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We develop methods to study 2-dimensional 2-adic Galois 
representations ρ of the absolute Galois group of a number 
field K, unramified outside a known finite set of primes S of K, 
which are presented as Black Box representations, where we 
only have access to the characteristic polynomials of Frobenius 
automorphisms at a finite set of primes. Using suitable finite 
test sets of primes, depending only on K and S, we show 
how to determine the determinant det ρ, whether or not ρ is 
residually reducible, and further information about the size of 
the isogeny graph of ρ whose vertices are homothety classes 
of stable lattices. The methods are illustrated with examples 
for K = Q, and for K imaginary quadratic, ρ being the 
representation attached to a Bianchi modular form.
These results form part of the first author’s thesis [2].
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open access article under the CC BY license 
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1. Introduction

Let K be a number field. Denote by K the algebraic closure of K and by GK =
Gal(K/K) the absolute Galois group of K. By an �-adic Galois representation of K
we mean a continuous representation ρ : GK → Aut(V ), where V is a finite-dimensional 
vector space over Q�, which is unramified outside a finite set of primes of K. Such 
representations arise throughout arithmetic geometry, where typically V is a cohomology 

* Corresponding author.
E-mail address: j.e.cremona@warwick.ac.uk (J. Cremona).
https://doi.org/10.1016/j.jalgebra.2018.05.017
0021-8693/© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC 
BY license (http://creativecommons.org/licenses/by/4.0/).

https://core.ac.uk/display/157788247?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.jalgebra.2018.05.017
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
http://creativecommons.org/licenses/by/4.0/
mailto:j.e.cremona@warwick.ac.uk
https://doi.org/10.1016/j.jalgebra.2018.05.017
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jalgebra.2018.05.017&domain=pdf


A. Argáez-García, J. Cremona / Journal of Algebra 512 (2018) 526–565 527
space attached to an algebraic variety. For example, modularity of elliptic curves over K
can be interpreted as a statement that the 2-dimensional Galois representation arising 
from the action of GK on the �-adic Tate module of the elliptic curve is equivalent, as 
a representation, to a representation attached to a suitable automorphic form over K. 
In this 2-dimensional context and with � = 2, techniques have been developed by Serre 
[15], Faltings, Livné [13] and others to establish such an equivalence using only the 
characteristic polynomial of ρ(σ) for a finite number of elements σ ∈ GK . Here the 
ramified set of primes S is known in advance and the Galois automorphisms σ which are 
used in the Serre–Faltings–Livné method have the form σ = Frob p where p is a prime 
not in S, so that ρ is unramified at p.

Motivated by such applications, in this paper we study Galois representations of K
as “Black Boxes” where both the base field K and the finite ramified set S are specified 
in advance, and the only information we have about ρ is the characteristic polynomial 
of ρ(Frob p) for certain primes p not in S; we may specify these primes, but only finitely 
many of them. Using such a Black Box as an oracle, we seek to give algorithmic answers 
to questions such as the following (see the following section for definitions):

• Is ρ irreducible? Is ρ trivial, or does it have trivial semisimplification?
• What is the determinant character of ρ?
• What is the residual representation ρ? Is it irreducible, trivial, or with trivial semisim-

plification?
• How many lattices in V (up to homothety) are stable under ρ – in other words, how 

large is the isogeny class of ρ?

In the case where dimV = 2 and � = 2, we give substantial answers to these 
questions in the following sections. In Section 2 we recall basic facts about Ga-
lois representations and introduce key ideas and definitions, for arbitrary finite di-
mension and arbitrary prime �. From Section 3 on, we restrict to � = 2, first 
considering the case of one-dimensional representations (characters); these are rel-
evant in any dimension since det ρ is a character. Although in the applications 
det ρ is always a power of the �-adic cyclotomic character of GK , we will not as-
sume this, and in fact the methods of Section 3 may be used to prove that the 
determinant of a Black Box Galois representation has this form. From Section 4
we restrict to 2-dimensional 2-adic representations, starting with the question of 
whether the residual representation ρ is or is not irreducible (over F2), and what 
is its splitting field (see Section 2 for definitions); a complete solution is given for 
both these questions, which we can express as answering the question of whether 
or not the isogeny class of ρ consists of only one element. In Section 5 we con-
sider further the residually reducible case and determine whether or not the isogeny 
class of ρ contains a representative with trivial residual representation, or equiv-
alently whether the size of the class is 2 or greater. In Section 6 we assume 
that ρ is trivial modulo 2k for some k ≥ 1 and determine the reduction of ρ
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(mod 2k+1) completely, in particular whether it too is trivial. Hence, for exam-
ple, we can determine ρ (mod 4) when ρ is trivial, and also as a final application, 
in Section 7 we give a (finite) criterion for whether ρ has trivial semisimplifica-
tion.

For each of these tasks we will define a finite set T of primes of K, disjoint from 
S, such that the Black Box information about ρ(Frob p) for p ∈ T is sufficient to 
answer the question under consideration. In each case except for the criterion for ρ
to have trivial semisimplification, only finite 2-adic precision is needed about the de-
terminant and trace of ρ(Frob p), though we note that in the applications the 2-adic 
representation inside the Black Box is always part of a compatible family of �-adic repre-
sentations, so that in practice these are rational or algebraic integers and will be known 
exactly.

The following theorem summarises our results; we refer to later sections for the defi-
nitions of the sets T0, T1 and T2 and for algorithms to compute them. Here Fp(t) denotes 
the characteristic polynomial of ρ(Frob p) (see (1) below), for a prime p /∈ S.

Theorem 1.1. Let K be a number field and S a finite set of primes of K. There exist 
finite sets of primes T0, T1 and T2, disjoint from S, depending only on K and S, such 
that for any 2-dimensional 2-adic Galois representation ρ of GK which is continuous 
and unramified outside S,

1. the reducibility of the residual representation ρ, and its splitting field when irre-
ducible, are uniquely determined by the values of Fp(1) (mod 2), i.e., by the traces 
of ρ(Frob p), for p ∈ T0;

2. the determinant character det ρ is uniquely determined by the values of Fp(0) =
det ρ(Frob p) for p ∈ T1;

3. when ρ is reducible,
• the existence of an equivalent representation whose residual representation is triv-

ial is determined by the values of Fp(1) (mod 4) for p ∈ T2;
• if ρ (mod 2k) is trivial for some k ≥ 1, the reduction ρ (mod 2k+1) is uniquely 

determined by the values of Fp(1) (mod 22k+1) for p ∈ T2; in particular, there is 
an equivalent representation which is trivial modulo 2k+1 if and only if Fp(0) ≡ 1
(mod 2k+1) and Fp(1) ≡ 0 (mod 22k+2) for all p ∈ T2;

• ρ has trivial semisimplification if and only if Fp(t) = (t − 1)2 for all p ∈ T2; that 
is if and only if tr ρ(Frob p) = 2 and det ρ(Frob p) = 1 for all p ∈ T2.

In each section we give examples to illustrate the methods, first from elliptic curves 
defined over Q, and then in the final section, we give two examples arising from Bianchi 
modular forms, and elliptic curves over imaginary quadratic fields. In the examples we 
refer to elliptic curves and Bianchi modular forms using their LMFDB labels (see [14]) 
giving links to the relevant object’s home pages at www .lmfdb .org.

http://www.lmfdb.org
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Remarks on complexity

Although Theorem 1.1 only states the existence of sets of primes with certain proper-
ties, we will provide algorithms to compute these, which we have implemented in order 
to produce examples (see below). It is natural, therefore, to ask about the complexity 
of these algorithms. We will not make a precise statement here: as with essentially all 
algorithms in algebraic number theory, our algorithms are exponential in the size of the 
input, as they require basic knowledge of the ground field K such as its rings of integers, 
class group and unit group. Computing these from a polynomial defining K was shown 
to be exponential by Lenstra in [12]. Secondly, our residual reducibility test requires us 
to be able to enumerate all extensions of K unramified outside S and with Galois group 
C2, C3, or S3. As this is a standard problem we do not give details of this here, but note 
that except for fields of small degree and discriminant, and small sets of primes S, this 
is likely to be the slowest step in the overall algorithm. Computing the 2-Selmer group 
K(S, 2) of a number field K (see (2) below) can be highly non-trivial, even for fields K of 
moderate degree and assuming the Generalised Riemann Hypothesis. Lastly, even if all 
the necessary arithmetic data for K is provided as part of the input, our algorithms rely 
on being able to find primes satisfying the conditions for the sets Ti. In all cases, there 
are infinitely many primes with the desired properties, and below we give the (positive) 
Dirichlet density of the sets concerned as an informal indication of how hard finding the 
primes will be. Explicit estimates exist (at least for K = Q) for how large the smallest 
primes with the desired property may be, but in practice, for examples where the pre-
vious steps are possible in reasonable time, we are able to find these primes easily. Both 
the number of primes in the sets Ti and their size (or norm) are relevant in applying 
these algorithms, since in practice the work which the Black Box needs to carry out can 
be considerable.1

Implementation

We have implemented all the algorithms described in the paper in Sage (see [7]). The 
code, some of which will be submitted for inclusion into a future release of Sage, is 
available at [1]. This includes general-purpose code for computing the test sets T0, T1
and T2 from a number field K and a set S of primes of K, and also worked examples 
which reproduce the examples we give in the text.

2. Background on Galois representations

Fix once and for all a number field K and a finite set S of primes of K.

1 For example, this would be the case for the examples in [8], where the second author provided Hecke 
eigenvalues for certain Bianchi modular forms at primes required by the authors of [8], which included 
non-principal primes of quite large norm.
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Definition 2.1. An �-adic Galois representation over K is a continuous homomorphism 
ρ : GK → Aut(V ) ∼= GL2(Q�), where V is a finite-dimensional vector space over Q�. 
Such a representation is said to be unramified outside S, if its restriction to the inertia 
subgroup at each p /∈ S is trivial.

We do not assume that the representation ρ is irreducible.
The condition that ρ is unramified outside S means that for each p /∈ S, it factors 

through the Galois group Gal(L/K) of the maximal extension L of K unramified at p. 
Since L/K is unramified at p, there is a well-defined conjugacy class of Frobenius au-
tomorphisms at p, denoted Frob p, in Gal(L/K), so that for all σ ∈ Frob p, the values 
of ρ(σ) are conjugate in Aut(V ) and hence the characteristic polynomial of ρ(σ) is well-
defined. By abuse of notation, we write ρ(Frob p) for ρ(σ) for any choice of σ in this class, 
and denote its characteristic polynomial by Fp(t). Moreover, by the Čebotarev Density 
Theorem, for every automorphism σ ∈ GK there are infinitely many p /∈ S for which 
ρ(σ) = ρ(Frob p).

From now on we only consider 2-dimensional representations. Choosing a basis for V
we may express each ρ(σ) as a matrix, and hence consider ρ to be a matrix representation 
GK → GL2(Q�). Moreover with different choices of bases we obtain equivalent matrix 
representations. For σ ∈ GK define Fσ(t) to be the characteristic polynomial of ρ(σ), 
which is a well-defined monic quadratic polynomial in Z�[t], and for each prime p /∈ S

we set Fp = FFrob p, the Frobenius polynomial at p, which is also well-defined:

Fp(t) = det(ρ(Frob p) − t I)

= t2 − tr(ρ(Frob p))t + det(ρ(Frob p)) ∈ Z�[t]. (1)

The fact that these polynomials have integral coefficients follows from the existence of a 
stable lattice in V , as we recall below. The information about the representation ρ that 
we assume will be provided consists of the set S and the values of det(ρ(σ)) and tr(ρ(σ))
for σ = Frob p ∈ GK and p /∈ S. We encapsulate this setup as an oracle, or Black Box:

Definition 2.2. An �-adic Black Box Galois representation over K with respect to S is an 
oracle which, on being presented with a prime p of K, responds with either “ramified” if 
p ∈ S, or with the value of the quadratic Frobenius polynomial Fp(t) in Z�[t] for p /∈ S.

Equivalently, the Black Box delivers for each p /∈ S the values of the trace
tr(ρ(Frob p)) ∈ Z� and the determinant det(ρ(Frob p)) ∈ Z∗

� .

2.1. Stable lattices and the Bruhat–Tits tree

It is well known [16, p. 1] that continuity of ρ implies the existence of at least one stable 
lattice Λ, i.e., a free Z�-submodule of V of full rank such that ρ(σ)(Λ) ⊆ Λ for all σ ∈
GK . With respect to a Z�-basis of Λ, ρ determines an integral matrix representation
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ρΛ : GK → GL2(Z�). Any lattice homothetic to a stable lattice is also stable and induces 
the same integral matrix representation. Changing to a different Z�-basis of Λ gives rise 
to an equivalent integral representation (conjugate within GL2(Z�)). The existence of a 
stable lattice shows that the Frobenius polynomials Fp(t) have coefficients in Z�.

If we change to a different stable lattice Λ′ ⊂ V which is not homothetic to Λ, 
however, the integral representation ρΛ′ we obtain, while rationally equivalent to ρΛ
(conjugate within GL2(Q�)), is not necessarily integrally equivalent (conjugate within 
GL2(Z�)). Integral representations related in this way (rationally but not necessarily 
integrally equivalent) are called isogenous. As we are assuming that the only information 
we have about ρ (for fixed K and S) are the characteristic polynomials of ρ(Frob p) for 
primes outside S provided by the Black Box, we cannot distinguish isogenous integral 
representations, but still hope to be able to say something about the set of all of those 
isogenous to a given one.

Definition 2.3. The isogeny class of ρ is the set of pairs (Λ, ρΛ) where Λ is a stable lattice 
and ρΛ the induced map GK → Aut(Λ), modulo the equivalence relation which identifies 
homothetic lattices.

For each choice of stable lattice and induced integral representation we can define its 
associated residual representation.

Definition 2.4. Let ρ : GK → Aut(V ) be an �-adic Galois representation. To each stable 
lattice Λ ⊂ V the associated residual representation ρΛ is the composite map GK →
Aut(Λ) → Aut(Λ ⊗Z�

F�).
In matrix terms, ρΛ : GK → GL2(F�) is obtained by composing the integral matrix 

representation ρΛ : GK → GL2(Z�) with reduction modulo �.

We cite the following facts (see [16, p. 3] for the second one):

• ρ is irreducible if and only if the number of stable lattices, up to homothety, is finite; 
that is, if and only if the isogeny class of ρ is finite.

• Let Λ be any stable lattice. Then the residual representation ρΛ is irreducible over F�

if and only if Λ is the only stable lattice up to homothety. In other words, the 
residual representation is irreducible if and only if the isogeny class consists of a 
single element, in which case there is of course only one residual representation up 
to conjugacy in GL2(F�).

From the second fact we see that either all the residual representations are reducible, 
or none of them are; in the latter case there is only one stable lattice up to homoth-
ety anyway. Thus it makes sense to describe ρ as “residually reducible” or “residually 
irreducible” respectively.

Recall that the �-adic Bruhat–Tits tree is the infinite graph whose vertices are the 
homothety classes of lattices in V ∼= Q2

� , with two vertices joined by an edge if their 
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classes have representative lattices Λ1, Λ2 such that Λ1 contains Λ2 with index �. (This 
is a symmetric relation since then Λ2 contains �Λ1 with index �.) Each vertex has degree 
exactly � + 1. Restricting to lattices which are stable under our representation ρ, we 
obtain the following:

Definition 2.5. The stable Bruhat–Tits tree or isogeny graph of an �-adic representation 
ρ is the full subgraph BT(ρ) of the Bruhat–Tits tree whose vertices are stable lattices.

It is easy to see that if [Λ] and [Λ′] are stable homothety classes, all vertices in the 
unique path between them are also stable: we may choose representatives Λ, Λ′ in their 
homothety classes such that Λ ⊆ Λ′ and the quotient Λ′/Λ is cyclic, of order �n for 
some n ≥ 0. Now this quotient has a unique subgroup of each order �k for 0 ≤ k ≤ n, 
corresponding to a lattice Λ′′ with Λ ⊆ Λ′′ ⊆ Λ′, and by uniqueness, each such Λ′′ is 
stable.

Hence the stable Bruhat–Tits tree is indeed a tree. Its vertex set is the isogeny class 
of ρ as defined above, and we may refer to its edges as �-isogenies. Given two adjacent 
stable lattices, we may choose bases so that the associated integral matrix representations 

are conjugate within GL2(Q�) via the matrix 
(
� 0
0 1

)
. In BT(ρ) it is no longer the case 

that every vertex has degree � + 1; considering the action of GL2(F�) on P1(F�) we see 
that for � = 2 the possible degrees are 0, 1 and 3 while for � ≥ 3 the possible degrees 
are 0, 1, 2 and � + 1.

We define the width of the isogeny class BT(ρ) to be the length of the longest path 
in BT(ρ); by the facts above, this is finite if and only if ρ is irreducible, and is positive 
if and only if ρ is residually reducible.

3. Characters and quadratic extensions

The problem of distinguishing continuous 2-adic characters (1-dimensional represen-
tations) χ : GK → Z∗

2 reduces to that of distinguishing quadratic extensions of K, since 
Z∗

2 is an abelian pro-2-group. Moreover, the image of ρ in GL2(Z2) is itself a pro-2-group 
in the case that the residual representation is reducible, so the technique we describe in 
this section will be used later to study both det ρ and ρ itself in the residually reducible 
case.

There are only finitely many quadratic extensions L of K unramified outside S; 
their compositum is the maximal extension of K unramified outside S and with Ga-
lois group an elementary abelian 2-group. Each has the form L = K(

√
Δ) for a unique 

Δ ∈ K(S, 2) ≤ K∗/(K∗)2, where K(S, 2) is the subgroup (often called the 2-Selmer 
group of K, or of K∗) given by

K(S, 2) = {a ∈ K∗/(K∗)2 : ordp(a) ≡ 0 (mod 2) for all p /∈ S}. (2)
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Moreover, when S contains all primes of K dividing 2, every extension K(
√

Δ) with Δ ∈
K(S, 2) is unramified outside S. In general the Δ such that K(

√
Δ) is unramified outside 

S form a subgroup K(S, 2)u of K(S, 2). We will call elements of K(S, 2)u discriminants, 
and always regard two discriminants as equal when their quotient is a square in K∗. 
It is convenient here to consider Δ = 1 as a discriminant, corresponding to the trivial 
extension L = K.

The group of discriminants K(S, 2)u is an elementary abelian 2-group, of cardinality 
2r with r ≥ 0, and may also be viewed as an r-dimensional vector space over F2. Fixing 
a basis {Δi}ri=1 for K(S, 2)u, we may identify

Fr
2 ↔ K(S, 2)u

x ↔
r∏

i=1
Δxi

i , (3)

where x = (xi)ri=1.
Each prime p /∈ S determines a linear map

αp : K(S, 2)u → F2

defined by αp(Δ) = [Δ | p], where we set

[Δ | p] =
{

0 (mod 2) if p splits in K(
√

Δ) or Δ = 1
1 (mod 2) if p is inert in K(

√
Δ).

Linearity follows from the relation [ΔΔ′|p] = [Δ|p] + [Δ′|p].
For any prime p /∈ S, we define

I(p) = {i : [Δi | p] = 1} ⊆ {1, 2, . . . , r}. (4)

Conversely, for each subset I ⊆ {1, ..., r}, we denote by pI any prime such that I(pI) = I, 
so that

[Δi | pI ] = 1 ⇔ i ∈ I. (5)

When I = {i} or I = {i, j} with i �= j, we simply write pi = p{i} and pij = p{i,j}. By 
the Čebotarev Density Theorem applied to the compositum of the extensions K(

√
Δ)

for Δ ∈ K(S, 2)u, the set of primes of the form pI has density 1/2r for each subset I, 
and in particular is infinite.

Each set of primes of the form {pi | 1 ≤ i ≤ r} determines a basis {αpi
| 1 ≤ i ≤ r} for 

the dual space K(S, 2)∗u = HomF2(K(S, 2)u, F2), and may be used to distinguish between 
two characters unramified outside S. More generally we make the following definition.
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Definition 3.1. A set T1 of primes of K is linearly independent with respect to S if T1

is disjoint from S and the linear functions {αp | p ∈ T1} form a basis for the dual 
space K(S, 2)∗u.

As observed above, such a set always exists, for example any set of the form

{p1, ..., pr}, (6)

defined above with respect to a basis of K(S, 2)u, is a linearly independent set of primes. 
We fix once and for all a linearly independent set of primes, and denote it by T1, and 
can assume that {αp | p ∈ T1} is a dual basis for the chosen basis {Δi | 1 ≤ i ≤ r}
for K(S, 2)u. In practice this is most easily done by computing T1 = {p1, . . . , pr} first, 
and then taking {Δi} to be the basis dual to {αpi

} (see Algorithm 1 below). We then 
see by (5) that for all I ⊆ {1, 2, . . . , r},

αpI
(Δ) =

∑
i∈I

αpi
(Δ). (7)

Algorithm 1: To determine a linearly independent set T1 of primes of K.
Input : A number field K.

A finite set S of primes of K.
Output: T1 = {p1, . . . , pr}, a set of primes of K linearly independent with respect

to S, and a basis for K(S, 2)u dual to T1.
1 Let {Δi}ri=1 be a basis for K(S, 2)u;
2 Let T1 = {};
3 Let A be a 0 × r matrix over F2;
4 while rank(A) < r do
5 Let p be a prime not in S ∪ T1;
6 Let v = ([Δ1|p], ..., [Δr|p]);
7 if v is not in the row-space of A then
8 Let A = A + v; # i.e., adjoin v as a new row of A
9 Let T1 = T1 ∪ {p}.

10 Let Δ̃j =
∏

i Δ
bij
i for 1 ≤ i ≤ r, where (bij) = A−1;

11 return T1 and {Δ̃i | 1 ≤ i ≤ r}.
In line 5 of the algorithm, and similarly with later algorithms to determine other 

special sets of primes, we systematically consider all primes of K in turn, for example in 
order of norm, omitting those in S.

In line 10, we adjust the initial basis for K(S, 2)u to one which is dual to the computed 
set T1; this is more efficient than fixing a basis for K(S, 2)u and looking for primes which 
form a dual basis.
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Remark 3.2. Finding K(S, 2) is implemented in standard software packages. In Sage,
K.selmergroup(S,2) returns a basis, while in Magma one obtains K(S, 2) as abelian 
group via pSelmerGroup(2,S). See [7] or [4] respectively.

Methods for computing K(S, 2) are based on the short exact sequence

1 → O∗
K,S/(O∗

K,S)2 → K(S, 2) → CK,S [2] → 1,

where O∗
K,S is the group of S-units and CK,S[2] is the 2-torsion subgroup of the S-class 

group CK,S of K. They therefore rely on being able to compute the unit group and class 
group.

3.1. Identifying quadratic extensions

As an easy example of how to use a set T1 of primes linearly independent with respect 
to S, we may identify any extension L/K known to be of degree at most 2 and unramified 
outside S. Enumerating T1 = {p1, . . . , pr} and the dual basis {Δ1, . . . , Δr} for K(S, 2)u, 
set

Δ =
r∏

i=1
Δ[L|pi]

i ,

where for p /∈ S we set [L|p] = 0 (respectively 1) if p is split (respectively, is inert) in L. 
Then L = K(

√
Δ) (or L = K if Δ = 1). The proof is clear from the fact that L is 

uniquely determined by the set of primes which split in L/K. In particular, L = K if 
and only if all primes in T1 split.

3.2. 1-Dimensional Galois representations

We first consider additive quadratic characters α : GK → F2 which are unramified out-
side S, and see that a linear independent set T1 can determine whether such a character 
is trivial, and more generally when two are equal.

Lemma 3.3. Let α, α1, α2 : GK → F2 be additive quadratic characters unramified out-
side S.

1. If α(Frob p) = 0 for all p ∈ T1, then α = 0.
2. α1 = α2 if and only if α1(Frob p) = α2(Frob p) for all p ∈ T1.

Proof. If α �= 0, then the fixed field of ker(α) is a quadratic extension K(
√

Δ) for some 
non-trivial Δ in K(S, 2). But [Δ|p] = α(Frob p) = 0 for all p ∈ T1, which implies that 
Δ = 1. For the second part, consider α = α1 − α2. �
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Now let χ : GK → Z∗
2 be a 2-adic character unramified outside S. For example we may 

take χ = det ρ where ρ is a 2-adic Galois representation unramified outside S. Again, 
to show triviality of χ, or equality of two such characters, it is enough to consider their 
values on Frob p for p ∈ T1.

Theorem 3.4. Let χ, χ1, χ2 : GK → Z∗
2 be continuous characters unramified outside S. 

Let T1 be a linearly independent set of primes with respect to S.

1. If χ(Frob p) = 1 for all p ∈ T1, then χ is trivial.
2. χ1 = χ2 if and only if χ1(Frob p) = χ2(Frob p) for all p ∈ T1.

Proof. As before, the second part follows from the first on considering χ = χ1χ
−1
2 , which 

is again a character GK → Z∗
2 unramified outside S.

Suppose that χ �= 1. Let k ≥ 1 be the greatest integer such that χ(σ) ≡ 1 (mod 2k)
for all σ ∈ GK . Note that χ(σ) ≡ 1 (mod 2) for all σ ∈ GK , so k does exist. We can 
write

χ(σ) ≡ 1 + 2kα(σ) (mod 2k+1)

where σ �→ α(σ) is a non-trivial additive quadratic character GK → F2. However, 
α(Frob p) ≡ 0 (mod 2) for all p ∈ T1, since χ(Frob p) = 1, so by Lemma 3.3 we have 
that α = 0, contradicting the minimality of k. �

4. Determining the residual representation

Given a Black Box Galois representation ρ, we would like to determine whether its 
residual representations are irreducible or reducible. Recall that this is a well-defined 
question, even when there is more than one stable lattice. In the irreducible case, 
we will moreover determine the (unique) residual representation completely, both its 
image (which has order 3 or 6, and is isomorphic to either C3 (the cyclic group of 
order 3) or S3 (the symmetric group of degree 3)), and the fixed field of its kernel. 
Note that GL2(F2) ∼= S3, the isomorphism coming from the action of GL2(F2) on 
P1(F2).

This is our initial step in determining the size and structure of the attached Bruhat–
Tits tree BT(ρ), as we will determine whether it has only one vertex (and width 0) or is 
larger (positive width).

Fixing one stable lattice Λ with residual representation ρΛ, we define the splitting field
of ρΛ to be the fixed field of its kernel. This is an extension L of K which is unramified 
outside S such that Gal(L/K) ∼= ρΛ(GK) ≤ GL2(F2), hence Gal(L/K) is isomorphic to 
one of: C1 (the trivial group), C2 (cyclic of order 2), C3 or S3. The first two cases occur 
when ρΛ is reducible, in which case a different choice of stable lattice may change the 
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image between being trivial and of order 2, while in the residually irreducible case the 
image and kernel are both well-defined.

We now show how to identify the residual splitting field, leaving until a later section 
the task of saying more in the reducible case.

4.1. Identifying cubic extensions

The key to our method is that there are only finitely many Galois extensions L/K, 
unramified outside S, and with Galois group either C3 or S3, and we may determine these 
algorithmically. We will not discuss here details of this, except to remark that in the S3
case we can first construct all possible quadratic extensions K(

√
Δ) using Δ ∈ K(S, 2)u

as in the previous section, and then use either Kummer Theory or Class Field Theory 
to construct all cyclic cubic extensions of K or K(

√
Δ). Full details of the Kummer 

Theory method, using special cases of results by Cohen [5], can be found in [11, §3] (see 
also Koutsianas’s thesis [10]); we have an implementation of this method in Sage. An 
alternate implementation, using Class Field Theory, was written in Pari/GP by Pacetti, 
as used in [8] in the case where K is an imaginary quadratic field. These implementations 
were used for the examples below.

For present purposes, we assume that, given K and S, we can write down a finite 
set F of irreducible monic cubic polynomials in OK [x], whose splitting fields are the 
Galois extensions L/K unramified outside S with Gal(L/K) isomorphic to either S3 or 
C3. Note that the discriminants of the polynomials in F may be divisible by primes not 
in S, and these primes will need to be avoided, so we denote by S(F) the union of S
with all prime divisors of {disc(f) | f ∈ F}.

We can characterise the fields L by examining the splitting behaviour of primes p /∈
S(F), which depends only on the factorisation of the respective f ∈ F modulo p.

Definition 4.1. For a monic cubic polynomial f ∈ OK [x] and prime p � disc f , define

λ(f, p) =
{

1 if f is irreducible mod p;
0 otherwise.

This definition is motivated by the observation that elements of GL2(F2) have trace 1
(respectively, 0) if their order is 3 (respectively, 1 or 2), combined with the following 
result from elementary algebraic number theory.

Lemma 4.2. Let f be an irreducible monic cubic polynomial in OK [x] with splitting 
field L. Then for p � disc f ,

λ(f, p) =
{

1 if Frob p has order 3 in Gal(L/K)
0 if Frob p has order 1 or 2 in Gal(L/K).
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Hence, if our Black Box representation ρ has irreducible residual representation with 
residual splitting field defined by the cubic f , we will have

λ(f, p) ≡ tr(ρ(Frob p)) (mod 2) ∀p /∈ S.

This underlies our algorithm for testing residual irreducibility: see Proposition 4.5. To 
this end, we now define a finite set of primes which can distinguish between the possible 
splitting fields L.

Definition 4.3. Let F be a set of monic cubic polynomials in OK [x] whose splitting fields 
are exactly the S3 and C3 extensions of K unramified outside S. An ordered set of primes 
T0 = {p1, ..., pt} of K is a distinguishing set for (F , S) if

1. T0 ∩ S(F) = ∅ (equivalently, T0 ∩ S = ∅ and p � disc f for all p ∈ T0 and f ∈ F);
2. the vectors (λ(f, p1), ..., λ(f, pt)) ∈ Ft

2 for f ∈ F are distinct and non-zero.

We will write v(f, T0) = (λ(f, p1), ..., λ(f, pt)) when T0 = {p1, ..., pt}.

Lemma 4.4. A distinguishing set of primes for (F , S) exists.

Proof. Let F = {fi}ni=1 be the set of monic cubic polynomials defining the S3 and C3

extensions of K. Set f0 = x3 and define λ(f0, p) = 0 for all p. It is enough to show that 
for all 0 ≤ j < i ≤ n there exists a prime p /∈ S(F) such that λ(fi, p) �= λ(fj , p). For 
i ≥ 1 let Li be the splitting field of fi. We divide the proof into three cases. (For more 
details of the density calculations, see [2, p. 21, Lemma 3.2.5].)

Case 1: When j = 0, we require for each i ≥ 1 the existence of a prime p such that 
λ(fi, p) = 1. By the Čebotarev Density Theorem, there are infinitely many such primes, 
with density 1

3 when Gal(Li/K) ∼= S3, or 2
3 when Gal(Li/K) ∼= C3.

Case 2: When i > j ≥ 1 and disc(Li) �≡ disc(Lj) (mod (K∗)2), the fields Li and Lj

are disjoint. Then there are three possibilities for the Galois group of their compositum, 
according to whether the discriminants are trivial (i.e., square). In each case there are 
infinitely many primes which fulfill the condition, with density 4

9 when Gal(LiLj) ∼=
S3 × S3, and 5

9 when Gal(LiLj) is S3 × C3.
Case 3: When i, j ≥ 1 and disc(Li) ≡ disc(Lj) (mod (K∗)2) we have two possibilities; 

the density is 4
9 when both Galois groups are isomorphic to C3 and is 2

9 when both are 
isomorphic to S3. �

A distinguishing set T0 of primes can be computed using the following algorithm. The 
size t of T0 depends on the total number n of C3 and S3 extensions of K unramified 
outside S, and there exists such a set for which �log2(n)� ≤ t ≤ n − 1.
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Algorithm 2: To determine a distinguishing set T0 of primes of K.
Input : A number field K. A finite set S of primes of K.

A set F = {f1, . . . , fn} of cubics defining C3 and S3 extensions
of K unramified outside S.

Output: T0, a distinguishing set of primes for (F , S).
1 Let f0 = x3;
2 Let T0 = {};
3 while #{v(fi, T0) | 0 ≤ i ≤ n} < n + 1 do
4 Find i �= j such that v(fi, T0) = v(fj , T0);
5 Find a prime p /∈ S ∪ T0 such that λ(fi, p) �= λ(fj , p);
6 Let T0 = T0 ∪ {p};
7 return T0.

Example 1. Let K = Q and take S = {2, 37}. The only C3 extension of Q unramified 
outside S is the splitting field of f = x3−x2−12x −11 (with discriminant 372), while there 
are two such S3 extensions with polynomials g = x3−x2−3x +1 and h = x3−x2−12x +26
(with discriminants 37 ·22 and −(2 ·37)2 respectively), so F = {f, g, h}. (These fields have 
LMFDB labels 3 .3 .148 .1, 3 .3 .1369 .1 and 3 .1 .5476 .1.) We may take T0 = {3, 5} where the 
values of λ are (1, 1), (1, 0), (0, 1) for f, g, h respectively.

4.2. Determining residual irreducibility and splitting field

As above, let ρ be a Black Box 2-adic Galois representation over K unramified out-
side S, let F = {f1, . . . , fn} be a set of irreducible cubics defining all C3 and S3 extensions 
of K unramified outside S, and let T0 be a distinguishing set of primes for (F , S). For 
1 ≤ i ≤ n let Li be the splitting field of fi over K, and let L be the residual splitting 
field of ρ with respect to one stable lattice.

Proposition 4.5. With notation as above,

1. If [L : K] = 6 or 3 then, for exactly one value i ≥ 1, we have L = Li and

λ(fi, p) ≡ tr(ρ(Frob p)) (mod 2)

for all p /∈ S(F). Moreover, for infinitely many primes p we have

tr(ρ(Frob p)) ≡ 1 (mod 2).

2. [L : K] ≤ 2 if and only if

tr(ρ(Frob p)) ≡ 0 (mod 2)

for all p /∈ S(F).

http://www.lmfdb.org/NumberField/3.3.148.1
http://www.lmfdb.org/NumberField/3.3.1369.1
http://www.lmfdb.org/NumberField/3.1.5476.1
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Proof. Suppose that [L : K] = 6 or 3. Then the image of ρ is C3 or S3 and L = Li, the 
splitting field of fi, for some i, 1 ≤ i ≤ n. Hence for all p /∈ S(F), by Lemma 4.2, we 
have

λ(fi, p) = 1 ⇔ Frob p has order 3 in Gal(Li/K)

⇔ ρ(Frob p) has order 3 in GL2(F2)

⇔ tr(ρ(Frob p)) ≡ 1 (mod 2).

On the other hand, if [L : K] ≤ 2, the image of ρ is either C1 or C2. Hence 
tr(ρ(Frob p)) ≡ 0 (mod 2) for all p /∈ S. �

Note that irreducibility of the residual representation can be established with a single 
prime p such that tr(ρ(Frob p)) is odd. Using this proposition, we can achieve more: first, 
that for ρ to be reducible it suffices to check that tr(ρ(Frob p)) is even for a finite set of 
primes, those in T0; secondly, that when they are not all even, the values of tr(ρ(Frob p))
(mod 2) for p ∈ T0 identify the residual image precisely as C3 or S3, and also identify the 
splitting field exactly. Moreover both the set of cubics F and the distinguishing set T0
depend only on K and S and so may be computed once and then used to test many 
representations ρ with the same ramification restrictions. The main result of this section 
is as follows.

Theorem 4.6. Let K be a number field, S a finite set of primes of K, and let ρ be a 
continuous 2-dimensional 2-adic Galois representation over K unramified outside S. Let 
T0 be a distinguishing set for S in the sense of Definition 4.3.

1. The finite set of values of tr(ρ(Frob p)) (mod 2), for p ∈ T0, determine the residual 
representation ρ up to semisimplification. Hence (up to semisimplification) ρ may be 
identified from its Black Box presentation.

2. In particular, the residual representation ρ has trivial semisimplification (equiva-
lently, is reducible over F2), if and only if

tr(ρ(Frob p)) ≡ 0 (mod 2) ∀p ∈ T0.

Proof. Let F = {f1, . . . , fn} and let T0 = {p1, . . . , pt} be a distinguishing set for (S, F)
as above. The vectors

vi = (λ(fi, p1), ..., λ(fi, pt)) ∈ Ft
2

for 1 ≤ i ≤ n are distinct and non-zero by definition of T0. Using the Black Box, we 
compute the vector

v = (tr(ρ(Frob p1)), ..., tr(ρ(Frob pt))) ∈ Ft
2.



A. Argáez-García, J. Cremona / Journal of Algebra 512 (2018) 526–565 541
By Proposition 4.5, we have (with L and Li as defined there)

v = vi ⇔ L = Li ⇔ [L : K] = 6 or 3

and

v = 0 ⇔ [L : K] ≤ 2.

Hence ρ is irreducible if and only if v = vi for some i, in which case its splitting field 
is that of fi and its image is isomorphic to S3, unless disc fi ∈ (K∗)2 in which case the 
image is C3. Otherwise, v = 0 and ρ is reducible, with trivial semisimplification. �
Algorithm 3: To determine the residual image of an integral 2-adic Galois represen-
tation, up to semisimplification.
Input : A number field K.

A finite set S of primes of K.
A Black Box Galois representation ρ unramified outside S.

Output: • (True, f , G) if ρ is irreducible, with splitting field that of f , and image
G ∼= C3 or S3.
• False if ρ is reducible.

1 Let F = {fi}ni=1 be a set of monic irreducible cubics defining all S3 and C3
extensions of K unramified outside S;

2 Using Algorithm 2, compute a distinguishing set T0 = {p1, . . . , pt} of primes for 
(F , S);

3 Let v = (tr(ρ(Frob p1)), ..., tr(ρ(Frob pt)));
4 for i=1...n do
5 if v = v(fi, T0) then
6 Let G = C3 if disc fi is square, else G = S3;
7 return (True, fi, G).
8 return False.

Example (continued). With K = Q, S = {2, 37} we have #F = 3 and T0 = {3, 5}. Hence 
for a mod 2 representation over Q unramified outside {2, 37} we may test irreducibility 
by inspecting the parity of the trace ap at p = 3 and p = 5. As an example, we consider 
the 156 isogeny classes of elliptic curves of conductor 2a37b. Of these, 36 have a3 ≡
a5 ≡ 0 (mod 2), hence the representation is reducible; indeed, these curves have rational 
2-torsion. There are 8 with a3 ≡ a5 ≡ 1 (mod 2) with 2-division field the splitting field 
of f = x3 − x2 − 12x − 11. The remaining 112 classes comprise 80 with a3 ≡ 1, a5 ≡ 0
(mod 2) and 32 with a3 ≡ 0, a5 ≡ 1 (mod 2), whose 2-division fields have Galois group S3

and are the splitting fields of g = x3−x2−3x +1 and h = x3−x2−12x +26, respectively. 
These curves have no rational 2-torsion.
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Here we could have considered the curves up to isogeny and up to quadratic twist, 
since quadratic twists obviously have the same mod 2 representation. The number of 
cases then reduces to 22 (6 reducible and 1, 11, and 4 for each irreducible case).

5. Determining triviality of the residual representation up to isogeny

Let ρ : GK → GL2(Z2) be a continuous Galois representation unramified outside S
with reducible residual representation. Depending on the choice of stable lattice Λ, the 
order of ρΛ(GK) ≤ GL2(F2) is either 1 or 2, though the semisimplification of ρΛ is always 
trivial. In this section we will give a method to decide whether within the isogeny class 
of ρ there is an integral representation ρΛ whose residual representation ρΛ is trivial. 
If this is the case, it follows from the remarks about the isogeny graph at the end of 
Section 2 that the corresponding vertex in the isogeny graph BT(ρ) has degree 3, the 
width of the graph is at least 2, and it contains at least 4 vertices; otherwise, its width 
is 1 and it consists of just two vertices linked by a single edge. We call these large and 
small isogeny classes respectively.

Vertices of BT(ρ) either have degree 1, non-trivial residual representation, and 
quadratic splitting field with non-trivial discriminant in K(S, 2)u; or degree 3 and trivial 
residual representation. So each vertex of BT(ρ) has an associated discriminant, and 
we would like to describe the graph structure of BT(ρ)—the number of vertices, and 
width—as well as the discriminants of its extremal (degree 1) vertices.

In this section we show how to distinguish the small and large cases; in Section 6 we 
will continue under the assumption that the class is large. The following notation will 
be useful for the tests we will develop; note that since we are now assuming that ρ is 
residually reducible, tr(ρ(Frob p)) ≡ 0 (mod 2) for all p /∈ S so that Fp(1) ≡ 0 (mod 2). 
Define

v(p) = ord2(Fp(1)). (8)

When v(p) ≥ k for some k ≥ 1, we define the test function

tk(p) = 1
2kFp(1) (mod 2)

= 1
2k (1 − tr(ρ(Frob p)) + det(ρ(Frob p))) (mod 2), (9)

so that tk(p) = 0 if and only if v(p) ≥ k + 1. Write tk(σ) = tk(p) when σ = Frob p.

5.1. The test function for small isogeny classes

Let Λ1 be a stable lattice under the action of ρ. Since ρ is reducible, there is an 
index 2 sublattice Λ2 which is also stable under ρ. Choosing the bases Λ1 = 〈v, w〉 and 
Λ2 = 〈v, 2w〉 we have that
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ρ(σ) =
(
a b
c d

)
≡

(
1 ∗
0 1

)
(mod 2)

for all σ ∈ GK . (Here we are showing matrices with respect to the basis 〈v, w〉, and our 

convention is that 
(
a b
c d

)
maps v �→ av+ cw and w �→ bv+dw.) There are two ways in 

which the graph Λ1—Λ2 could be extended within BT(ρ), either or both of which could 
happen:

(a) If c ≡ 0 (mod 4) for all σ ∈ GK then

ρ(σ) ≡
(
±1 ∗
0 ±1

)
(mod 4)

and Λ3 = 〈v, 4w〉 is also stable, extending the stable graph to Λ1—Λ2—Λ3. The 
lattice Λ4 = 〈2v, v + 2w〉 is also stable and adjacent to Λ2, so Λ2 has degree 3
in BT(ρ).

(b) If b ≡ 0 (mod 2) for all σ ∈ GK then

ρ(σ) ≡
(

1 0
0 1

)
(mod 2)

so ρ is trivial. Then Λ′
3 = 〈2v, w〉 is also stable and extends the graph to Λ′

3—Λ1—Λ2. 
The lattice Λ′

4 = 〈v + w, 2w〉 is also stable and adjacent to Λ1, so Λ1 has degree 3
in BT(ρ).

These two situations are not essentially different, since by conjugating with the matrix (
2 0
0 1

)
we interchange the roles of Λ1 and Λ2, and the two cases.

The following maps are easily seen to define two additive quadratic characters of GK, 
unramified outside S:

χc : σ �→ c

2 (mod 2) and χb : σ �→ b (mod 2),

which correspond to two extensions K(
√

Δb), K(
√

Δc) with Δb, Δc ∈ K(S, 2)u, possibly 
equal or trivial, and the isogeny class BT(ρ) is large if and only if at least one is trivial. 
This establishes the following criterion.

Proposition 5.1. BT(ρ) is small if and only if the characters χb and χc are both non-
trivial.

In order to turn this criterion into an algorithm we must see how to obtain information 
about these two characters using only the Black Box and a finite set of primes p /∈ S. 
Taking k = 1 in (9) we use the test function
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t1(σ) = 1
2(Fσ(1)) (mod 2)

≡ 1
2(1 − tr(ρ(σ)) + det(ρ(σ))) (mod 2). (10)

Proposition 5.2. With notation as above,

t1(σ) = χb(σ)χc(σ).

Proof. We compute t1(σ) = 1
2 ((a − 1)(d − 1) − bc) ≡ bc/2 ≡ χb(σ)χc(σ) (mod 2), using 

a ≡ d ≡ 1 (mod 2). �
So the Black Box reveals the value of the product of the two additive characters.

Corollary 5.3. The following are equivalent, assuming that ρ is residually reducible:

1. BT(ρ) is large;
2. t1(σ) = 0 for all σ ∈ GK ;
3. t1(pI) = 0 for all primes pI , one such prime for each of the 2r subsets I ⊆

{1, 2, . . . , r}.

Proof. The equivalence of the first two statements is because kerχb and kerχc are sub-
groups of GK , and no group is the union of two proper subgroups. For the second 
equivalence, note that the pair of values (χb(Frob p), χc(Frob p)) depends only on the 
restriction of Frob p to the maximal elementary 2-extension of K unramified outside S

whose Galois group consists of these Frob pI . �
Although the corollary already reduces the current problem to a finite number of 

tests, we will show in the next subsection how to use some linear algebra over F2 to 
reduce the test set of primes from a set of size 2r (one for each subset I) to a set of 
r(r + 1)/2 quadratically independent primes (with respect to S). Using these, we will be 
able to determine not only whether at least one of Δb, Δc is trivial, in which case the 
class is large; when both characters are non-trivial, we will also be able to determine the 
unordered pair {Δb, Δc} exactly.

5.2. Quadratically independent sets of primes

Let {Δi}ri=1 be a basis for V = K(S, 2)u. The discriminants Δb, Δc ∈ V may be 
expressed as

Δb =
r∏

Δxi
i , Δc =

r∏
Δyi

i

i=1 i=1
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with unknown exponent vectors x = (xi) and y = (yi) in Fr
2. We will determine the 

vectors x and y in the restricted sense of knowing whether either (a) at least one of x
and y is zero, or (b) they are both non-zero, in which case we will identify them precisely, 
as an unordered pair.

Let T1 = {p1, ..., pr} be a linearly independent set of primes chosen so that the αpi

are a dual basis to {Δi}ri=1. Then by (7) we have χb(pi) = xi and χc(pi) = yi. Hence, 
by Proposition 5.2, we have that t1(pi) = xiyi. More generally for a prime pI (defined in 
Section 3) we have, by (7),

t1(pI) = xIyI

where we set xI =
∑

i∈I xi and similarly for yI .
Define

ψ : V × V × V ∗ → F2 (11)

(Δ,Δ′, α) �→ α(Δ)α(Δ′)

For fixed α, the map ψα = ψ(−, −, α) is a symmetric bilinear function V × V → F2, 
i.e., an element of the space Sym2(V )∗ which has dimension r(r + 1)/2 and basis the 
functions xiyi and xiyj + xjyi for i �= j. This leads us to define our third (and last) set 
of test primes:

Definition 5.4. A set T2 of primes p /∈ S is quadratically independent with respect to S if 
{ψαp

| p ∈ T2} is a basis for Sym2(V )∗.

The simplest quadratically independent sets consist of primes pi for 1 ≤ i ≤ r (these 
already form a linearly independent set, previously denoted T1), together with pij for 
1 ≤ i < j ≤ r. We will call quadratically independent sets of this form special.

Remark 5.5. If we fix instead (Δ, Δ′) in (11) we obtain a quadratic function ψ(Δ,Δ′) =
ψ(Δ, Δ′, −) on V ∗:

ψ(Δ,Δ′) : V ∗ → F2

α �→ α(Δ)α(Δ′).

It is not hard to show that when T2 is a quadratically independent set of primes, the set 
{αp | p ∈ T2} is a non-quadratic subset of V ∗ in the sense of Livné [13].

We now proceed to show that the values of the test function t1(p) for p in a special 
quadratically independent set of primes are sufficient to solve our problem concerning 
the identification of the vectors x and y. Define v = (v1, ..., vr) ∈ Fr

2 to be the vector 
with entries
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vi = xiyi = t(pi).

Next let W = (wij) be the r × r matrix over F2 with entries wii = 0 and, for i �= j,

wij = xiyj + xjyi = (xi + xj)(yi + yj) + xiyi + xjyj

= t(pij) + t(pi) + t(pj).

Then the i-th row of W is given by

yi x+xi y =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if (xi, yi) = (0, 0);
x if (xi, yi) = (0, 1);
y if (xi, yi) = (1, 0);
x+y if (xi, yi) = (1, 1),

(12)

so that the rank of W is either 0 or 2. Moreover,

• if x = 0 or y = 0, then v = 0 and W = 0;
• if x �= 0 and y �= 0 and x = y, then v = x = y �= 0 and W = 0;
• if x �= 0 and y �= 0 and x �= y, then W �= 0. Moreover, at least two out of x, y, 

x+ y (which are non-zero and distinct) appear as rows of W, and
– if v �= 0, then the rows of W for which vi = 1 are x+ y and the remaining non-zero 

rows are equal to either x or y;
– if v = 0, then the non-zero rows of W are all equal to either x and y.

It follows that by inspecting v and W, whose entries we can obtain from our Black Box 
test function on r(r + 1)/2 primes, we can indeed determine whether x or y is zero, 
and if both are non-zero then we can determine their values, and hence determine the 
unordered pair of the discriminants {Δb, Δc}.

Proposition 5.6. Let ρ be residually reducible. From the set of values {t1(p) | p ∈ T2} of 
the test function t1 defined in (10), for T2 a quadratically independent set of primes with 
respect to S, we may determine whether the isogeny class of ρ is small or large, and in 
the first case we can determine the unordered pair formed by the associated non-trivial 
discriminants.

See Algorithm 6, where we follow the procedure above, assuming that we take for 
T2 a special set {pi | 1 ≤ i ≤ r} ∪ {pij | 1 ≤ i < j ≤ r}. In practice it might not 
be efficient to insist on using a quadratically independent set of this form, because we 
may need to test many primes p before finding primes of the form {pij} for all i < j; 
also, the resulting primes are likely to be large. In applications, it may be computa-
tionally expensive to compute the trace of ρ(Frob p) for primes p of large norm. This is 



A. Argáez-García, J. Cremona / Journal of Algebra 512 (2018) 526–565 547
the case, for example, when ρ is the Galois representation attached to a Bianchi mod-
ular form (see [8] for numerical examples when K is an imaginary quadratic field of 
class number 3). In our implementation we adjust the procedure to allow for arbitrary 
quadratically independent sets. The details are simply additional book-keeping, and we 
omit them here.

We give two algorithms to compute quadratically independent sets. In both cases 
we consider the primes of K systematically in turn (omitting those in S), by iterating 
through primes on order of norm. The first algorithm returns the smallest such set 
(in terms of the norms of the primes), while the second only uses primes for which 
#I(p) ∈ {1, 2} and returns a set of the special form.

In Algorithm 4, we construct a matrix A whose columns are indexed by the subsets 
of {1, 2, ..., r} of size 1 and 2, i.e., the sets {i} for 1 ≤ i ≤ r and {i, j} for 1 ≤ i < j ≤ r, 
initially with 0 rows. For each prime p we compute I(p) and define v(p) in F

r(r+1)
2

2 by 
setting its coordinates to be

⎧⎪⎪⎨
⎪⎪⎩

1 in position i if i ∈ I(p)
1 in position {i, j} if {i, j} ⊆ I(p)
0 otherwise.

(13)

We add v(p) as a new row of A, provided that this increases the rank of A, and we stop 
when rkA = r(r + 1)/2.
Algorithm 4: To determine a quadratically independent set T2 of primes of K.
Input : A number field K.

A finite set S of primes of K.
Output: A finite quadratically independent set T2 of primes of K.

1 Let {Δi}ri=1 be a basis for K(S, 2)u;
2 Let T2 = {};
3 Let A be a 0 × r(r+1)

2 matrix over F2;
4 while A has < r(r + 1)/2 rows do
5 Let p be a prime not in S ∪ T2;
6 Compute I = I(p) using (4);
7 Compute v(p) from (13);
8 Let A′ = A+ v(p) (adjoin v(p) as a new row of A);
9 if rk(A′) > rk(A) then

10 Let A = A′;
11 Let T2 = T2 ∪ {p}.
12 return T2.

This variant produces a special quadratically independent set by only including 
primes p for which I(p) has size 1 or 2.
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Algorithm 5: To determine a special quadratically independent set T2 of primes of K.
Input : A number field K.

A finite set S of primes of K.
Output: An indexed special quadratically independent set T2 of primes.

1 Let A = B = {};
2 Let T2 = {};
3 while #(A ∪B) < r(r + 1)/2 do
4 Let p be a prime not in S ∪ T2;
5 Compute I = I(p) using (4);
6 if #I = 1 with I = {i} then
7 if i /∈ A then
8 Let pi = p;
9 Let A = A ∪ {i};

10 Let T2 = T2 ∪ {pi}.
11 if #I = 2 with I = {i, j} and i < j then
12 if (i, j) /∈ B then
13 Let pij = p;
14 Let B = B ∪ {(i, j)};
15 Let T2 = T2 ∪ {pij}.
16 return T2.

Example (continuation of Example 1). As before, we take K = Q and S = {2, 37}. 
Using [−1, 2, 37] as an ordered basis for K(S, 2) = K(S, 2)u we find, using Algorithm 5, 
T2 = {7, 53, 17, 3, 5, 23}. For example, p = 23 is inert in Q(

√
d) for d = −1 and d = 37

but not for d = 2, so I(23) = {1, 3}. The data for these primes is as follows:

I {1} {2} {3} {1, 2} {2, 3} {1, 3}
pI 7 53 17 3 5 23

Applying Algorithm 6 to the 36 isogeny classes of elliptic curves with good reduction 
outside {2, 37} and rational 2-torsion, we find that in 4 cases the class is large, so contains 
an elliptic curve with full 2-torsion defined over Q and hence trivial mod-2 representation 
(these classes have LMFDB labels 32a, 64a, 43808a, 87616z); while in all other cases the 
class is small. The discriminant pairs {Δ1, Δ2} returned by Algorithm 6 in these cases 
are {−1, 37} (4 cases); {37, −37} (8 cases); {−1, 2} (8 cases); {2, −2} (4 cases); {2, 2}
(4 cases); and {74, −74} (4 cases). For example, isogeny class 350464h gives ap = 0 for 
p = 5, 7, 23 and 53 while a17 = 6 and a3 = 2; this yields v = (0, 1, 0) and W = 0, so both 
discriminants are 2 (modulo squares). Indeed, this isogeny class consists of two elliptic 
curves linked by 2-isogeny, each having a discriminant which is twice a square.

We leave it to the reader to explain why in every case the Hilbert Symbol 
(Δ1, Δ2) = +1.

http://www.lmfdb.org/EllipticCurve/Q/32/a
http://www.lmfdb.org/EllipticCurve/Q/64/a
http://www.lmfdb.org/EllipticCurve/Q/43808/a
http://www.lmfdb.org/EllipticCurve/Q/87616/z
http://www.lmfdb.org/EllipticCurve/Q/350464/h
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Algorithm 6: To determine whether the stable Bruhat–Tits tree of ρ has width 
exactly 1 or at least 2, together with the associated discriminants.
Input : A number field K.

A finite set S of primes of K.
A Black Box Galois representation ρ unramified outside S
whose residual image is reducible.

Output: If BT (ρ) has width 1, return: True, {Δ1, Δ2}.
If BT (ρ) has width ≥ 2, return: False.

1 Let {Δ1, . . . , Δr} be a basis for K(S, 2)u;
2 Let T2 = {pi | 1 ≤ i ≤ r} ∪ {pij | 1 ≤ i < j ≤ r} be a special quadratically 

independent set for S;
3 Let v = (t1(p1), ..., t1(pr)) ∈ Fr

2;
4 Let W = (t1(pij) + t1(pi) + t1(pj)) ∈ Mr(F2);
5 if W = 0 and v = 0 then
6 return False;
7 if W = 0 then
8 Let x = y = v;
9 else

10 if v = 0 then
11 Let x and y be any two distinct non-zero rows of W.
12 else
13 Let z be the ith row of W, where i is such that t1(pi) = 1;
14 Let x be any non-zero row of W distinct from z;
15 Let y = x+ z.
16 return True, {

∏r
i=1 Δxi

i , 
∏r

i=1 Δyi

i }.
The methods of this section give an algorithm to determine whether the isogeny class 

of ρ contains an integral representation whose residual representation is trivial.

Theorem 5.7. Let K be a number field, S a finite set of primes of K, and let ρ be 
a continuous 2-dimensional 2-adic Galois representation over K unramified outside S. 
Assume that ρ has reducible residual representation. Then there exists a stable lattice 
with respect to which the residual representation ρ is trivial, if and only if

t1(p) ≡ 0 (mod 2) ∀p ∈ T2;

that is,

1 − tr ρ(Frob p) + det ρ(Frob p) ≡ 0 (mod 4) ∀p ∈ T2;

where T2 is any quadratically independent set of primes for S.
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6. Large isogeny classes

From now on we will assume that ρ has trivial residual representation, so that its 
isogeny class BT(ρ) consists at least of ρ together with the three 2-isogenous integral 
representations: recall that each lattice Λ has three sublattices, and the condition that 
ρΛ is trivial is equivalent to each of these being stable. The next step is to determine 
whether the class is larger than this, i.e., whether it has width greater than 2. This 
is not the case if and only if each of the 2-isogenous representations has a non-trivial 
discriminant (as defined in the previous section), in which case we would like to determine 
this (unordered) set of three discriminants. Furthermore, we would like to determine ρ
(mod 4) completely.

It turns out that it is no more work to deal with the more general situation, where 
we assume that ρ (mod 2k) is trivial for some k ≥ 1, and determine ρ (mod 2k+1)
completely. The description of ρ (mod 2k+1) will be in terms of a collection of four 
additive quadratic characters, which we will be able to determine using only the values 
of Fp(1) for p in the same quadratically independent set T2 used in the previous section. 
The reason for this is that GL(Z/2k+1Z) is an extension of GL(Z/2kZ) by M2(F2), which 
is (as additive group) an elementary abelian of order 24, as can be seen by the following 
short exact sequence:

0 −→ M2(F2) −→ GL(Z/2k+1Z) −→ GL(Z/2kZ) −→ 1

where the second arrow maps A ∈ M2(F2) to I+2kA ∈ GL(Z/2k+1Z).
Thus let ρ : GK → GL2(Z2) be an integral Galois representation unramified outside 

S, and assume that ρ is trivial modulo 2k for some positive integer k. Write

ρ(σ) = I+2kμ(σ), (14)

where

μ(σ) =
(
a(σ) b(σ)
c(σ) d(σ)

)
∈ M2(Z2).

Then Fσ(1) = 22k detμ(σ) ≡ 0 (mod 22k), and we can use the test function t2k(p) =
1

22kFp(1) = detμ(σ) ≡ ad − bc (mod 2) for p /∈ S.
Secondly, with the same notation,

det ρ(σ) ≡ 1 + 2k(a + d) (mod 22k),

so

a + d ≡ 1 (det ρ(σ) − 1) (mod 2).
2k
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Thus we see that the Black Box gives us the values of both trμ(σ) and detμ(σ) (mod 2)
for σ = Frob p ∈ GK . Now the map σ �→ μ(σ) (mod 2) is a group homomorphism 
GK → M2(F2); composing with the four characters

M2(F2) → F2(
a b
c d

)
�→ a, b, c, d

we obtain four additive characters of GK

GK → F2

σ �→ a(σ), b(σ), c(σ), d(σ) (mod 2)

all unramified outside S, which we denote by χa, χb, χc and χd. To each character there is 
associated a discriminant, named Δa, Δb, Δc, Δd ∈ K(S, 2)u. Set χabcd = χa+χb+χc+χd

and χdet = χa+χd; the latter has discriminant Δdet = ΔaΔd (the reason for this notation 
will be clear after the following lemma). Our task is to use the values of a +d and ad −bc

at suitably chosen primes to obtain information about these four characters.
The previous computation of determinants gives the following result linking trμ(σ) =

a +d with det ρ(σ) (mod 2k+1). Recall that by equality of discriminants we always mean 
modulo squares.

Lemma 6.1. Assume that ρ is trivial modulo 2k. With notation as above, the following 
are equivalent:

1. det ρ is trivial modulo 2k+1;
2. a(σ) ≡ d(σ) (mod 2) for all σ ∈ GK ;
3. χdet = 0;
4. Δdet = 1.

The characters we have just defined depend not only on the stable lattice (here Λ = Z2
2, 

since we are treating ρ as an integral matrix representation) but also on a choice of 
basis. If we change basis via U ∈ GL2(Z2), the result is to conjugate the matrices ρ(σ)
and μ(σ) by U and replace the four characters χa, . . . , χd by F2-linear combinations. 
By using suitable matrices U of orders 2 and 3 we may obtain all 6 permutations of 

{b, c, a +b +c +d}: taking U =
(
−1 −1
1 0

)
(of order 3) cycles b �→ c �→ a +b +c +d �→ b, 

while U =
(

0 1
1 0

)
(of order 2) transposes b ↔ c while fixing a + b + c + d. Of course 

the determinant character a + d (which is the sum of these three) is unchanged. We will 
make use of this symmetry in what follows.
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More generally, if U ∈ GL2(Q2) ∩M2(Z2) is such that conjugation by U maps the im-
age of ρ into GL2(Z2), then σ �→ U ρ(σ) U−1 is another integral representation isogenous 

to ρ. We will use this construction below with U =
(

2 0
0 1

)
.

6.1. Stable sublattices of index 2k+1

We continue to assume that ρ is trivial modulo 2k and use the notation introduced in 
the previous subsection. Clearly all sublattices of index 2k in Λ = Z2

2 are stable under ρ. 
Here we consider the sublattices of index 2k+1 and show that the condition of whether 
they are also stable may be expressed in terms of the characters {χb, χc, χa+b+c+d}. In 
terms of the isogeny graph BT(ρ), it contains all paths of length k (of which there are 
3 · 2k−1) starting at the “central” vertex associated with Λ—so the graph has width at 
least 2k—and we are determining whether any such paths may be extended within BT(ρ)
by one edge. This turns out to depend only on the first edge in the path (adjacent to Λ
itself).

When considering sublattices we restrict to those which are cocyclic, i.e. for which the 
quotient is cyclic, or equivalently are not contained in 2Λ. The cocyclic sublattices Λ′ of 
index 2k+1 in Λ = Z2

2 are given by

Λ′ = 〈v〉 + 2k+1Λ, with v =
(
x
y

)
∈ Z2

2,

where x, y are not both even, and Λ′ only depends on the image of v in P1(Z/2k+1Z). 
Now Λ′ is fixed by ρ if and only if for all σ ∈ GK

ρ(σ)v ≡ λv (mod 2k+1)

for some λ ∈ {1, 1 +2k}. Since ρ(σ) = I+2kμ(σ), this is if and only if v is an eigenvector 
of μ(σ) (mod 2). Hence the stability of Λ′ only depends on the image of v in P1(Z/2Z), 
and the three possible values of v (mod 2) correspond to the three edges in the graph 
adjacent to Λ itself. The following is now immediate (where to save space we write v as 
a row vector):

Lemma 6.2.

1. v ≡ (1, 0) (mod 2) is an eigenvector of μ(σ) if and only if c(σ) ≡ 0 (mod 2); hence 
such Λ′ are stable if and only if χc = 0;

2. v ≡ (0, 1) (mod 2) is an eigenvector of μ(σ) if and only if b(σ) ≡ 0 (mod 2); hence 
such Λ′ are stable if and only if χb = 0;

3. v ≡ (1, 1) (mod 2) is an eigenvector of μ(σ) if and only if a(σ) +b(σ) +c(σ) +d(σ) ≡ 0
(mod 2); such Λ′ are stable if and only if χa+b+c+d = 0.
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For example, when k = 1, the generic stable Bruhat–Tits tree of width at least 2 looks 
like

Fig. 1. Tree of width at least 2.

Here, each vertex has been labelled with its discriminant in K(S, 2)u, as defined in the 
previous section. Note that the three discriminants at the vertices adjacent to the central 
one (which has trivial discriminant) have product Δdet, only depending on det ρ.

In the case k = 1 we deduce the following.

Corollary 6.3. When ρ is trivial modulo 2, the isogeny graph BT(ρ) has width at least 3
if and only if at least one of the characters χb, χc, χa+b+c+d is trivial.

Below we will see how to determine all four characters (up to S3 symmetry). In the 
case k = 1, we will determine when all three characters in the Corollary are non-trivial, 
so that the graph has width exactly 2, and in this case we will determine precisely the 
unordered set of three discriminants in the diagram.

6.2. Determining the four characters: the test

As before, let {Δi}ri=1 be a fixed basis of K(S, 2)u and write

Δb =
r∏

i=1
Δxi

i , Δc =
r∏

i=1
Δyi

i , Δabcd =
r∏

i=1
Δzi

i , (15)

Δa =
r∏

i=1
Δui

i , Δd =
r∏

i=1
Δvi

i ,

where

x = {xi}ri=1,y = {yi}ri=1, z = {zi}ri=1,u = {ui}ri=1,v = {vi}ri=1 ∈ Fr
2.

To determine ρ modulo 2k+1 it is enough to determine these vectors, noting that 
x+ y+ z = u+ v, and bearing in mind the S3 symmetry.
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For primes p /∈ S, we use the test function t2k(p) ≡ ad − bc (mod 2), dividing into 
cases according to det ρ(Frob p) (mod 2k+1):

• If det(ρ(Frob p)) ≡ 1 (mod 2k+1), then a + d ≡ 0 (mod 2), hence ad ≡ a (mod 2), 
so

t2k(p) ≡ a + bc (mod 2). (16)

• If det(ρ(Frob p)) ≡ 1 + 2k (mod 2k+1), then a + d ≡ 1 (mod 2), so ad ≡ 0 (mod 2), 
and

t2k(p) ≡ bc (mod 2). (17)

Note that we will know from the Black Box which case we are in from the value 
of det ρ(Frob p). We also note for later reference that from

tr(ρ(Frob p)) = 2 + 2k(a + d) (18)

we can obtain the exact value of a + d: later we will need a + d (mod 4).
Now it is convenient to divide into two cases, depending on whether or not det ρ is 

trivial modulo 2k+1; equivalently, whether or not Δdet = 1.

6.3. Determining the four characters: the case Δdet = 1

In this case the character χdet is trivial, Δa = Δd, and u = v. Moreover, Δabcd =
ΔbΔc, so x+ y+ z = 0. By S3 symmetry, only the set {x, y, z} is well-defined.

Taking T2 = {pi | 1 ≤ i ≤ r} ∪ {pij | 1 ≤ i < j ≤ r} as in Section 5, we have

t2k(pi) = ui + xiyi, i ≥ 1, (19)

t2k(pij) = ui + uj + (xi + xj)(yi + yj), i, j ≥ 1.

Define

wij = xiyj + xjyi (20)

= t2k(pi) + t2k(pj) + t2k(pij), i, j ≥ 1

and construct the matrix W = (wij) ∈ Mr(F2). Each non-zero row of W is equal to one 
of x, y or z, and as in Section 5, if W �= 0 then W has at least two distinct non-zero 
rows and has rank 2.

Case 1. rkW = 2. Now W contains at least two distinct non-zero rows, which by 
symmetry we can take to be the values of x and y. Then z = x+ y, and we obtain the 
value of u (which equals v), using (19) and the now known values of x and y. Therefore 
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we have computed all the exponent vectors u, v, x, y, z and obtained Δa, Δb, Δc, Δd and 
Δabcd.

Case 2. W = 0. Now at least one of x, y or z is zero; by symmetry we may take 
y = 0, and x = z, but we do not yet know the common value of x and z. However we 
have t2k(pi) = ui + xiyi = ui, so we recover u.

To determine x and hence obtain the final discriminant Δb, we need to go a step further 
and consider the values of Fp(1) (mod 22k+2). At the end we may need to replace ρ by 
a 2-isogenous representation; recall that the Black Box only determines ρ up to isogeny, 
so this is valid.

Recalling the notation of (14), since y = 0 we observe that the entry c is always 
even; put c = 2c1. Denote by χc1 the character σ �→ c1(σ) (mod 2) and let Δc1 be its 
discriminant. From the information already known and further tests using the Black 
Box with the same primes in T2 but to higher 2-adic precision, we can determine the 
values of the product χbχc1 . As in Section 5, we can then determine whether either Δb

or Δc1 is trivial, and their values if both are non-trivial. In the first case we may assume 
(conjugating if necessary) that Δb = 1 (equivalently, x = 0). In the second case, we may 
take either of the non-trivial discriminants to be Δb. This apparent ambiguity is illusory, 
since we are free to replace the initial integral representation ρ by an isogenous one.

For p /∈ S we have

Fp(1) = 22k(ad− 2bc1). (21)

In order to proceed, we will need the value of ad (mod 4). Recall that we know the exact 
value of a + d from (18), and we also know the common parity of a and d, namely uI if 
p = pI .

1. If p is such that a ≡ d ≡ 0 (mod 2), then ad ≡ 0 (mod 4) and we obtain

Fp(1) ≡ 22k+1bc1 (mod 22k+2),

so our standard test function

t2k+1(p) = Fp(1)
22k+1 ≡ bc1 (mod 2) (22)

gives the required value.
2. If p is such that a ≡ d ≡ 1 (mod 2) and a + d ≡ 0 (mod 4), then ad ≡ −1 (mod 4), 

so (21) becomes

Fp(1) ≡ −22k + 22k+1bc1 (mod 22k+2).

Hence we define a modified test function as follows:

t̃2k+1(p) = Fp(1) + 22k

22k+1 ≡ bc1 (mod 2). (23)
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3. If p is such that a ≡ d ≡ 1 (mod 2) and a + d ≡ 2 (mod 4), then ad ≡ 1 (mod 4)
and (21) becomes

Fp(1) ≡ 22k + 22k+1bc1 (mod 22k+2);

we define

t̃2k+1(p) = Fp(1) − 22k

22k+1 ≡ bc1 (mod 2). (24)

In summary, when ρ is trivial modulo 2k and has trivial determinant modulo 2k+1, 
we can use the test function values t2k(p) for p ∈ T2 (where T2 is a quadratically in-
dependent set of primes for S), together with either t2k+1 or one of the modified tests 
t̃2k+1 depending on p, to determine the full set of characters χa, χb, χc, χd, satisfying 
χa + χd = 0, if necessary replacing ρ by a GL2(Z2)-equivalent representation, or by a 
2-isogenous representation. In particular, if all the characters are trivial then (up to a 
2-isogeny) we conclude that ρ is trivial modulo 2k+1.

6.4. Determining the four characters: the case Δdet �= 1

Now assume that the determinant character χdet is non-trivial, i.e. that det ρ is not 
identically 1 (mod 2k+1). To ease notation, we choose a basis {Δi}ri=1 of K(S, 2)u such 
that Δ1 = Δdet. The unknown vectors in Fr

2 then satisfy

x+y+ z = u+v = e1,

where e1 = (1, 0, ..., 0). Denote by x′, y′ etc. the vectors in Fr−1
2 obtained by deleting 

the first coordinate. These satisfy

x′ +y′ + z′ = u′ +v′ = 0

and we will determine them first.
Take primes pi, pij ∈ T2 with i, j ≥ 2 and i �= j. For such primes (as for all pI when 

1 /∈ I) we have det ρ(Frob p) ≡ 1 (mod 2k+1), so from (16) and using ui = vi for i ≥ 2
we see that

t2k(pi) = ui + xiyi, i ≥ 2, (25)

t2k(pij) = ui + uj + (xi + xj)(yi + yj), 2 ≤ i �= j ≤ r,

and hence we can compute

wij = xiyj + xjyi (26)

= t2k(pi) + t2k(pj) + t2k(pij), i, j ≥ 2.
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Just as in Section 6.3 we can determine the shortened vectors x′, y′, z′, u′, v′ (possibly 
replacing ρ by an isogenous representation).

The final step is to determine the first coordinates u1, v1, x1, y1 and z1 with x1 +y1 +
z1 = u1 + v1 = 1, using the remaining primes in T2 and test values t2k(p1) and t2k(p1i), 
for 2 ≤ i ≤ r. We first note the following symmetries:

(1) u′ and v′, and hence u and v, are interchangeable (by conjugation); hence we can 
arbitrarily set u1 = 1 and v1 = 0;

(2) concerning x′, y′ and z′:
(a) if all are non-zero, and hence also distinct, then we can permute them arbitrarily;
(b) if all are zero, then again we can permute x, y and z arbitrarily;
(c) otherwise, one of them is zero and the others equal and non-zero; we have chosen 

them so that y′ = 0 and x′ = z′, so we can still swap x and z.

Now t2k(p1) = x1y1, since u1v1 = 0. Hence if t2k(p1) = 1 then we deduce that 
x1 = y1 = z1 = 1; prepending a 1 to x′, y′ and z′ gives x, y and z. Otherwise, x1y1 = 0
and we need to determine which one of x1, y1 or z1 is 1, the other two being 0. We can 
compute

t2k(p1i) = (u1 + ui)(v1 + vi) + (x1 + xi)(y1 + yi)

= (x1 + xi)(y1 + yi)

for i ≥ 2 (using u1 + ui �= v1 + vi) and hence get the values y1xi + x1yi for i ≥ 2, since 
we already know x1y1 and all xiyi for i ≥ 2.

Define

q = (t2k(pi) + t2k(p1i) + ui)ri=2 = y1 x′ +x1 y′ ∈ Fr−1
2 .

Consider the three cases under (2) above:

• In (2)a, x′ and y′ are linearly independent so q determines x1 and y1 uniquely;
• In (2)b, we have complete symmetry and may set x = y = 0 and z = e1;
• In (2)c, since y′ = 0 we have q = y1 x′ and x′ is not zero, so if q �= 0 then y1 = 1

and x1 = z1 = 0. On the other hand, if q = 0 then y1 = 0 and we can set x1 = 0, 
z1 = 1 (or vice versa, it does not matter since x′ = z′).

This completes the method to determine the vectors u, v, x, y, z and hence the dis-
criminants Δa, Δb, Δc, Δd and Δabcd and the associated characters.

In summary, when ρ is trivial modulo 2k and has non-trivial determinant modulo 2k+1, 
we can again use the test function values t2k(p) for p ∈ T2 (where T2 is a quadratically 
independent set of primes for S), together with either t2k+1 or one of the modified tests 
t̃2k+1 depending on p, to determine the full set of characters χa, χb, χc, χd, satisfying 
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χa + χd = χdet �= 0, if necessary replacing ρ by a GL2(Z2)-equivalent representation, 
or by a 2-isogenous representation. Unlike subsection 6.3, it is not possible for all the 
characters to be trivial, and ρ is certainly not trivial modulo 2k+1 as det ρ is nontrivial 
modulo 2k+1.

We now summarise the results of this section.

Theorem 6.4. Let K be a number field, S a finite set of primes of K, and ρ a 
2-dimensional 2-adic Galois representation over K unramified outside S. Suppose that 
there exists a stable lattice under the action of ρ with respect to which ρ (mod 2k) is triv-
ial, for some k ≥ 1. Then, using the output of the Black Box for ρ for a set T2 of primes 
which are quadratically independent with respect to S, we can determine whether there 
exists a (possibly different) stable lattice with respect to which ρ (mod 2k+1) is trivial. 
More generally we can completely determine the representation ρ (mod 2k+1) on some 
stable lattice for ρ.

Example (continuation of Example 1). With K = Q and S = {2, 37}, let ρ be the Galois 
representation attached to elliptic curve isogeny class 43808a, which is one of those which 
in the previous section was seen to be large, indicating that there exists an elliptic curve 
in the class with full rational 2-torsion. In fact, 43808a1 is such a curve, but we stress that 
the following facts about the isogeny class are being determined from only the knowledge 
of the trace of Frobenius at the six primes in T2:

I {1} {2} {3} {1, 2} {2, 3} {1, 3}
pI 7 53 17 3 5 23
ap 0 14 −2 0 2 2

Now, Δdet = −1, this being the discriminant of the cyclotomic character on the 
4th roots of unity. Using the method of subsection 6.4 with k = 1, we compute t2(p2) =
t2(53) ≡ 0, t2(p3) = t2(17) ≡ 1, t2(p2,3) = t2(5) ≡ 1, from which x2y3+x3y2 ≡ 0 +1 +1 ≡
0, hence (without loss of generality) y′ ≡ 0 and x′ ≡ z′ but the common value is not 
yet known. Write y′

1 = (y′2, y′3) for the exponent vector on 2, 37 of the discriminant of 
the character denoted c1 above. We find x2y

′
2 ≡ 1, x3y

′
3 ≡ 0 and (x2 + x3)(y′2 + y′3) ≡ 1

using three computations involving the special test functions t3 and t̃3 as in (22), (23)
and (24) (once each). We give details of one of these. Let p = 5 = p2,3, for which the 
trace is (exactly) a5 = 2. Now u2 ≡ t2(p2) ≡ t2(53) ≡ 0 and u3 ≡ t2(p3) ≡ t2(17) ≡ 1, 
so u2 + u3 ≡ 1 and hence we are in the case where a and d are both odd with ad ≡ −1
(mod 4), so t̃3(5) = ((1 + 5 − a5 + 4)/8) ≡ 1; this implies that (x2 + x3)(y′2 + y′3) ≡ 1
(mod 2). The two similar computations use a53 = 14 and a17 = −2 to obtain t3(53) ≡ 1
and t̃3(17) ≡ 0.

Solving the congruences for x2, x3, y′2, y
′
3 we find x′ ≡ y′

1 ≡ (1, 0).
Next, q ≡ (t2(pi) + t2(p1,i) + ui)3i=2 = (1, 0) �≡ 0, so y1 ≡ 1 and x1 ≡ z1 ≡ 0. Finally 

we have x ≡ z ≡ (0, 1, 0), y ≡ (1, 0, 0), and so Δb = Δabcd = 2 while Δc = −1. Also 

http://www.lmfdb.org/EllipticCurve/Q/43808/a
http://www.lmfdb.org/EllipticCurve/Q/43808/a/1
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u = (1, 0, 1) and v = (0, 0, 1), so Δa = −37 and Δd = +37. The image of the mod 4
representation has order 23 = 8 since the space spanned by x, y, z, u, v has dimension 3, 
and its kernel has fixed field Q(

√
−1, 

√
2, 
√

37).
To confirm this, the three elliptic curves 2-isogenous to 43808a1 do indeed have dis-

criminants which are square multiples of −1, 2 and 2.

7. Detecting triviality of the semisimplification

In the past three sections we have given algorithms for determining the following prop-
erties of a continuous 2-dimensional 2-adic Galois representation ρ, unramified outside 
a given finite set of primes S, using only the output from a Black Box oracle giving for 
any prime p /∈ S the Frobenius polynomial Fp(t):

1. whether or not ρ is residually reducible (Theorem 4.6: using the primes in a distin-
guishing set T0 for S);

2. if ρ is residually reducible, whether or not ρ is residually trivial up to isogeny (The-
orem 5.7: using the primes in a quadratically independent set T2 with respect to S);

3. if ρ is trivial modulo 2k up to isogeny, whether or not ρ is trivial modulo 2k+1 up to 
isogeny (Theorem 6.4: again using the primes in a quadratically independent set T2).

We also showed in Section 3 how to verify that det ρ was equal to a given 2-adic character 
(Theorem 3.4, using the primes in a linearly independent set T1 with respect to S).

So far we have only needed finite 2-adic precision from our Black Box oracle. In this 
section we assume that the oracle can provide us with the Frobenius polynomials Fp(t)
exactly, which is usually the case in practice when they are monic polynomials in Z[t]. 
By putting together the previous results we can determine whether ρ has trivial semisim-
plification; since we only know ρ through the characteristic polynomials of the ρ(σ), this 
is as close as we can get to showing that ρ is trivial.

We start with a lemma taken from the proof of Theorem 3.4:

Lemma 7.1. Let χ : GK → Z∗
2 be a continuous character unramified outside S. If

1. χ(σ) ≡ 1 (mod 2k−1) for all σ ∈ GK , and
2. χ(Frob p) ≡ 1 (mod 2k) for all p ∈ T1,

where T1 is a linearly independent set with respect to S, then χ(σ) ≡ 1 (mod 2k) for all 
σ ∈ GK .

Proposition 7.2. Let ρ : GK → GL2(Z2) be a Galois representation unramified outside S
such that

ρ(σ) ≡ I (mod 2k) for all σ ∈ GK .

http://www.lmfdb.org/EllipticCurve/Q/43808/a/1
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Suppose that

1. det(ρ(Frob p)) ≡ 1 (mod 2k+1) for all p ∈ T1, and
2. Fp(1) ≡ 0 (mod 22k+2) for all p ∈ T2,

where T1 is a linearly independent set and T2 a quadratically independent set with respect 
to S. Then there exists an isogenous representation ρ′ such that ρ′(σ) ≡ I (mod 2k+1)
for all σ ∈ GK .

Proof. First, by Lemma 7.1, the first condition implies that det(ρ(σ)) ≡ 1 (mod 2k+1)
for all σ ∈ GK .

Next we use the notation of the previous section, specifically (14). The determinant 
condition just established shows that a +d ≡ 0 (mod 2) and we are in the case Δdet = 1
as in subsection 6.3 with u = v. Next, Fp(1) ≡ 0 (mod 22k+2) means that all the test 
function values are 0. This gives in turn W = 0, y = 0 and u = v = 0. Finally we have 
bc1 ≡ 0 (mod 2) so (applying a 2-isogeny if necessary) we may assume that b ≡ 0, so 
x = 0. Hence all the characters are trivial, as required. �

Using this proposition, we can prove our final result.

Theorem 7.3. Let ρ : GK → GL2(Z2) be a continuous Galois representation unramified 
outside S which is residually reducible. If

1. det(ρ(Frob p)) = 1 for all p ∈ T1, and
2. tr(ρ(Frob p)) = 2 for all p ∈ T2,

(in particular, if Frob p has characteristic polynomial (t − 1)2 for all p ∈ T2), then ρ is 
reducible, with trivial semisimplification, and is of the form

ρ(σ) =
(

1 ∗
0 1

)

with respect to a suitable basis.

Proof. Suppose that ρ were irreducible; then BT(ρ) is finite, and none of the finitely 
many integral forms ρΛ is trivial (otherwise ρ would be) so there is a maximal k ≥ 1 such 
that ρΛ is trivial modulo 2k for some stable lattice Λ. This contradicts Proposition 7.2. 
Hence ρ is reducible.

With respect to a suitable basis all the matrices ρ(σ) are upper triangular. The diag-
onal entries determine characters of GK , which are both trivial on Frob p for all p ∈ T1

(since the product of their values is 1 and their sum 2). By Theorem 3.4 both diagonal 
characters are trivial. �
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8. Further examples

We finish by presenting two examples with base field K = Q(
√
−1), where the Black 

Box Galois representations come from Bianchi modular newforms with rational Hecke 
eigenvalues. The existence of suitable Galois representations in this case was first devel-
oped by Taylor et al. in [9], [17] with subsequent results by Berger and Harcos in [3]. For 
our purposes we only need the existence of the representation and the knowledge that it 
is unramified outside the primes dividing the level of the newform, with the determinant 
and trace of Frobenius at an unramified prime p equal to the norm N(p) and the Hecke 
eigenvalue ap respectively. These eigenvalues were computed in these examples using the 
methods of [6]. The newforms we use here are in the LMFDB [14] and may be found at 
http://www .lmfdb .org /ModularForm /GL2 /ImaginaryQuadratic/.

In both these examples (as in several hundred thousand others we have) there exist 
elliptic curves defined over K whose 2-adic Galois representation can be proved to be 
equivalent to the representation attached to the newform, using the Serre–Faltings–Livné 
method as detailed in [8]. However in preparing the examples we did not use the elliptic 
curves themselves, but used modular symbol methods to obtain the traces of Frobenius 
as Hecke eigenvalues. As det(ρ(Frob p)) = N(p) and we include the prime above 2 in S, 
for K = Q(

√
−1) we always have N(p) ≡ 1 (mod 4), and hence the determinant of the 

representation is trivial modulo 4.
In this way we can obtain information about the elliptic curves conjecturally associated 

to a rational Bianchi newform, even in cases where we have not been able to find a suitable 
elliptic curve.

Example 2. The base field is K = Q(i), where we write i =
√
−1. The Galois rep-

resentation we consider is that attached to the Bianchi newform with LMFDB label 
2 .0 .4 .1 -3140 .3 -c. Here, 2.0.4.1 is the LMFDB label for K; then 3140.3 is the label for the 
level N = (56 + 2i) = (1 + i)2(1 + 2i)(11 + 6i) of norm 3140 (it is the 3rd ideal of this 
norm in the ordering used by the LMFDB). Finally the suffix c identifies the newform 
itself: the new space at level Γ0(N) is three-dimensional with a basis of three newforms 
(labelled a, b and c) each with rational Hecke eigenvalues.

Let S = {1 + i, 1 + 2i, 11 + 6i} be the set of primes dividing the level, outside which 
the representation is unramified. Then

K(S, 2) = 〈1 + i, 1 + 2i, 11 + 6i, i〉 ∼= (Z/2Z)4.

There is one C3 extension of K unramified outside S, and 5 S3 extensions, so we have a 
set F of 6 possible cubics. Using Algorithm 2 we find that a suitable distinguishing set 
is T0 = {2 + i, 2 + 3i, 3 + 2i, 1 + 4i}. Checking that ap is even for all p ∈ T0 shows that 
the mod-2 representation is reducible.

Using Algorithm 5 we find the following set of ten primes forms a special quadratically 
independent set. (We only use primes of degree 1 here, noting that the cost of computing 
ap grows with N(p).)

http://www.lmfdb.org/ModularForm/GL2/ImaginaryQuadratic/
http://www.lmfdb.org/ModularForm/GL2/ImaginaryQuadratic/2.0.4.1/3140.3/c
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I {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}
pI (1 + 4i) (4 + 5i) (8 + 7i) (5 + 2i) (4 + i) (5 + 8i) (6 + i) (5 + 4i) (2 + i) (2 + 3i)
ap 2 10 10 6 2 −14 −2 −2 2 −6

Fp(1) 16 32 104 24 16 104 40 44 4 20
t1(p) 0 0 0 0 0 0 0 0 0 0
t2(p) 0 0 0 0 0 0 0 1 1 1

Applying the test t1(p), given by (10), amounts to testing whether each ap ≡ 0 or 2
(mod 4); here, all ap ≡ 2 (mod 4). (In the notation of subsection 5.2, we have v = 0.) 
This implies that the width of the isogeny class is at least 2; we have a large isogeny 
class.

To determine whether the width of the isogeny class is actually 2, we apply the test 
t2(p), given by (16) (since the determinant is trivial mod 4) with k = 1. Using the method 
of subsection 6.3 we construct the matrix

W =

⎛
⎜⎝

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0

⎞
⎟⎠

which has rank 2, so (without loss of generality) we take x = (0, 0, 1, 1), y = (0, 1, 0, 1)
(two distinct non-zero rows of W) and z = x+ y = (0, 1, 1, 0). Then from (19) we 
find that u = v = (0, 0, 0, 1). Therefore Δb = (11 + 6i)(i), Δc = (1 + 2i)(i), Δabcd =
(11 +6i)(1 +2i). So in this case the stable Bruhat–Tits tree (see Fig. 1) has four vertices, 
with discriminants as shown here:

We can match the data presented in this example to the isogeny class 2 .0 .4 .1 -3140 .3 -c of 
elliptic curves of conductor N over Q(i). The four elliptic curves in this class include one 
(with label c3) with full K-rational 2-torsion, while each of the others (labelled c1, c2, 
c4) has a single K-rational point of order 2 as expected. Moreover the discriminants of 

http://www.lmfdb.org/EllipticCurve/2.0.4.1/3140.3/c
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the other three curves are (up to square factors) i(11 +6i), i(1 +2i) and (1 +2i)(11 +6i)
respectively.

Example 3. Again with K = Q(i) as base field, let S = {1 + i, 2 + i, 2 − i}. For this 
example we take the Bianchi newform with LMFDB label 2 .0 .4 .1 -200 .2 -a with level 
N = (10 +10i) = (1 + i)3(2 + i)(2 − i) of norm 200, a base-change of a classical newform 
on Γ0(40). Now

K(S, 2) = 〈i, i + 1,−i− 2, 2i + 1〉 ∼= (Z/2Z)4;

we have put the unit i first since we will be using the method of subsection 6.4. Now F
has only one element and T0 = {4 + i}. Since a4+i = 2 the representation is residually 
reducible.

We find T2 as before and obtain the following data from the newform, acting as our 
Black Box:

I {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}
p (2 + 3i) (5 + 8i) (8 + 7i) (7 + 8i) (6 + i) (5 + 2i) (6 + 5i) (1 + 4i) (4 + i) (4 + 5i)

N(p) 13 89 113 113 37 29 61 17 17 41
ap −2 −6 18 18 6 −2 −2 2 2 −6

Fp(1) 16 96 96 96 32 32 64 16 16 48
t4(p) 1 0 0 0 0 0 0 1 1 1

Since tk(p) = 0 for all p ∈ T2 for k = 1, 2, 3 we see that not only is ρ residually reducible, 
it is even trivial modulo 4 (up to isogeny). Fixing a stable lattice with respect to which 
ρ is trivial mod 4, we will determine ρ (mod 8), noting that it does not have trivial 
determinant, as some primes have norm �≡ 1 (mod 8).

Using the method of subsection 6.4, we evaluate t4(p) for p ∈ T2 (see the last row of 
the table above). From this we evaluate the 3 × 3 matrix

W′ =
(0 1 1

1 0 1
1 1 0

)

and observe that it has rank 2. Thus we may take x′ = (0, 1, 1), y′ = (1, 0, 1) and 
z′ = (1, 1, 0). From t4(p1) = 1 we then get x1 = y1 = z1 = 1, so x = (1, 0, 1, 1), 
y = (1, 1, 0, 1), and z = (1, 1, 1, 0). Using (25) gives u′ = v′ = (0, 0, 1) so u = (1, 0, 0, 1), 
v = (0, 0, 0, 1), completing the determination of ρ (mod 8): it is the full subgroup of 
GL2(Z/8Z) consisting of matrices congruent to the identity modulo 4. Since all of x, y, 
z are non-zero, we have also determined the entire isogeny class (stable Bruhat–Tits tree), 
and know that the discriminants of its leaves are (modulo squares) Δb = i(2 + i)(1 +2i), 
Δc = i(1 + i)(1 + 2i) and Δabcd = i(1 + i)(2 + i). The isogeny graph therefore looks like 
this:

http://www.lmfdb.org/ModularForm/GL2/ImaginaryQuadratic/2.0.4.1/200.2/a
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Moreover, we also have (using the notation of 6.2) Δa = i(1 + 2i) and Δd = 1 + 2i, so 

by (14) we have ρ(σ) ≡ I + 4 
(
a(σ) b(σ)
c(σ) d(σ)

)
(mod 8), where a(σ) ≡ 0 (mod 2) ⇐⇒

σ(
√

Δa) = +
√

Δa, and similarly for b, c, d.
We can match the data presented in this example to the isogeny class 2 .0 .4 .1 -200 .2 -a

of elliptic curves of conductor N over Q(i). The class includes the base-change to K of 
isogeny class 40a of elliptic curves defined over Q with conductor 40; it consists of ten 
curves a1–a10 and the graph of 2-isogenies between them is as in this diagram, where the 
vertex labels match the number labels of the curves in the class. Consulting the LMFDB 
page cited, we can check that the discriminants of the ten curves are as indicated in the 
diagram (up to squares).
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