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Summary 

 

A DNA sequence analysis parallelization in large databases using cluster, multi-cluster, and GRID is 

presented. 

Achievable speedup, scalability, and overhead introduced by communications are discussed, and the 

impact of the Grid middleware on the performance obtained with clusters is detailed. 

The experimental work carried out with homogeneous and heterogeneous clusters is presented, 

along with a comparison of the results obtained when migrating the algorithms to a GRID. 

Finally, current lines of work related to the study of models and paradigms for the resolution of 

parallel algorithms on GRID architectures are presented. 
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1. INTRODUCTION 

The evolution of processing towards parallelism has been evident almost from the very appearance 

of digital computers. There are multiple factors that have driven software concurrence and hardware 

multi-processing, but there are two that should be highlighted: 

 The need to reduce the processing time of large volumes of data (numerical problems, models, 

large databases, images, expert systems, biotechnology, etc.) 

 Information processing (data, signals) in real time to make decisions both in industrial and 

administrative environments (robotics, military industry, multimedia systems in real time, geo-

referencing, pattern recognition) 

This evolution causes a great effort to be done to transform sequential processing into parallel 

processing in an attempt to reduce processes execution times and response times to real-world 

events [1]. Within this scope, there are also two main factors that guided technological evolution: 

 The growth of computational power, given by the evolution of the technology used in 

components and processing architectures (supercomputers, hypercubes of homogeneous 

processors, large networks of non-homogeneous processors, processors specialized in images, 

processors for the treatment of signals) 

 The transformation and creation of algorithms that exploit the implicit concurrence of the 

problem at hand to its maximum, so as to distribute processing tasks and minimize total 

response time. Naturally, this transformation should also be adapted to the physical support 

architecture.   

One of the areas of greatest interest and growth in the last few years within the field of parallel 

processing applications is that of the treatment of large volumes of data such as DNA sequences, 

which are actually the driver for this application. The type of extensive comparison processing 

carried out to analyze genetic patterns (in a database that can even be physically distributed and 

partially replicated) requires a significant effort in the development of efficient parallel algorithms. 

DNA is the biological element that differentiates species, or the so-called “types”. Therefore,  DNA 

sequences profiling is carried out as a worldwide effort. With the development of techniques that 

allow unraveling the information contained in DNA, conditions were favorable for the emergence of 

bioinformatics, which is a branch that seeks not only to acquire, store and organize the biological 

information contained in DNA molecules, but also to analyze and interpret these data. It involves 

the resolution of complex problems using tools provided by computational systems. The diagnosis 

and treatment of medical conditions, the production of genetically enhanced foods, or the 

identification of living beings focusing on traceability or paternity systems are, among others, major 

applications in the area. The more complete the reference population stored in the database is, the 

higher the certainty of the analysis will be. 

In this paper, the parallelization of an algorithm to analyze similarities in DNA sequences in large 

databases using distributed architectures such as clusters and GRIDs is analyzed. 



2. PARALLEL ARCHITECTURES 

The use of architectures such as clusters, multi-clusters, and GRIDs, communicated through 

messages and supported by networks with different characteristics and topologies has become 

generalized, for the development of both parallel algorithms and distributed Web services [2][3]. 

A cluster is a type of distributed processing system formed by a set of interconnected stand-alone  

machines that work co-operatively as a sole and integrated computation resource.  When connecting 

two or more clusters over a LAN or WAN, some form of multi-cluster is obtained.  

Different multi-cluster variations are obtained if all clusters are on the same network or if they are 

connected over various networks; if the operating system support is common to all components; if 

each cluster is homogeneous or heterogeneous; if the communications network has the same 

bandwidth between all nodes or if bandwidth is variable (typical of a WAN over Internet); and if 

each cluster is dedicated to the application defined for the multi-cluster or shares it with other tasks.  

A GRID is a type of parallel distributed system that allows sharing, selecting and adding 

geographically distributed autonomous resources, such as computers, software, data, databases, 

special devices, instruments, and people. This collaborative configuration depends on the 

availability, capacity, cost, and requirements of the user [4]. A GRID can also be defined as a virtual 

information processing environment where the user has the “illusion” of an only and powerful 

computational resource which is actually distributed [5]. 

Some of the characteristics of a GRID environment are [6]: 

 The GRID integrates resources (processors, instruments, databases, etc.) that are heterogeneous, 

geographically distributed and in general connected over a WAN, and which can join or leave 

the GRID dynamically. 

 Resources can be accessed on-demand by a set of users who are part of a virtual community. 

 The GRID is configured with general-purpose protocols and infrastructure, not necessarily 

common to all its nodes.  

If we consider the functionalities of a "layered" GRID structure, the following can be mentioned: 

a. The lowest level, consisting on GRID services (“Factory layer”) to support the use of local 

resources (processors, data, network). 

b. The layer that provides authentication and security services to allow the exchange of data 

between remote resources (“Connective Layer”). 

c. The resource administration layer (“Resource Layer”), which allows sharing resources and 

establishing a logical connection between them. 

d. The collective layer is the one that coordinates the interactions between multiple resources 

associated to physically distributed processes.  

e. Finally, the application layer is the one in charge of the interaction with the user, so that 

users can “transparently” visualize the virtual configuration with which they will work. 

Some authors consider that a GRID is a “Cluster of Clusters,” which results in a somewhat 

restrictive definition, but one that is useful for the evolution of parallel applications from clusters to 

GRIDs. [7]. Some similarities and differences can be mentioned: 

 In the case of clusters, usually an only virtual parallel machine is configured, and it can run a 

dedicated application. A GRID allows configuring multiple virtual parallel machines for several 

simultaneous users/applications. 



 Both clusters and GRIDs are based on heterogeneous processors. However, in the case of 

GRIDs, this heterogeneity is extended to the communications network and the type of 

components in each node, which can be processors, instruments, sensors, etc. 

 The middleware required for GRIDs is more complex than that of clusters. Basically, in order to 

configure the virtual parallel machine, a stage to identify and locate physical resources is 

required. Also, GRIDs require monitoring the execution of tasks over multiple virtual machines 

with different levels of users who have different access rights to resources. 

 In addition to this, the tools to develop applications require a greater level of abstraction in 

GRIDs, due to the complexity and diversity of the multiple users that can use the architecture. 

It should be mentioned that a multi-cluster structure, visualized as a limited number of dedicated 

clusters that co-operate in an only parallel application, is an intermediate point between clusters 

and a GRID, and it will require some special services in its middleware (specially to authenticate 

user rights of users accessing remote resources) [8]. 

There are currently many application areas for these architectures, such as: scientific computation, 

simulation, industrial models, medicine, e-commerce, distributed database management, Internet 

(portals, Web services), E-Government, or critical applications such as nuclear reactors, banks, 

military weapons or industrial control in real time [9]. 

3. SEQUENCE SIMILARITY IN DATABASES 

There are currently many databases with information related to DNA sequences. These databases 

(centralized or distributed) record specific properties of the sequences to be used in different 

applications. All of them share the characteristic of being composed by thousands of records of 

DNA sequences that grow exponentially year after year. 

With this information, the characteristics of a new sequence (test) can be predicted by comparing it 

to the sequences stored in the database. There is a set of methods that allow quantifying the 

similarity ratio between the test sequence and each stored sequence, in order to search in the 

database for all those sequences that fulfill a certain similarity criterion with test [10]. 

The Smith-Waterman algorithm for local alignment is one of these methods; it focuses on similar 

regions only in part of the sequences, which means that the purpose of the algorithm is finding 

small, locally similar regions. This method has been used as the basis for many subsequent 

algorithms and is oftentimes used as basic pattern to compare different alignment techniques. 

The complexity of the Smith-Waterman algorithm to carry out the comparison between each pair of 

sequences increases with sequence size [11]. When considering that this comparison is performed 

for each of the sequences stored in the database, a sequential execution on a "standard" computer 

becomes impracticable as the size of the database increases.   

3.1. Smith-Waterman Algorithm 

This method allows aligning two DNA sequences by inserting gaps (if necessary) that are used to 

detect locally similar regions that may indicate the presence of a relation between both sequences, 

which is done by assigning a similarity score.  

The algorithm calculates a similarity score between two sequences and then employs a backwards 

alignment for an optimal result. This last part is not needed in this case, since only a similarity score 

between test and each of the sequences in the database is required, and, based on these scores, 

determine which is the most similar sequence [10].  



The following paragraphs explain the operation of the algorithm to find a similarity score between 

two DNA sequences. 

Given two sequences, A and B:  

NM bbbbBaaaaA .......... 321321   

a matrix H is built with (N+1)x(M+1), so that nucleotide bases that form sequence A label the rows 

(starting from 1), and the bases that form B label the columns (starting from 1). The following steps 

are applied to calculate the values of H that will yield the similarity score between A and B: 

a. Start with 0 on row 0 and column 0 of H. 

b. Calculate the value of Hij for i  [1,..,N] and j  [1,..,M] by means of function 1. This 

value indicate the maximum similarity between two segments ending in ai and bj 

respectively. 
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At this point, V(ai, bj) is the matches function that indicates the score given by matching ai 

and bj, which is based on a substitution matrix; Cij is the score obtained considering a gap in 

j columns that is calculated with equation 2; Fij is the score obtained considering a gap in 

row i and is calculated with equation 3; g(x) is the penalty function for a gap of length x and 

is obtained with equation 4; and q is the penalty applied for opening a gap, whereas r is the 

penalty corresponding to its prolongation.    

c. The similarity score is obtained as shown in equation 5. 

}{max )0)(0( jiMjNi HP                                                        (5) 

4. SEQUENTIAL AND PARALLEL ALGORITHM 

For this experiment, the sequences considered are of different size and are represented by arrays of 

characters, where the alphabet is formed by the 4 nucleotide bases (A, C, G, T). The database is 

formed by K sequences that are stored in one file, and the test sequence is in a separate file. 

4.1. Sequential Solution  

The sequential algorithm loads the test sequence in an array; then, for each sequence Si in the 

database, it loads Si in an array and obtains the Similarity Score (Pi) between test and Si by means of 

the Smith-Waterman algorithm that was explained in Section 3.1, storing in Pmax the maximum 

Similarity Score obtained so far, and in Smax, the sequence number that yielded this value. Figure 1 

shows a pseudo-code of this solution. 



 
     Figure 1: Pseudo-code of the sequential solution 

4.2. Parallel Solution with Semi-Dynamic Distribution 

For the parallel solution carried out, it is assumed that there are B+1 processors (one acting as 

master and B as workers). The database has K sequences to be compared with the test sequence. 

This base is replicated in each of the worker processors, whereas the file with the test sequence is 

only stored at the master processor.  

Taking into account the possible heterogeneity of processors and the various lengths of the different 

sequences in the database, workload is semi-dynamically distributed between processors. This 

technique allows distributing a percentage (LI) of the workload (sequences of the database that will 

be compared with test) statically at the beginning of the application, and then distributing workload 

on demand as the workers finish their job. The operation of this method is explained below: 

 The master processor (b0) distributes the initial sequences: 

- b0 calculates the number (KI) of sequences that should be processed statically when the 

operation starts based on the percentage (LI) of initial distribution, as shown by equation 6. 
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- b0 obtains the number of sequences (ki) that each worker should initially process based on 

their computational power (wi), as shown by equation 7.  
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- b0 distributes the initial KI sequences by assigning ki consecutive sequences to bi, with i = 

1..B. In order to assign a set of sequences to work with, it indicates the position of the first 

and the last sequence within the database.  

 The master processor (b0) distributes the remaining KR sequences, where initially, KR = K – 

KI: 

- bi requests b0 for more sequences to solve upon finishing its assignment. For any i = 1..B.  

- If KR > 0, b0 assigns KB (or KR if KR<KB) consecutive sequences to the bi processor that 

sent the request, being KB the number of sequences sent for each assignment request. 

- If KR > 1, b0 updates KB as shown in equation 8. 

int Look_for_Similarity (Base, ArchTest) 

 { int Smax, Pmax, P 

    char *test, *S 

  

    Pmax = -1; 

    test = Load_Sequence (ArchTest, 0) 

    for (i=0; i<K; i++) 

           S = Load_Sequence (Base, i) 

           P = Smith_Waterman (test, S) 

           if  (P > Pmax)  

     Pmax = P 

     Smax = i     

     return Smax      

 } 



KBKRKR                                                  (8) 

Figure 2 shows how the distribution is carried out assuming a system composed by four workers in 

heterogeneous processors whose relative computational powers are w1=3, w2=3, w3=2, w4=2. The 

value of LI = 50 %, and that of KB = 5. 

 
Figure 2: Semi-dynamic distribution 

The following paragraphs describe how processes (master and workers) operate in the proposed 

parallel solution, taking this technique into account to distribute workload among processors. 

Processes act like this: 

 Master process: 

- It loads the test sequence in an array and sends it to all workers. 

- It carries out the Initial Distribution, indicating each worker the block of sequences from the 

database that were assigned to it. 

- It distributes the remaining sequences on demand. 

- It informs all workers when there is no more work to be done so that they send back the 

partial results obtained (maximum similarity score and corresponding sequence). 

- It calculates the maximum score from all partial results, thus obtaining the sequence that is 

“most similar” to test.   

 Worker processes: 

- They receive the test sequence from the master process. 

- They receive the position on the database of the first and the last sequences that they should 

process corresponding to the Initial Distribution. 

- For each sequence Si that they should process, they load Si in an array and obtain the 

Similarity Score (Pi) between test and Si by applying the Smith-Waterman algorithm 

explained in Section 3.1, storing in Pmax the maximum Similarity Score so far, and in Smax 

the number corresponding to the sequence that yielded that value (from among all sequences 

assigned to them).   

- While the master process does not inform them that there is no more work to be done, they 

receive the position of another block of sequences and analyze them as described above. 

- When receiving an end-of-work indication, they send the master process the maximum 

Similarity Score and the position in the database corresponding to the sequence that yielded 

that value.    

5. EXPERIENCE CARRIED OUT 

The experience carried out is divided in two parts. The first part consists in assessing the 

performance of the parallel algorithm over a multi-cluster architecture. The second part is focused 

on studying the overhead generated when migrating the application to a GRID architecture. 



5.1.  Performance Assessment on a Multi-Cluster Architecture 

The heterogeneous multi-cluster architecture used in this experience is formed by two clusters 

whose processors have different characteristics: 

- Cluster1: 16 processors (2.4 GHz Pentium 4 and 1GB RAM memory each one). 

- Cluster2: 4 processors (2 GHz Celeron and 128 MB RAM memory each one). 

Communication within each cluster is carried out by means of an Ethernet network, and a switch is 

used for inter-cluster communication.  

The language used for implementations is C with the MPI library to manage communications 

between processes [12]. 

For this experiment, four databases with 10,000 sequences each are generated. The difference 

between these databases is the maximum size of their elements (1000, 2500, 5000, and 10,000); a 

corresponding Test sequence is generated for each size. Within each database, sequence length 

varies between 75% and 100% of the maximum size. Different tests were performed varying the 

following:  

- The subset of processors in each cluster 

- The size of the sequences in the database and the Test sequence 

- The number (K) of sequences from the database that will be taken into account (1000, 2500, 

5000 and 10,000) 

- The percentage (LI) of initial distribution for the semi-dynamic distribution (0, 25, 50, 75, 

100) 

- The number of sequences (KB) that are distributed on each workload request (1, 5, 10, 20, y 

50).  

In order to simplify result visualization in this paper, the value of K (10,000), LI (50) and KB (10) 

were kept constant. Tests are described taking these values into account; the characteristics 

corresponding to each of the tests are detailed in Table 1. The results of all tested combinations are 

reported in [13]. 

 Test 
Number of Workers 

Sequence Size 
Cluster 1 Cluster 2 

1 3 1 750 – 1000 

2 6 2 750 – 1000 

3 12 4 750 – 1000 

4 3 1 1750 – 2500 

5 6 2 1750 – 2500 

6 12 4 1750 – 2500 

7 3 1 3750 – 5000 

8 6 2 3750 – 5000 

9 12 4 3750 – 5000 

10 3 1 7500 – 10000 

11 6 2 7500 – 10000 

12 12 4 7500 – 10000 

Table 1. Details of the tests performed. 

5.2. Assessment of the Overhead Generated by a GRID Architecture  

To analyze the behavior of the application upon migration to a GRID environment, the following 

architectures were used: 

- Cluster: subset of 6 processors of cluster 1 mentioned before. 



- Grid: 6 processors (2.66 GHz Pentium 4 and 512 MB RAM memory each one). All of them 

configured as GRID nodes using Globus Toolkit 4.0.7 as GRID Middleware. 

The communication between the processors forming the GRID is carried out by means of a Fast 

Ethernet (100 Mbps) network. 

The language used for implementations is C with the MPI library (LAMMPI for Cluster  and 

MPICH-G2 for Grid) to manage communications between processes [12]. 

To perform this analysis, three of the databases described in the previous section (5.1) with their 

corresponding Test sequences are used, and a set of tests varying the same parameters are defined. 

Each of these tests is carried out in both architectures (Cluster and GRID) in order to be able to 

compare their behaviors. As in the previous section (5.1), to simplify result visualization, the subset 

detailed in Table 2 is shown, where the values of K (10,000), LI (50) and KB (10) are kept constant. 

The results of all tested combinations are reported in [13].  

Test Number of Workers Sequence Size 

1 2 750 – 1000 

2 3 750 – 1000 

3 4 750 – 1000 

4 5 750 – 1000 

5 2 1750 – 2500 

6 3 1750 – 2500 

7 4 1750 – 2500 

8 5 1750 – 2500 

9 2 3750 – 5000 

10 3 3750 – 5000 

11 4 3750 – 5000 

12 5 3750 – 5000 

Table 2. Details of the tests performed. 

6. METRICS AND RESULTS OBTAINED 

This section presents the metrics used to measure the performance of the parallel system with the 

different architectures, together with the results obtained with the tests described in the previous 

section. 

6.1. Speedup and Theoretical Speedup Analysis 

In order to analyze the performance of the algorithm in the parallel architecture, speedup is used, 

whose value is obtained by means of equation 9. 

meParallelTi

TimeSequential
Speedup       (9) 

In the case of heterogeneous architectures, the “Sequential Time” is given by the time of the best 

sequential algorithm run at the machine with greatest computational power [14][15][16]. Figure 3 

shows a summary of the speedup obtained in the tests carried out. 

In order to assess the level of speedup obtained, it is compared with the theoretical speedup of the 

architecture on which the test was run. This theoretical speedup considers the relative computational 

power of each machine with the power of the most powerful machine [17][18]. Theoretical speedup 

is calculated by means of equation 10. 
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where     B is the number of machines that form the architecture used. 

wi is the relative computational power of machine i as compared with the power of the 

most powerful machine. This relation is expressed by equation 11. 
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Figure 4 shows the relation between real and theoretical speedup for the tests described in Section 

5.1. This relation is equivalent to efficiency in homogeneous architectures, and is obtained by means 

of equation 12.    

lSpeedupTheoretica

Speedup
lación Re                     (12) 

 

 

    

         

6.2. Analysis of the Overhead Generated by the GRID Architecture 

Since hardware characteristics of both architectures (Cluster and GRID) used for this analysis are 

different, the overhead generated by them cannot be measured by comparing their corresponding 

parallel execution times. For this reason, the metrics of Efficiency is used to compare both 

architectures.  

As previously mentioned, Efficiency in homogeneous architectures is equivalent to the relation 

defined by equation 12 for heterogeneous systems. This value is obtained by means of equation 13. 

ocessorsNumberOfPr

Speedup
Efficiency                      (13) 

Figure 5 shows the comparison of speedup values achieved in both architectures, whereas Figure 6 

compares the efficiency obtained. From this figures, it can be seen that the GRID architecture has a 

slightly lower efficiency, which indicates the overhead produced when running the application on 

this architecture.  

 

Figure 4: Relation between real and theoretical speedup 

for the tests performed. 

 

Figure 3: Speedup of the tests performed. 



    

         

7. CONCLUSIONS AND FUTURE WORK 

A parallel algorithm was developed to look for similarities in DNA sequences in large databases 

using the Smith-Waterman technique to analyze the similarity between two sequences. The 

algorithm was tested in a heterogeneous multi-cluster architecture with varying numbers of 

processors. 

Then, different metrics were used to assess the behavior of this algorithm. The first of these was 

speedup, which, as Figure 3 shows, increases as the number of processors increases, and is constant 

for tests with equal number of processors even if sequence size is increases. 

The second analysis allows comparing the speedup obtained with the theoretical speedup, which is 

an indication of how much the architecture is being exploited. Figure 4 shows that, in all cases, 

exploitation is above 82%, reaching a peak of 95% when 17 processors are used. It can also be seen 

that this relation increases as the number of processors increases. 

Efficiency comparison shows a lower efficiency for Grid architecture due to middleware overhead. 

This overhead is 5 to 7 % . The overhead takes into account software layers and the increased 

complexity in message management for Grid. 

Actual experimental work is focused in increasing de number of processors (in cluster and Grid) and 

extending Grid experiences using processors geographically distributed over different networks 

(located in Argentine, Brazil and Spain). 
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