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The authors would like to first thank the discusser for making three constructive comments which 8 

can be divided into two groups: (1) comments 1 and 2 related to clarity of a function used in the 9 

model developed and accuracy of the data collected; (2) comment 3 related to the ability of the 10 

developed model to predict new peak discharges of dam failure. To close the discussion and further 11 

clarification, the following are noted for each of the comments: 12 

 13 

Comment #1:  14 

The authors of the original paper (Eghbali et al. 2017) applied MATLAB tool as a platform to 15 

generate and combine artificial neural network (ANN) with genetic algorithm (GA) and k-means 16 

clustering. However, due to the combination of ANN and GA, the standard ANN as noted by the 17 

discusser was not used and instead all steps were coded in MATLAB. Thus, the tangent sigmoid 18 

(tansig) transfer function used in the paper for generating ANN was not the default MATLAB 19 
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function denoted as tansig(n) in MATLAB. Instead, The following tansig transfer function was 20 

used in the paper (Araghinejad 2014): 21 

tansig(x) = 2/(1+e-ax)-1=(1-e-ax)/(1+e-ax)         a>0      (1) 22 

where a = constant parameter which was considered 1.  23 

The authors did not carry out sensitivity analysis for parameter a but even if the default MATLAB 24 

function is used instead (i.e. a=2), it is unlikely to lead to less accurate predictions although 25 

different weights and biases may be obtained for the same database. 26 

 27 

Comment #2: 28 

The discusser highlighted the importance of the discrepancy of peak flow rates from the failure of 29 

three dams (i.e. Oros Dam in Brazil, Banqio Dam in China and Hell Hole Dam in the United States) 30 

reported by the original paper and other publications. As the accurate date is of paramount 31 

importance to the results, the authors endeavoured to collect the data from different sources and 32 

impartially pick up those that were widely used. More specifically, failure peak flow rate of Oros 33 

Dam used in the paper (i.e. 9,630 m3/s) has been reported by several sources (e.g. Wahl 1998; Xu 34 

and Zang 2009; Pierce et al. 2010; and Thornton et al. 2011) while the value expressed by the 35 

discusser (i.e. 58,000 m3/s which is around 6 times larger) can be found in only few works (e.g. 36 

Wahl 2014). In addition, the peak flow rate of 56,300 m3/s for the Banqiao Dam failure was only 37 

used by the discusser’s publication while peak flow rate of 78,000 m3/s was reported by many 38 

independent researchers (e.g. Fujia and Yumei 1994; Xu and Zhang 2009; Pierce et al. 39 

2010;Thornton et al. 2011). Due to large amount of peak discharge in these two data samples (i.e. 40 

Banqiao and Oros Dams), we also agree that the major difference in the collected data can directly 41 



affect any developed model. For example, Banqiao Dam failure is an important data sample due 42 

to having the highest peak discharge in the database. Also, the original paper used the widely-43 

reported value of 7,360 m3/s for Hell Hole dam failure (MacDonald and Langridge-Monopolis 44 

1984; Wahl 1998; Xu and Zhang 2009) while peak discharge of 17,000 m3/s has only been used 45 

by the discusser. In addition, the frequency of the 92 data samples analysed in the paper shows 46 

that most of the observed peak flow discharges are less than 10,000 m3/s (Hoosyaripor et al. 2014). 47 

In this dataset, there are only one peak discharge over 70,000 m3/s, 2 cases over 60,000 m3/s, 3 48 

cases over 30,000 m3/s and 7 cases over 20,000 m3/s among 92 data samples.  49 

It should also be noted that there is only one predictive model which is trained for all clusters using 50 

90% of all data samples, not based on the data samples in one cluster (e.g. Oros and Banqiao 51 

Dams) as noted by the discusser. In addition, due to insufficient data available (92 samples), 52 

conventional model verification (i.e. dividing database into two subsets of training and test) was 53 

inefficient. Hence, the cross-validation technique was used in the paper, implying that all 92 data 54 

samples were participated in the evaluation of the test set (see “Assessment of Performance 55 

Indicators” section in the original paper).  56 

 57 

Comment #3: 58 

The comment challenges overfitting of the clustered ANN-GA model. As noted by the discusser, 59 

overfitting often occurs when the number of hidden neurons is large (i.e. model is excessively 60 

complex) while the proposed model has only four neurons which is far less than the number of 61 

data pairs (i.e. 82-83 equal to 90% of data samples). In other words, if the number of parameters 62 

in the ANN is much smaller than the total number of points in the training set which is the case in 63 



the paper, there is little chance of overfitting (MATLAB). Also, to avoid overfitting, conventional 64 

ANNs divide the database into two subsets of training and validation, in which the training dataset 65 

will only participate in the model training. Then, the ANN training will carry on to improve the 66 

fitness on training dataset until the mode performance on validation dataset (i.e. independent and 67 

unseen date) is deteriorating. Similarly, the cross-validation technique was used in the proposed 68 

model as unseen data to avoid overfitting during the model training (Eghbali et al. 2017).  69 

Furthermore, the authors totally agree with the trends of the profile traces shown in the discussion 70 

for the model developed. However, the reason for the unexpected functional responses in some 71 

profile traces cannot be attributed to a flaw or overfitting in the developed model but it is related 72 

to the discrepancy of the collected data. More specifically, cluster #1 has only two members (i.e. 73 

Oros and Banqiao Dams) in which the profile trace for constant value of Hw is the opposite of the 74 

expected function response (Fig. 1a in the discussion paper). When looking at the data of these 75 

two dams, it is apparent that given relatively similar Hw around 33m for both dams and a large 76 

water volume above the breached invert (Vw) in Oros Dam (660 mcm) compared to Banqiao Dam 77 

(607.5 mcm), the peak flow discharges are considerably opposite (78,100 m3/s for Banqiao Dam 78 

compared to 9,630 m3/s for Oros Dam). The other unexpected functional response is related to 79 

variation of Qp with Vw in cluster #3 (Fig. 1c in the discussion paper) which has 3 members. 80 

Similar discrepancy can be observed within the dataset of these members. More specifically, 81 

coefficient of determination (R2) between Vw and Qp is significantly low (i.e. R2=0.21) (Eghbali et 82 

al. 2017). Interestingly, the correlation between Hw and Qp in the members of the same cluster is 83 

very strong (i.e. R2=0.98) which also confirms the profile trace shown in Fig. 2c in the discussion 84 

paper. Similar correlation is in place for the last expected functional response (i.e. Fig. 1d of the 85 

discussion paper related to variation of Qp with Vw in cluster #4. Although this cluster has 86 



relatively large number of data samples (i.e. 18 members), a weak correlation is observed between 87 

the members (i.e. R2=0.02).  88 

As can be seen in the above discussion, most of the inaccuracies and unexpected functional 89 

responses are mainly referred to the discrepancies between the data collected. Although the highly 90 

controversial data (e.g. the data in clusters #1 and #3 and some of the uncorrelated/outlier data in 91 

cluster #4) can be simply removed and the problem can be apparently solved, the authors do not 92 

recommend it due to the limited number of data available. Instead, the key message of the original 93 

paper is to identify the similar attributes of the data and conduct data clustering to recognize 94 

different specifications and predict their peak failure flows more accurately than the previously 95 

developed models including conventional regression models. 96 

In addition, it seems to be inappropriate to stand by for future dam failures to enrich the quality 97 

and quantity of the database of dam failure as it will be unlikely to observe these catastrophic 98 

phenomena frequently in the future due to the advance in monitoring systems. Therefore, although 99 

some data collected from various breach cases may seem to be statistically chaotic, every piece of 100 

data may reveal information of high relevance (Gupta and Singh 2012) and hence they should not 101 

be changed/removed in favour of achieving a better correlation of the developed model for dam 102 

failure analyses.  103 
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