of
[28], and we outline here the proof that the cellularization of the doubly projective model
category of Ra-modules is equivalent to the category of DG qce-Rp

c-modules Apc(G) as in
Section 10.

We begin by formally introducing the algebraic model structures we use.
These are model structures on diagrams of modules over diagrams of DGAs. For each

individual DGA there is an algebraically projective model structure [61, Theorem 4.1], which
is the cofibrantly generated model structure lifted along the right adjoint forgetful functor
to Q-modules in the usual way; the proof may be obtained by adapting [44, Section 2.3].
The adaption of the construction of the injective model for an individual DGA uses a little
more algebra, so instead we construct the injective model structure by lifting along the left
adjoint forgetful functor to Q-modules using [38, Theorem 2.2.3].

Making a choice of algebraically projective or injective model structures at all points in
the diagram we may then seek to define a diagram-theoretically projective model structure
(in which weak equivalences and fibrations are given pointwise) or a diagram-theoretically
injective model structure (in which weak equivalences and cofibrations are given pointwise).
Since the finite diagram shapes we are interested in here are both direct and inverse, both
diagram-projective and diagram-injective model structures exist by [37, Proposition 3.1] for
either of the algebraic choices (made consistently throughout the diagram). Only three of the
four choices appear in our work here, the doubly-projective case (which also follows from [63,
6.1]), the doubly-injective case, and the diagram-injective, algebraically-projective case.

11.C. A model structure on torsion modules. We consider the category Apc(G) of qce-
Rp
c-modules and show the associated category of DG objects admits a model structure with

quasi-isomorphisms as the weak equivalences.

Proposition 11.3. The category dApc(G) of DG qce-Rp
c-modules admits a model structure

with weak equivalences the quasi-isomorphisms and cofibrations the monomorphisms at each
object. The fibrant objects are injective if the differential is forgotten, and fibrations are
surjective maps with fibrant kernel.

Proof : We use the method of [21, Appendix B], where it is shown that one can often
construct a model structure using a type of fibrant generation argument provided one has a
suitable finiteness of injective dimension.

We have an abelian category A = Apc(G) and we aim to put a model structure on the
category of DG objects ofA. We will specify a set BI of basic injectives containing sufficiently
many injectives (i.e., any object of A embeds in a product of basic injectives). An injective
I is viewed as an object K(I) of dA with zero differential. The notation is chosen to suggest
an Eilenberg-Mac Lane object (or cosphere). Next, we let P (I) = fibre(1 : K(I) −→ K(I)),
with the notation chosen to suggest a path object (or codisc). The set L of generating
fibrations consists of the maps P (I) −→ K(I) for I in BI. The setM of generating acyclic
fibrations consists of the maps P (I) −→ 0 for I in BI.
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We now take we to consist of quasi-isomorphisms, cof to be the maps with the left lifting
property with respect to M and fib to be the maps with the right lifting property with
respect to (we ∩ cof), and prove this forms the model structure of the lemma. We outline
the four main steps and then turn to proving they can be completed in our current situation.

Step 1: Show that cof consists of objectwise monomorphisms.
Step 2: Show that for any X there is an objectwise monomorphism α : X −→ P (I) for

some injective I.
Step 3: Show that the maps P (I) −→ K(I) and P (I) −→ 0 in L and M respectively are

in fib.
Note that since any injective is a retract of a product of basic injectives, it follows that

P (I) −→ K(I) and P (I) −→ 0 are fibrations for any injective I. Since we have chosen BI
to contain enough injectives, one of the factorization axioms follows immediately, since we
may factorize f : X −→ Y as

X
{f,α}−→ Y × P (I)

'−→ Y,

with α as in Step 2.
Step 4: Prove the second factorization axiom using only fibrations formed from those

named in Step 3.
More precisely, given f : X −→ Y , we form a factorization X −→ X ′ −→ Y with

X −→ X ′ a quasi-isomorphism and X ′ −→ Y a fibration formed by iterated pullbacks of
fibrations P (I) −→ K(I). This is precisely dual to the usual argument attaching cells to
make a map of spaces into a weak equivalence, but because the dual of the small object
argument does not apply, we use the finiteness of injective dimension of A to see that only
finitely many steps are involved in the process (details below). The map X −→ X ′ can be
made into a cofibration by taking the product of X ′ with a suitable P (I) as in the proof of
the first factorization argument. It follows using the defining right lifting property that an
arbitrary fibration is a retract of one formed by iterated pullbacks of fibrations P (I) −→ K(I)
or P (I) −→ 0.

It remains to verify the four steps can be completed. We follow the pattern from the case
of the circle group in [21, Appendix B]. We note that for each connected subgroup H of G
there is an evaluation functor

evH : Ra-modules −→ OF/H-modules

with right adjoint fH . In particular, if N is a torsion module, fH(N) lies in A(G) and

HomA(G)(X, fH(N)) = HomOF/H
(φHX,N).

We take the basic injectives to be those of the form

IH̃ = fH(H∗(BG/H̃))

where H̃ is any subgroup with identity component H. It is shown in [24, 2.20] that this set
contains sufficiently many injectives.

The following elementary lemma lets us reduce verifications to statements about modules
with zero differential over a (single object) ring. We write Hom for the differential graded
object of graded A-morphisms and let DG−Hom denote the group of morphisms commuting
with the differential. The differential on Hom is defined so that the DG-morphisms are the
0-cycles in Hom.
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Lemma 11.4. (i) HomA(X,K(fH(M))) = HomOF/H
(φHX,M)

(ii) DG− Hom(X,K(fH(M))) = Hom(φHX/dφHX,M)
(iii) DG− Hom(X,P (fH(M))) = Hom(ΣφHX,M)

It follows from this lemma by the left lifting property that cof consists of objectwise
monomorphisms (Step 1), see also [21, Lemma B.2], and that we may find a monomorphism α
in the first factorization argument (Step 2): for this we first embed all φHX in some injective
IH(X) ignoring the differential and use Lemma 11.4(iii) to obtain a map to P (fH(IH(X))),
and take the product of these over all H to obtain P (I).

This lemma also makes it straightforward to verify that objects of L andM are fibrations.
The case of P (I) −→ 0 is simply the defining property of an injective. The problem

A

i

��

α// P (fH(IH̃))

��
B

β//

::tttttt

h

K(fH(IH̃)))

is equivalent to

Σ−1φHA/dφHA
d //

i

��

φHA

i

��

α{{wwwwwwwww

Σ−1IH̃

Σ−1φHB/dφHB

β̃
77ooooooooooo
d // φHB

ccH
H

H
Hh

To find a solution we use a standard diagram chase. We first use the fact that i is a
homology epimorphism to deduce that β̃ vanishes on cycles and the fact that it is a homology
monomorphism to see that this means that h̃ is consistently defined on φHA+dφHB. Finally,
we use the defining property of injectives to extend it over φHB.

This leaves Step 4. Here we start by forming an exact sequence

0 −→ H∗(X) −→ H∗(Y )⊕ I0 −→ I1 −→ · · · −→ IN −→ 0

in As(G), where the Is are injective. The finite injective dimension of As(G) ensures such
an exact sequence exists. We now realize this by a tower of fibrations

Y ←− X0 ←− · · · ←− XN = X ′,

together with lifts

��
X1

��
X0

��
X

f //

f0
>>|||||||

f1

FF���������������
Y.
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We take X0 = Y ⊕K(I0), and the subsequent objects and maps are constructed using the
diagram

X

))TTTTTTTTTTTTTTTTTT

""DDDDDDDDD

��2
2222222222222222

Xs

��

// P (Σ−sIs)

��
Xs−1

// K(Σ−sIs)

where the lower horizontal is chosen to realize the inclusion of im(Is−1 −→ Is) in Is. The map
fN : X −→ XN is necessarily a quasi-isomorphism, and can be made into a monomorphism
by taking a product with a suitable P (I).

This completes the sketch proof of the proposition. �

11.D. Equivalence of models of torsion modules. We recall from Subsection 10.B that
Ra = Rf

d , and work with the adjunction of Proposition 10.1.

Proposition 11.5. The adjunction

l : Apc(G) = qce-Rp
c-mod

//
Ra-modii : Γoo

is a Quillen adjunction, where the subscript ii refers to the use of the doubly injective model
structure on Ra-modules (i.e., injective in both the module theoretic and diagram theoretic
sense) and where l = d∗if and Γ = pΓfc e.

Cellularizing with respect to the images of the topological cells induces a Quillen equivalence

A(G) = Apc(G) = qce-Rp
c-modules ' cell-Ra-modii.

Proof: First we need to check that l = d∗if preserves cofibrations and acyclic cofibrations
so that we have a Quillen adjunction.

The cofibrations in Apc(G) are the monomorphisms, which are the objectwise monomor-
phisms. Similarly, the cofibrations in an algebraically injective model structure are precisely
the monomorphisms. The cofibrations in the doubly injective Ra-module category are pre-
cisely the morphisms which are objectwise cofibrations, namely the objectwise monomor-
phisms. It is obvious that f and i preserve monomorphisms. It is also clear that the functor
d! (given by taking the product of the values) preserves monomorphisms. Since d∗N ⊆ d!N ,
it follows that d∗ also preserves momomorphisms.

The weak equivalences in both categories are objectwise quasi-isomorphisms, and we will
show l preserves all homology isomorphisms. Since l is defined at the level of abelian cat-
egories, it takes mapping cones to mapping cones. It therefore suffices to show that if X
is a qce-module with H∗(X) = 0 then H∗(lX) = 0. For this we use a filtration described
in [28, Section 6] (the map d : Σc −→ [0, r] and the diagram Rf

c take the roles of the map
π : Σ −→ Σ and the ring Rf ). To avoid clutter, we will omit the notation if since ifX takes
the same values as X on pairs.

For each flag f = (f0 > · · · > fs) of dimensions we consider the value (d∗X)(f) at f .
Inside this we have the generating submodules Mfi for i = 0, 1, . . . , s (this is the submodule
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generated by the image of (d∗X)(fi) =
⊕

dimK=fi
X(K)). There is an associated Mayer-

Vietoris spectral sequence for these, showing that it suffices to show that for each face
e = (e0 > e1 > · · · > et) ⊂ (f0 > f1 > · · · > fs) = f the intersection

Me =
⋂
j

Mej

is acyclic. A combinatorial lemma [28, Lemma 6.7] shows that Me is generated by the image
of the diagonals including e in f . Furthermore

Me =
∑

dimE=e

ME =
⊕

dimE=e

ME

so it suffices to show that ME is acyclic.
Now consider the diagram

Rd(f)⊗Rd(e) X(E) //

��

(d!M)(f)

∼=
��

d!e[Rd(f)⊗Rd(e) X(E)] // (d!M)(f).

in which ME is the image of the top horizontal. We argue that the top horizontal is in fact
a monomorphism, and it then follows since (Rd(f) is flat over Rd(e)) that ME is acyclic.

In fact the bottom horizontal is an isomorphism since X is qce; indeed the F th idempotent
piece is the map Rd(F )⊗Rd(E) X(E) −→ X(F ). The left hand vertical is a monomorphism
since it can be viewed as a composite

Rd(f)⊗Rd(e) X(E) −→ Rd(f)⊗Rd(e)

∏
X(E) −→ d!eRd(f)⊗Rd(e) X(E);

the first is a monomorphism since the diagonal is and Rd(f) is flat over Rd(e), and the second
map is an isomorphism. It follows that the top horizontal is a monomorphism as required.

This shows that we have a Quillen pair, and we now cellularize with respect to the images
of the cells G/H+. By the Cellularization Principle [35] this induces a Quillen equivalence
of cellularizations since the cells are small and lie in Apc(G).

Finally, it remains to check that cellularization is the identity on Apc(G). This will be
completed by Theorem 12.1 which states that cellular equivalences for qce modules are
precisely the quasi-isomorphisms. Thus,

Apc(G) = qce-Rp
c-modules = cell-qce-Rp

c-modules.

�

Remark 11.6. We would like to upgrade the equivalence to being monoidal, but we note that
although the category A(G) is monoidal, the injective model on dA(G) we have described is
not a monoidal model structure. The first step will be to extend Barnes’s dualizable model
structures from the rank 1 case to the arbitrary case, using [25].

12. Cellular equivalences in D(A(G))

We aim to show that cellularization has no effect on dA(G) (equipped with the model
structure described in Section 11).
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12.A. The two notions of equivalence. Recall that a map f : X −→ Y in dA(G)
is a weak equivalence if it is a homology isomorphism (i.e., if f∗ : H∗(X) −→ H∗(Y ) is
an isomorphism in A(G)). This means that it is an isomorphism when evaluated at each
connected subgroup K.

The map f : X −→ Y is a cellular equivalence if the Hom(A,X) −→ Hom(A, Y ) is a
homology isomorphism for all (cofibrant) cells A (i.e., [A,X]∗ −→ [A, Y ]∗ is an isomorphism
for all A). We note that for each A this just involves a single graded vector space.

Theorem 12.1. The triangulated category D(A(G)) is generated by the cells G/K+. Ac-
cordingly, a cellular equivalence of objects of dA(G) is a homology isomorphism.

Remark 12.2. Although the idea of the proof seems rather simple, organizing the imple-
mentation requires some delicacy. We tried several approaches, hoping to minimize the
verifications, but in the end all seemed to use very similar ingredients: Koszul models for
cells, and the associated apparatus of torsion and completion, a filtration by dimension of
isotropy groups and the objects fK(M) (where fK is right adjoint to evaluation at K).

By the use of mapping cones, it suffices to show that if an object X is cellularly trivial
then H∗(X) = 0. This also proves the statement about generation, since the cells are small,
and for any Y we may use the usual process of cellular approximation to construct a cellular
object cell(Y ) and a map cell(Y ) −→ Y which is a cellular equivalence.

Suppose X is cellularly trivial. We will argue by induction on the codimension of K that
H∗(X)(K) = 0. Suppose then that codim(K) = c and that we have already proved that
H∗(X)(H) = 0 if codim(H) < c. This is certainly true if c = 0, so the induction starts. Since
there are no infinite decreasing chains of subgroups this suffices. We return to the inductive
step in Subsection 12.D after some preparation.

12.B. Motivation for the proof. To guide us, and to recall some standard notation, we
consider the derived category D(tors−R), where R = k[x1, . . . , xr] is a polynomial ring over
a field k. The corresponding claim is that if [k,M ]∗ = 0 then M ' 0 (or equivalently that k
generates the category). One proof is as follows.

First we recall some standard constructions. The Koszul complex for an element x is
defined by Kos(x) = fibre(x : R −→ R), and the stable Koszul complex is defined by
Kos∞(x) = fibre(R −→ R[1/x]). It is easy to see that

Kos∞(x) = lim
→ s

Kos(xs).

For a sequence of elements the Koszul and stable Koszul complex are obtained by tensoring
those of the terms together. The stable Koszul complex Kos(y1, · · · , yr) only depends on the
radical of the ideal (y1, . . . , yr) and we write

Γ(M) = Kos∞(x1, . . . , xr)⊗M,

and this is the k-cellularization of M .
We may now proceed with the proof.
Step 1. k is self-dual up to suspension. Indeed, it is equivalent to the Koszul complex for

the generators x1, . . . , xr.
It follows from Step 1 that if [k,M ]∗ = 0 then k ⊗M ' 0.
Step 2. It then follows formally that ΓR⊗M ' 0, where ΓR is the k-cellularization of R.
Step 3. From the cofibre sequence ΓR −→ R −→ ČR we deduce M ' ČR⊗M .
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Step 4. Since M is torsion ČR ⊗M ' 0. Indeed, ČR has a finite filtration with subquo-
tients R[1/xT ] where xT is a (non-empty) product of variables xi, and

R[1/xT ]⊗M = M [1/xT ] ' 0

since M is torsion.

12.C. Cells as Koszul complexes. We explain how to view the cells G/K+ as Koszul
complexes.

First, if H is a codimension 1 subgroup we choose a one dimensional representation α =
α(H) so that H = ker(α). The cofibre sequence

G/H+ ' S(α)+ −→ S0 −→ Sα

suggests that G/H+ is equivalent to the Koszul complex of e(α). More precisely, this follows
from the form of the models of S0 and Sα = ΣαS0 since e(α) is a non-zero divisor on OF .

In general, we may choose codimension 1 subgroups H1, . . . , Hc so that K = H1∩· · ·∩Hc.
Exactly as for the polynomial ring, for a complex representation V with V G = 0, we have
e(V ) ∈ OF and we take

Kos(e(V )) = fibre(S0 −→ SV ).

We note that all terms are projective, and for a sequence of Euler classes the Koszul complex
is defined by tensoring these together.

Lemma 12.3. The Koszul complexes give a projective model for the cells:

G/K+ ' Kos(e(H1), . . . , e(Hc)).

Proof: Since the Euler classes form a regular sequence inOF , the homology πA∗ (Kos(e(H1), . . . , e(Hc))

is calculated as a quotient of πA∗ (S0) = ÕF (in the notation of Subsection 2.A). This applies
equally well in the category of spectra, so that the homology of the Koszul complex agrees
with the image πA∗ (G/K+) of the spectrum G/K+. Since G/K+ is intrinsically formal by
Corollary 2.9, this completes the proof. �

We will use the following duality property, familiar in topology.

Corollary 12.4. The algebraic cell G/K+ is self dual: if codim(K) = c then

DG/K+ ' Σ−cG/K+

Proof: Since
Hom(SV , X) = Σ−VX = S−V ⊗X,

the dual of the Koszul complex is the Koszul complex. However, a priori the shift is by
a representation rather than an integer. To see the representation may be replaced by an
integer, we note that if α is a one dimensional representation with kernel K

ΣαOF = Σ2eFKOF ⊕ (1− eFK)OF
where FK consists of the finite subgroups of K, and eFK is the corresponding idempotent.
It follows that

DKos(e(α)) ∼= Σ−1Kos(e(α)).

The general case follows by tensoring c instances of this together. �
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12.D. Proof of the inductive step. We may in fact now follow the motivating pattern
described in Subsection 12.B.

Suppose then that H∗(X)(H) = 0 for H of codimensions < c and that codimK = c. We
will show that the fact X is cellularly trivial means H∗(X)(K) = 0.

By Corollary 12.4, [G/L+, X]∗ = [S0,Σ−dG/L+ ∧ X]∗, where L is of codimension d,
so that the hypothesis that X is cellularly trivial proves that [S0, A ∧ X]∗ = 0 for any
cellular spectrum A. We note that A = S∞V (K) is cellular. Indeed, it is the localization
which inverts e(α) for those one dimensional representations α with αK = 0 (i.e., K 6⊆
ker(α)). Accordingly, fibre(S0 −→ S∞V (K)) is the cellularization of S0 using cells G/L+

where L is in the family of subgroups not containing K. (More explicitly, it is the homotopy
colimit of stable Koszul complexes Kos∞(α1, . . . , αs) where αKi = 0) The point of considering
S∞V (K) ∧M is the isomorphism

S∞V (K) ∧X ∼= fK(φKX).

Lemma 12.5. For any torsion DG-OF/K-module M ,

[S0, fK(M)] ∼= H∗(M).

Proof : Since fK is right adjoint to evaluation at K, and since this is compatible with
resolutions, the Adams spectral sequence for [T, fK(M)]G takes the simple form

Es,t
2 = Ext∗,∗OF/K

(φKH∗(T ), H∗(M))⇒ [T,X]G∗ .

In particular, taking T = S0 and X = fK(M), we have φKH∗(S
0) = OF/K and

[S0, fK(M)] = HomOF/K
(OF/K , H∗(M)) = H∗(M).

�

Finally we see

0 = [S0, S∞V (K) ∧X]∗ = [S0, fK(φKX) = H∗φ
KX

as required.
This completes the inductive step and hence the proof of Theorem 12.1. �
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