-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by Servicio de Difusion de la Creacién Intelectual

An ACO approach for the Parallel Machines
Scheduling Problem

Claudia R. Gatica, Susana C. Esquivel, and Guillermo Leguiamon
Laboratorio de Investigagn y Desarrollo en Inteligencia Computacional (LIDIC)
Universidad Nacional de San Luis
Ejército de Los Andes 950, (5700) San Luis, Argentina

e-mail: {crgatica, esquivel, legh@unsl.edu.ar

Abstract

The parallel machines scheduling problem, JEomprises the allocation of jobs on the sys-
tem’s resources, i.e., a group of machines in parallel. Tdwcbmodel consists ah identical
machines andh jobs. The jobs are assigned according to resource avéiafallowing some
allocation rule. In this work, we apply the Ant Colony Optization (ACO) metaheuristic which
includes in the construction solution process differemic#c heuristic to solve R for the mini-
mizationMaximum Tardiness (T,,...). We also present a comparison of previous results obtained
by a simple genetic algorithm (GAs) and an evidence of anawgu performance of the ACO
metaheuristic on this particular scheduling problem.

Keywords: parallel machine scheduling, maximum tardiness, ant gadgtimization algorithms,
specific heuristic problem information.

1 INTRODUCTION

The parallel machines scheduling problems are represent#tmany real world problem. In such
systems it is usual to drive the minimization of the objessibased on the due dates, such adiire
imum Tardiness (T,,...). To provide reasonably good solutions in a very short tithe,scheduling
literature ([12] and [16]) offers a set of dispatching rudesl heuristics. Depending on the particular
instance of the problem, we see how some heuristics behdter bean others. Evolutionary Algo-
rithms have been successfully applied to solve schedutiolgiems (See [3], [4], and [5]). Similarly,
the Ant Colony Optimization (ACO) metaheuristic has alserbapplied to solve scheduling prob-
lems such as in [1], [2], [8], [10], [13], [14] and [15]. Howex there have been found too few works
related, in particular, to Parallel Machines Schedulingiem (B,).

In this work we applied an Ant Colony System (ACS) [10], anaaked algorithm derived from
the ACO metaheuristic, to,R It is important to note that the pheromone trail and helgrisforma-
tion are the driving forces in ant algorithms to efficientkptore the search space. In the particular
case of the heuristic information, different rules can lmiporated according to the problem under
consideration. For the scheduling problem studied in tlaskwthe ACS was implemented by con-
sidering different heuristic values, which are: EarliesteCDate (EDD), Shortest Processing Time
(SPT), Longest Processing Time (LPT), and Least Slack (SOAG addition, we compared the
results with a previous work by Ferretti et al. [3].


https://core.ac.uk/display/15778557?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The remainder of the paper is organized as follows. Sectitine2Parallel Machines Scheduling
Problem is formally introduced. In Section 3 we describeAheColony Optimization metaheuristic
and present the ACS algorithm foy,PThe experimental study, and the analysis and statistidtses
are presented respectivelly in Sections 4 and 5. Finallggiction 6 the conclusions are presented.

2 PARALLEL MACHINES SCHEDULING PROBLEM

The formal notation used in the literature [12] for the saled) problem that we are dealing is a
triplet: (P, || Tmaz). The first field describes the machine environment, therskome contains

the constrains, and the third one provides the objectivetfon. This scheduling problem can be
stated as follows: there arejobs to be processed without interruption on some ofrthidentical
machines belonging to the system,(jPeach machine can process not more than one job at a time.
Jobj (j=1,2,...n) is made available for the processing at time zero, it requareuninterrupted positive
processing tim@; on a machine and it has a due ddfdy which it should ideally be finished. For a
given processing order of the jobs (schedule), the ead@sapletion timeC; and the maximum delay
timeT, = {C; - d;, 0} of the jobj can be easily estimated. The problem consists in findingienopt
schedule objective value. The objective to be minimized is:

MazimumTardiness : Tpop = max;(T;)

These problems related to the due dates have received ecatsliel attention from a practical and
theorical point of view, besides they have considered aHdf when2 < m < n, see in the
literature [12].

2.1 Conventional Heuristics to Scheduling Problems

Dispatching heuristics assign a priority index to every ipka waiting queue. The one with the
highest priority is selected to be processed next. Thereliffexent heuristics (e.g., [12] and [16])
for the above mentioned problem whose principal propertyotsonly the quality of the results but
also to give a schedule to close the optimal sequencing. dlleving dispatching heuristics were
selected to determine priorities, and they were used tal sathedules by the Ant Colony System:

e EDD (Earliest Due Date first): the job with earliest due date iected first and the final
scheduled jobs are ordered satisfying:

d; < dp < ... < dp.

e SPT (Shortest Processing Time first): the job with shortest @geimg time is selected first and
the final scheduled jobs are ordered satisfying:

P1 < p2 < ... < py.

e LPT (Largest Processing Time first): the job with largest premegstime is selected first and
the final scheduled jobs are ordered satisfying:

Pn S Pn—1 S S Pr1-

e SLACK (Least slack): the job with the smallest difference betwdeea date and processing
time is selected first and the final scheduled jobs are ordssfying:

dy —p;r <dp —pp < ... < dyy — pn-



3 ANT COLONY OPTIMIZATION

Ant Colony Optimization (ACO) is a metaheuristic in which @sle process is trselutions construc-
tion, (see in the bibliography [11]). It manages a colony of anés toncurrently and asynchronously
visit adjacent states of the considered problem by movinguih neighbor nodes of the construc-
tion graph G. They move by applying a stochastic local denigiolicy, denoted by”;;, which is
descripted in section 3.1, it makes use of pheromone to&lsoted by+;;) and heuristic information,
denoted by;;). In this way, ants increasingly build solutions to the op#ation problem. Once an
ant has built a solution, or while the solution is being hukie ant evaluates the (partial) solution that
will be used by theupdate pheromones procedure to decide how much pheromone to depOsgitiate
pheromonesthis is the process by which the pheromone trails are modifibd trails value can either
increase, as ants deposit pheromone on the componentsraatimms they use, or decrease, due to
pheromone evaporation. From a practical point of view, tagodit of new pheromone increases the
probability for those components/connections, that wareeeused by many ants or that were used
by at least one ant, and which produced a very good solutiohetused again by future ants. On
the other hand, pheromone evaporation implements a useful éf forgetting: it avoids premature
convergence of the algorithm toward a suboptimal regioereore favoring the exploration of new
areas of the search space.

The Ant Colony System (ACS), is an ACO algorithm introducgdmrigo and Gambardella [10].
It uses a modified rule when an ant chooses the next travel iages a best-so-far pheromone up-
date rule but applies pheromone evaporation only to thetktrat belongs to the solution components
that are in best-so-far solution. It also uses a local pher@wupdate rule to decrease the pheromone
values on visited solution components, in order-to engpeiexploration. A general outline of the
ACS is presented in Algorithm 1.

Algorithm 1 Pseudo-code for ACS
Initialize
for c=1 to Cycles-Numbedo
for k=1 to Ants-Numbedo
Construct-Ant-Solution (Local Update Pheromone)
Save-Best-Solution
Rank-Solution
Global-Update-Pheromone
Reallocation-Ants
end for
end for
Print-Best-Solution

3.1 ACS for (P,,||Trnaz)

This section presents the description of the main compasrahe implemented ACS.

1. Construction graph: The ants perform randomalks in a construction graph and these walks
represent feasible solutions of the underlying combimaltoptimization problem. To construct
a feasible solution the artificial ants successively chgobs to be appended to the actual
subsequence, until all jobs are scheduled. Each ant deoidiegendently of each other which
job 7 should be theé-th job in the sequence, and each ant generates a complet®soA walk



machines in parallel
o
sequence of jobs - m2

—
EEEEEE— gy

J1 J2 J5 J6 J4 U3 .

m3
S

J2 J4

J3 J5

a walk in the construction graph
for this sequence of jobs

Figure 1:Example of a construction graph for 6 jobsin m; machinesin parallel.

consists of several “node-to-node” movements and thesements are performed on the basis
of transition probabilities. The transition probability”;; that job; be selected to be processed
on position; in the sequence is formally given by:

s
PZ] = Emhﬂ-h ]EQ (l)
0 otherwise

where(? is the set of non-scheduled jobs, @ntlelongs td?, n;; is the specific-problem heuris-
tic information, andr;; the pheromone trails.

For example, for an instance problem of 6 jobs amdmachines, the construction graph can
be seen as in Figure 1. The nodes in the graph represent jareagthe edges represent the
possible walks the ants can follow. The solutioh, .Js, J5, Js, Ja4, J3) is represented by edges
in boldface starting in nodé; .

2. The formulas of the local and global pheromone update are:

(&) Local Update Rule
Tij = (1 = @)1 + é79 2
whereg is a weight, andy, is a constant value.
(b) Global Update Rule
Tt +1)=(1—p)1i;(t) + pATZ-I}(t +1) (3)

b is the index of the best-so-far solution.



3. For selecting the next compongntACS uses the next formula:

_ [ argmaz{mn]} @ <q @)
Py otherwise

P;; is the probability item selection given in equation 1.

4. The objective function:
Min : Tyep = maz;( 1))
whereT; = {C; - d;, 0} is the maximum delay time, thd is the due date of job, andC; the
earliest completion time.

5. Heuristic information n

(a) Earliest Due Date (EDD) based heuristic, where jobs are sorted and scheduled augord
to ascending due dates.
NEDD = J/dj

(b) Shortest Processing Time (SPT) based heuristic, where jobs are sorted and scheduled ac-
cording to ascending shortest processing time.

nspr = 1/p;

(c) Largest Processing Time (LPT) based heuristic, where jobs are sorted and scheduled ac-
cording to ascending largest processing time.

NopT = Py

(d) Least Sack (SLACK) based heuristic, where jobs are sorted and scheduled augdod
ascending smallest difference between due date and progéisse.

nsrack = 1/(d; — p;)

To implement the ACS with different heuristics we use thelbkproject [6]. It is an integrated
way to develop a skeleton library for combinatorial optiatian that includes exact, heuristic, and
hybrid methods. The skeletons are based on the separatiao abncepts: the problem to be solved
and the general resolution method to be used. The skeletanbecseen as generic templates that
only need to be instanced with the characteristics of thblpro in order to solve it. All the features
related to the method of selected generic resolution arnidittieraction with the problem itself, are
implemented by the skeleton, while the particular charggties of the problem must be provided by
the user.

4 EXPERIMENTAL DESIGN

As it is not usual to find published benchmarks for the schadyroblems we worked on, we built
our own test suite with data, based on selected data condsypto weighed tardiness problems
taken from the OR-Library [9]. For problems of 40 jobs, 20tamces are selected and for problems
of 100 jobs, 20 instances are selected as well, each insteititeghe same identification number,
although they are not the same problem. That is to say thatawve & problem numbered 1 with



40 jobs and another one numbered 1 with 100 jobs, and so on.ndiméers of the problems are
not consecutive because each one was selected randomlylifferent groups. The tardiness factor
is harder for those with the highest identification numbarthe OR-Library 125 test instances are
available for each problem size= 40, n = 50 andn = 100.

The instances were randomly generated as follows: For edxh [j = 1,...,n), an integer
processing time{;} was generated from the uniform distribution [1,100] anckdgr processing
weightw{;j} was generated from the uniform distributidn10]. Instance classes of varying hardness
were generated by using different uniform distributions gdenerating the due dates. For a given
relative range of due dates ROIRDD = 0.2,0.4,0.6,0.8,1.0) and a given average tardiness factor
TF(TF =0.2,0.4,0.6,0.8,1.0), an integer due datg ;) for each job; was randomly generated from
the uniform distributiofP(1 — TF — RDD/2), P(1 — TF + RDD/2)|, whereP = SUM{j =
1,...,n}p(j). Five instances were generated for each of the 25 pairswésalf RDD and TF, yielding
125 instances for each value of n. These data were the inpdidpatching rules and conventional
heuristics, and for the implemented ACS algorithm.

To evaluate the dispatching rules and the conventionalisteasr we used PARSIFAL [16], a
software package provided by Morton and Pentico to solvergifit scheduling problems by means
of different heuristics, as for examag#D andSPT used in this work.

To compare the ACS algorithm with four heuristics, the falilng relevant performance variables
were chosen from previous works [3]:

e FEbest = ((best value—opt-val)/opt-val) = 100: it is the percentage error of the best found
solution when compared with the known or estimated (uppantdpoptimum valuept-val. It
gives a measure on how far the best solution is fromapgtal. When this value is negative,
it means that thept-val has been improved.

e Mean Ebest (MEbest): it is the mean value dEbest throughout all runs.

e Mean Best (uBest): it is the mean objective value obtained from the best fousldt®ns
throughout all runs.

e Hit Ratio: it is the percentage of runs where the ACS reaches or imprtneeknown or esti-
mated optimum value.

The initial phase of the experiments consisted in establisthe best results from dispatching
rules and conventional heuristics to use them as upper Isdonthe objective function values. Also,
the best parameter values for the ACS were obtained aftéorpgng a set of previous experiments
and some from the related literature [7], and they are ptedan Table 1.

In all the experiments, we used the same maximum number bfai@ns, in order to compare the
different variants of the implemented ACS, and also to campizem with the results obtained by the
simple genetic algorithm reported in a previous work [3]. ek a maximum number of 140,000
evaluations, and useditism. We performed several experiments with,., for three systems of
parallel machines scheduling problems:

e 20 instances of 40 jobs and= 2 processors.
e 20 instances of 40 jobs and= 5 processors.

e 20 instances of 100 jobs apd= 5 processors.



| Parameters |

| Names |  Values |
numbers of runs 10 and 30
number of steps 1000
colony size 140
« 1
16 5and 10
p 0.5and 0.9
qo 0.9
o 0.02 and 0.05
to 0.5
£ 0.02 and 0.05

Table 1:The Parameters values

5 ANALYSIS OF RESULTS

In this section we present the results obtained by the impiteed ACS algorithm with four different
heuristics. Table 2 shows tivEbest values obtained df,,.. objective, for the first system problem,
table 3 for the second problem, and table 4 for the third gmobl Here we shaded cells with the
intention of showing the following: darker cells represéest values. That is, darker cells reach
higher performance of the ACS with the respective heurigicie. In turn, to indicate statistical
significant differences we used the different shades. Siiyjlwe used the same shade to indicate
any statistical significant differences. In order to accbsimghis, we took one instance at a time and
we applied an ANOVA theviEbest values of four heuristics with a confidence level of 95 petcen
doing the same for all the instances of the three problems.

Seeing the different shades in tables 2, 3, and 4, we carertbat theEDD heuristic is the darkest
in all the problems and instances, followed 8yACK heuristic in the second place, aBHT in the
third place. The_PT heuristic is the lightest in all instances of the three peaid, meaning that it was
the worst performance. We can also see that the heur@tiSK is not the best when the problem
instances have a higher numeration. From all this, we mayhsdyhe heuristic information related to
due date aEDD andSLACK incorporate more information to search process of the AQ8rahms
and this is lower average percentage error in the bikibest.

Besides, we present tables 5, 6, and 7, in which it can be wixdé¢he column®Opt-val (best
known value, obtained by Parsifa)),Best, andHRatio are obtained by simple genetic algorithms
GAsreported in [3], and by ACS algorithms using four heuristarseach problem studied.

In the tables 5 and 6, we can see {hBest, values obtained b¥DD heuristic were the best
minimun values, and thHit Ratio values were the higher. However, for the instance numbe®56,
111, 116, and 121, thdit Ratio is zero, except en table 5 for instance number 116. That nteans
optimum value never has been reached. For the other handjttiRatio values ofGAs are zero for
111 and 116 instances in the three problems.

In table 7 the minimum Best values were obtained B$As, even the instances with higher iden-
tification, but theHit Ratio were better foEDD andS_ACK heuristics.

We could say that the performance of ACS algorithms were és¢ Using the heuristid&&DD and
S ACK is that because the due date values used for heuristic &selated to the objective function.
It is important to note that this relationship between therlstics and objective function can improve
the process of searching for ACS algorithms. However, tls¢bBest values for instances of higher



| Maximun Tardiness. MEbest |
[ Inst. | n=40y p=2 |
[N | EDD | ST [ LPT | SACK |
111,915

26 201,818 | 721,818
27,530 | 122,267
8,861 44,879
9,766 39,609
56 53,036 | 261,538
37,874 | 176,246
66 23,395 74,954
86 45,233 | 222,718
29,911 | 111,161
226,555
184,000 | 134,154
14,336 51,049 23,636
29,571 | 125,684 5,471

111
116
121
AVG

Table 2:The MEbest values for four different Heuristics

identification of the three problems were the obtaine@Bg algorithms.

6 CONCLUSIONS

In this work we have presented an ACS algorithm with fouredight heuristics implemented: 1)
Earliest Due Date (EDD), 2) Shortest Processing Time (SByTDargest Processing Time (LPT), and
4) Least Slack (Slack). The experiments have been basedstpdying 20 instances, for each three
of the problems, where the parallel identical machine sglieglproblems (B, || 7....) were intented
to be minimized. The obtained results were analized stzlgtby ANOVA test which was used to
measure the differences beetwen the means of four datagb&lpnging to each problem.

We see that a best performance was achieved wheAGBealgorithm is used with information
heuristic which more has related to the problem, sudiCd3 andSLACK. However, this results could
be compared with simpléAs as well, but we can not say the same for advar@ad Clearly, more
experiments are necessary because none of the algoritiumd floe optimum values for all problem
instances, such as instances 66, 91, 111, 116, and 121. tura fwork, we plan to incorporate local
search to th&dCSusing hybridization techniques, and to use other set ofint& problems.

References

[1] Bauer A., Bernd B., Hartl R., and Strauss C. An ant colopiiraization approach for the single
machine total tardiness problenEE, pages 1445-1450, 1999.

[2] Bauer A., Bernd B., Hartl R., and Strauss C. Minimizingaiatardiness on a single machine
using ant colony optimizationCentral European Journal of Operations Research, 8(2):125—
141, 2000.



| Maximun Tardiness. MEbest |
[ Inst. | n=40y p=5 |
| N || EDD | SPT | LPT |S_ACK ||
14,789 @ 67,254
3,067 28,988
-3,363 13,274
1,412 5,118
0,349 4,360
156,00 | 334,00
16,460 | 73,603
4,370 29,980
7,015 32,015
-0,382 | 11,069
78,616 | 189,623
35,007 | 121,981
15,726 | 50,726 6,855
6,466 32,331 3,910
40,747 | 182,513
31,539 | 76,442 7,019
6,627 18,935 -1,065
79,113 | 204,006 | 34,478
59,375 | 179,762 | 122,619
14,557 | 36,709 2,848
28,374 | 84,634 2,095

111
116
121
AVG

Table 3:The MEbest values for four different Heuristics

[3] Ferretti E. and Esquivel S. A comparison of simple andtimedombinated evolutionary algo-
rithms with and without problem specific knowledge insattitor parrallel machines schedul-
ing. International Transaction on Computer Science and Engineering, 3(1):207-221, 2005.

[4] Ferretti E. and Esquivel S. An efficient approach of siemphd multirecombinated genetic
algorithms for parallel machine scheduling. IEEE Congress on Evolutionary Computation,
volume 2, pages 1340-1347, Scotland, UK, September 20&& (Eenter.

[5] Ferretti E. and Esquivel S. Knowledge insertion: An e#fic approach to simple genetic algo-
rithms for unrestricted for parallel equal machines sclieduin GECCO’ 05, pages 1587-1588,
Washington DC, USA, 2005.

[6] Alba Enrique, Luque Gabriel, Garcia Nieto Jose, Ordor@guillermo, and Leguizamobn
Guillermo. MALLBA: A software library to design efficient d¢jmisation algorithms. Inter-
national Journal of Innovative Computing and Applications, 1(1):74 — 85, 2007.

[7] Botee M. Hozefa and Eric Bonabeau. Evolving ant colonyirojzation. Complex Systens,
pages 149-159, 1998.

[8] Heinonen J. and Pettersson F. Hybrid ant colony optitiomeand visibility studies applied to a
job-shop scheduling problendpplied Mathematics and Computation, 2006.

[9] OR library Beasley J. http://people.brunel.ac.uk/tjiagnfo.html.

[10] Dorigo M. and Gambardella L.M. Ant colony system: A ceogtive learning approach to the
traveling salesman problenEEE Transaction Evolutionary Comput., 1(1):53-66, 1997.

[11] Dorigo M. and Stulzle TAnt Colony Optimization. Massachusetts Institute of Tecnology, 2004.

[12] Pinedo M.Scheduling: Theory, Algorithms and System. Prentice Hall, 1995.



| Maximun Tardiness. MEbest |

[ Inst. | n=100y p=5 |
| N || EDD | ST | LPT |S_ACK ||
1 27,797 | 134,407
6 1310 | 29583
11 4,504 23,473
19 5,430 24,409 -0,511
21 1,660 8,015 3,531
26 254,167 | 934,524
31 45,170 | 141,356
36 13,066 81,274
41 12,911 46,119
6 6572 | 17,79
56 158,657 | 338,657
61 89,939 | 146,564
66 38,730 | 80,738

71 4,319 24,817 | 36,649

86 150,645 | 263,952

91 53,049 | 117,040 | 28,655

96 31,077 | 51,692 | 26,308
111 173,028 | 240,282

116 57,974 | 113,147 | 54,741
121 41,830 | 67,157 | 56,699
AVG 59,617 | 144,842 | 9,607

Table 4:The MEbest values for four different Heuristics

[13] Bank Markus and Honing Udo. An aco-based approach foedaling task graphs with com-
munication costslnternational Conference on Parallel Processing, pages 623—629, 2005.

[14] Chandrasekharan Rajendran and Hans Ziegler. Ant ga@gorithms for permutation flowshop
scheduling to minimize makespan/total flowtime of job8uropean Journal of Operational
Research, pages 426—438, 2004.

[15] Saravana Sankar, Ponnambalam S.G., Rathinavel V.Vawshvaren M.S. Scheduling in
parallel machine schop: An ant colony optimization apphoaimdustrial Technology, 2005,
ICIT 2005 |EEE International Conference, pages 276—280, 2005.

[16] Morton T. and Pentico DHeuristic Scheduling Systems. John Wiley and Sons, New York, 1993.



Maximun Tardiness: n=40y p=2 |

[nst | Opt ] GAs T EDD T ST I LPT T SAK ||
[ N [ val. ]| pwBest | HRatio [| uBest | HRatio || uBest | HRatio || uBest | HRatio [| pBest | HRatio ||
1 235 225.73 9 216.0 100 259.4 0.0 509.2 0.0 216.0 100
6 599 614.7 17 594.0 100 615.1 0.0 860.2 0.0 594.0 100
11 1060 1018.1 93 998.0 100 1025.6 100 1284.4 0.0 998.0 100
19 1628 1635.93 20 1624.0 100 1644.8 0.0 1785.0 0.0 1624.0 100
21 1660 1639.67 100 1646.2 90 1640.5 100 1801.9 0.0 1688.5 20
26 55 66 60 27.0 100 209.9 0.0 465.8 0.0 27.0 100
31 494 527.47 7 474.0 100 671.8 0.0 1126.4 0.0 474.0 100
36 869 920.23 7 852.0 100 979.0 0.0 1292.8 0.0 852.0 100
41 1280 1421.8 7 1271.0 100 1431.7 0.0 1814.0 0.0 1271.1 100
46 1240 1224.0 80 1230.1 80 1233.2 50 1458.8 0.0 1381.8 0.0
56 247 293.17 0.0 229.0 100 483.0 0.0 906.4 0.0 229.0 100
61 602 762.73 0.0 604.1 0.0 915.8 0.0 1675.2 0.0 604.0 0.0
66 1090 1244.43 0.0 1236.3 0.0 1386.0 0.0 1923.1 0.0 1272.2 0.0
71 1280 1289.27 53 1346.0 10 1350.1 0.0 1770.0 0.0 1398.8 0.0
86 493 535.43 17 457.0 100 810.4 0.0 1694.0 0.0 457.0 100
91 896 1014.07 3 1164.4 0.0 1272.8 0.0 1926.0 0.0 1192.1 0.0
96 1537 1592.03 13 1630.6 30 1747.6 0.0 2016.8 0.0 1615.6 0.0
111 659 956.97 0.0 1014.6 0.0 1311.1 0.0 2156.4 0.0 1206.7 0.0
116 650 799.3 0.0 900.3 20 1084.1 0.0 1866.4 0.0 1635.2 0.0
121 1430 1486.07 13 1676.6 0.0 1733.3 0.0 2160.4 0.0 1954.0 0.0
AVG 900,2 963.36 29.0 959.56 61.5 1090.26 12.5 1524.66 0.0 1034.55 51.0

Table 5: The Opt-val are obtained by Parsifal, the ;Best and Hit Ratio are obtained by simple
genetic algorithms GAs and ACS algorithms using four different heuristics.

Maximun Tardiness: n=40y p=5

[[Inst. T Opt. | GAs ] EDD ] T ] LPT ] S ACK I
| N | val. || uBest | HRatio || uBest | HRatio || uBest | HRatio || uBest | HRatio || uBest | HRatio ||
1 284 283.67 50 242.8 100 352.9 0.0 504.5 0.0 232.5 100
6 652 647.2 67 621.5 100 702.4 0.0 858.6 0.0 608.0 100
11 1130 1059.83 100 1030.9 100 1113.1 80 1288.0 0.0 1019.9 100
19 1700 1666.4 97 1656.0 100 1741.9 0.0 1796.8 0.0 1648.0 100
21 1720 1681.37 90 1734.6 10 1738.5 0.0 1795.0 0.0 1730.5 30
26 100 127.77 13 79.5 100 307.5 0.0 472.4 0.0 71.1 100
31 644 613.2 77 560.2 100 800.4 0.0 1132.0 0.0 560.2 100
36 984 1001.8 37 919.3 100 1090.9 0.0 1295.7 0.0 908.1 100
41 1340 1446.07 3 1316.9 100 1498.4 0.0 1823.0 0.0 1326.0 100
46 1310 1270.43 100 1346.6 0.0 1333.7 20 1459.0 0.0 1340.8 0.0
56 318 403.97 0.0 263.7 100 610.7 0.0 935.1 0.0 255.1 100
61 737 896.37 0.0 717.9 100 1040.2 0.0 1653.3 0.0 684.7 100
66 1240 1363.9 0.0 1385.7 0.0 1500.0 0.0 1953.5 0.0 1429.1 0.0
71 1330 1352.97 10 1416.5 10 1462.6 0.0 1764.5 0.0 1464.9 0.0
86 589 624.0 23 541.6 100 917.6 0.0 1711.0 0.0 564.4 100
91 1040 1112.8 17 1239.3 0.0 1423.7 0.0 1902.5 0.0 1308.2 0.0
96 1690 1699.27 50 1731.8 20 1844.5 0.0 2040.5 0.0 1766.1 10
111 699 1036.73 0.0 11311 0.0 1422.3 0.0 2135.0 0.0 1239.8 0.0
116 672 943.57 0.0 1050.7 0.0 1208.4 0.0 1887.0 0.0 1588.0 0.0
121 1580 1639.67 20 1778.9 0.0 1847.2 0.0 2162.0 0.0 1893.0 0.0
AVG | 987.95 || 1043.55| 38.0 1038.275| 57.0 1197.845 5.0 1528.47 0.0 1081.92| 57.0

Table 6: The Opt-val are obtained by Parsifal. the pBest and Hit Ratio are obtained by simple
genetic algorithms GAs and ACS algorithms using four different heuristics.



| Maximun Tardiness: n=100y p=5 |

[ Inst. T Opt. ] GAs ] EDD ] ST ] LPT ] SLACK I
| N | val. || uBest | HRatio || uBest | HRatio || uBest | HRatio || uBest | HRatio || uBest | HRatio ||
1 590 742.67 3 555.3 100 833.6 0.0 1436.27 0.0 547.53 100
6 1680 1676.1 57 1588.17 100 1773.3 0.0 2271.87 0.0 1583.40 100
11 2620 2686.03 7 2569.6 100 2774.4 0.0 3249.73 0.0 2556.13 100
19 3720 3889.10 0.0 3720.3 40 3995.3 0.0 4635.03 0.0 3704.87 100
21 5240 5330.9 0.0 5311.9 0.0 5404.57 0.0 5676.17 0.0 5495.93 0.0
26 168 499.87 0.0 129.2 100 781.43 0.0 1805.97 0.0 110.30 100

31 1180 1515.30 0.0 1167.67 100 1829.93 0.0 2900.0 0.0 1139.57 100
36 2120 2462.23 0.0 2092.33 100 2598.17 0.0 3908.77 0.0 2072.13 100
41 3710 4087.43 0.0 3646.27 100 4349.17 0.0 5456.0 0.0 3634.37 100
46 4580 4694.37 7 4762.17 0.0 4963.07 0.0 5401.5 0.0 5188.67 0.0
56 670 1465.93 0.0 658.33 80 1928.67 0.0 2957.4 0.0 613.0 100
61 1630 2620.43 0.0 1646.27 | 13.33 3263.7 0.0 4065.4 0.0 1631.03 | 46.67
66 2440 3276.7 0.0 3102.97 0.0 3610.1 0.0 4435.87 0.0 3474.13 0.0
71 3820 4436.1 0.0 4499.4 0.0 4841.23 0.0 5238.33 0.0 4612.17 0.0
86 1240 2695.53 0.0 1271.43 0.0 3299.53 0.0 4598.13 0.0 1457.57 0.0
91 2230 3096.47 0.0 3285.33 0.0 3633.07 0.0 4853.83 0.0 3643.63 0.0
96 3250 3933.7 0.0 4040.2 0.0 4354.0 0.0 4938.17 0.0 4561.57 0.0
111 1420 3214.43 0.0 3014.23 0.0 4052.6 0.0 4864.57 0.0 3075.23 0.0
116 2320 3390.9 0.0 3632.87 0.0 3903.97 0.0 4959.33 0.0 4441.80 0.0
121 3060 4192.17 0.0 4077.67 0.0 4460.87 0.0 5122.0 0.0 4867.33 0.0
AVG | 2384.4 || 2595.28 3.0 2738.56 | 41.67 3332.53 0.0 4138.72 0.0 2920.52 | 47.33

Table 7: The Opt-val are obtained by Parsifal, the ;. Best and Hit Ratio are obtained by simple
genetic algorithms GAs and ACS algorithms using four different heuristics.



