
An ACO approach for the Parallel Machines
Scheduling Problem

Claudia R. Gatica, Susana C. Esquivel, and Guillermo Leguizamón
Laboratorio de Investigación y Desarrollo en Inteligencia Computacional (LIDIC)

Universidad Nacional de San Luis
Ejército de Los Andes 950, (5700) San Luis, Argentina

e-mail:{crgatica, esquivel, legui}@unsl.edu.ar

Abstract

The parallel machines scheduling problem (Pm) comprises the allocation of jobs on the sys-
tem’s resources, i.e., a group of machines in parallel. The basic model consists ofm identical
machines andn jobs. The jobs are assigned according to resource availability following some
allocation rule. In this work, we apply the Ant Colony Optimization (ACO) metaheuristic which
includes in the construction solution process different specific heuristic to solve Pm for the mini-
mizationMaximum Tardiness (Tmax). We also present a comparison of previous results obtained
by a simple genetic algorithm (GAs) and an evidence of an improved performance of the ACO
metaheuristic on this particular scheduling problem.

Keywords: parallel machine scheduling, maximum tardiness, ant colony optimization algorithms,
specific heuristic problem information.

1 INTRODUCTION

The parallel machines scheduling problems are representative of many real world problem. In such
systems it is usual to drive the minimization of the objectives based on the due dates, such as theMax-
imum Tardiness (Tmax). To provide reasonably good solutions in a very short time,the scheduling
literature ([12] and [16]) offers a set of dispatching rulesand heuristics. Depending on the particular
instance of the problem, we see how some heuristics behave better than others. Evolutionary Algo-
rithms have been successfully applied to solve scheduling problems (See [3], [4], and [5]). Similarly,
the Ant Colony Optimization (ACO) metaheuristic has also been applied to solve scheduling prob-
lems such as in [1], [2], [8], [10], [13], [14] and [15]. However, there have been found too few works
related, in particular, to Parallel Machines Scheduling Problem (Pm).

In this work we applied an Ant Colony System (ACS) [10], an advanced algorithm derived from
the ACO metaheuristic, to Pm. It is important to note that the pheromone trail and heuristic informa-
tion are the driving forces in ant algorithms to efficiently explore the search space. In the particular
case of the heuristic information, different rules can be incorporated according to the problem under
consideration. For the scheduling problem studied in this work, the ACS was implemented by con-
sidering different heuristic values, which are: Earliest Due Date (EDD), Shortest Processing Time
(SPT), Longest Processing Time (LPT), and Least Slack (SLACK). In addition, we compared the
results with a previous work by Ferretti et al. [3].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15778557?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The remainder of the paper is organized as follows. Section 2, the Parallel Machines Scheduling
Problem is formally introduced. In Section 3 we describe theAnt Colony Optimization metaheuristic
and present the ACS algorithm for Pm. The experimental study, and the analysis and statistic results
are presented respectivelly in Sections 4 and 5. Finally, inSection 6 the conclusions are presented.

2 PARALLEL MACHINES SCHEDULING PROBLEM

The formal notation used in the literature [12] for the scheduling problem that we are dealing is a
triplet: (Pm || Tmax). The first field describes the machine environment, the second one contains
the constrains, and the third one provides the objective function. This scheduling problem can be
stated as follows: there aren jobs to be processed without interruption on some of them identical
machines belonging to the system (Pm); each machine can process not more than one job at a time.
Jobj (j=1,2,...n) is made available for the processing at time zero, it requires an uninterrupted positive
processing timepj on a machine and it has a due datedj by which it should ideally be finished. For a
given processing order of the jobs (schedule), the earliestcompletion timeCj and the maximum delay
timeTj = {Cj - dj , 0} of the jobj can be easily estimated. The problem consists in finding a optimum
schedule objective value. The objective to be minimized is:

MaximumTardiness : Tmax = maxj (Tj)

These problems related to the due dates have received considerable attention from a practical and
theorical point of view, besides they have considered as NP-Hard when2 ≤ m ≤ n, see in the
literature [12].

2.1 Conventional Heuristics to Scheduling Problems

Dispatching heuristics assign a priority index to every jobin a waiting queue. The one with the
highest priority is selected to be processed next. There aredifferent heuristics (e.g., [12] and [16])
for the above mentioned problem whose principal property isnot only the quality of the results but
also to give a schedule to close the optimal sequencing. The following dispatching heuristics were
selected to determine priorities, and they were used to build schedules by the Ant Colony System:

• EDD (Earliest Due Date first): the job with earliest due date is selected first and the final
scheduled jobs are ordered satisfying:

d1 ≤ d2 ≤ ... ≤ dn .

• SPT (Shortest Processing Time first): the job with shortest processing time is selected first and
the final scheduled jobs are ordered satisfying:

p1 ≤ p2 ≤ ... ≤ pn .

• LPT (Largest Processing Time first): the job with largest processing time is selected first and
the final scheduled jobs are ordered satisfying:

pn ≤ pn−1 ≤ ... ≤ p1 .

• SLACK (Least slack): the job with the smallest difference betweendue date and processing
time is selected first and the final scheduled jobs are orderedsatisfying:

d1 − p1 ≤ d2 − p2 ≤ ... ≤ dn − pn .

3 ANT COLONY OPTIMIZATION

Ant Colony Optimization (ACO) is a metaheuristic in which a base process is thesolutions construc-
tion, (see in the bibliography [11]). It manages a colony of ants that concurrently and asynchronously
visit adjacent states of the considered problem by moving through neighbor nodes of the construc-
tion graph G. They move by applying a stochastic local decision policy, denoted byPij , which is
descripted in section 3.1, it makes use of pheromone trails,denoted by (τij) and heuristic information,
denoted by (ηij). In this way, ants increasingly build solutions to the optimization problem. Once an
ant has built a solution, or while the solution is being built, the ant evaluates the (partial) solution that
will be used by theupdate pheromones procedure to decide how much pheromone to deposit.Update
pheromones this is the process by which the pheromone trails are modified. The trails value can either
increase, as ants deposit pheromone on the components or connections they use, or decrease, due to
pheromone evaporation. From a practical point of view, the deposit of new pheromone increases the
probability for those components/connections, that were either used by many ants or that were used
by at least one ant, and which produced a very good solution, to be used again by future ants. On
the other hand, pheromone evaporation implements a useful form of forgetting: it avoids premature
convergence of the algorithm toward a suboptimal region, therefore favoring the exploration of new
areas of the search space.

The Ant Colony System (ACS), is an ACO algorithm introduced by Dorigo and Gambardella [10].
It uses a modified rule when an ant chooses the next travel node, it uses a best-so-far pheromone up-
date rule but applies pheromone evaporation only to the trail that belongs to the solution components
that are in best-so-far solution. It also uses a local pheromone update rule to decrease the pheromone
values on visited solution components, in order-to encourage exploration. A general outline of the
ACS is presented in Algorithm 1.

Algorithm 1 Pseudo-code for ACS
Initialize
for c=1 to Cycles-Numberdo

for k=1 to Ants-Numberdo
Construct-Ant-Solution (Local Update Pheromone)
Save-Best-Solution
Rank-Solution
Global-Update-Pheromone
Reallocation-Ants

end for
end for
Print-Best-Solution

3.1 ACS for (Pm||Tmax)

This section presents the description of the main components of the implemented ACS.

1. Construction graph: The ants perform randomwalks in a construction graph and these walks
represent feasible solutions of the underlying combinatorial optimization problem. To construct
a feasible solution the artificial ants successively choosejobs to be appended to the actual
subsequence, until all jobs are scheduled. Each ant decidesindependently of each other which
job j should be thei-th job in the sequence, and each ant generates a complete solution. A walk

Figure 1:Example of a construction graph for 6 jobs in mk machines in parallel.

consists of several “node-to-node” movements and these movements are performed on the basis
of transition probabilities. The transition probabilityPij that jobj be selected to be processed
on positioni in the sequence is formally given by:

Pij =







ηijτ
β
ij

Σηihτ
β

ih

jǫΩ

0 otherwise
(1)

whereΩ is the set of non-scheduled jobs, andh belongs toΩ, ηij is the specific-problem heuris-
tic information, andτij the pheromone trails.

For example, for an instance problem of 6 jobs andmk machines, the construction graph can
be seen as in Figure 1. The nodes in the graph represent jobs whereas the edges represent the
possible walks the ants can follow. The solution(J1, J2, J5, J6, J4, J3) is represented by edges
in boldface starting in nodeJ1.

2. The formulas of the local and global pheromone update are:

(a) Local Update Rule
τij = (1 − φ)τij + φτ0 (2)

whereφ is a weight, andτ0 is a constant value.

(b) Global Update Rule

τij(t + 1) = (1 − ρ)τij(t) + ρ∆τ b
ij(t + 1) (3)

b is the index of the best-so-far solution.

3. For selecting the next componentj, ACS uses the next formula:

j =

{

arg.max{τijη
β
j } q0 ≤ q

Pij otherwise
(4)

Pij is the probability item selection given in equation 1.

4. The objective function:
Min : Tmax = maxj (Tj)

whereTj = {Cj - dj , 0} is the maximum delay time, thedj is the due date ofj job, andCj the
earliest completion time.

5. Heuristic information η

(a) Earliest Due Date (EDD) based heuristic, where jobs are sorted and scheduled according
to ascending due dates.

ηEDD = 1/dj

(b) Shortest Processing Time (SPT) based heuristic, where jobs are sorted and scheduled ac-
cording to ascending shortest processing time.

ηSPT = 1/pj

(c) Largest Processing Time (LPT) based heuristic, where jobs are sorted and scheduled ac-
cording to ascending largest processing time.

ηLPT = pj

(d) Least Slack (SLACK) based heuristic, where jobs are sorted and scheduled according to
ascending smallest difference between due date and processing time.

ηSLACK = 1/(dj − pj)

To implement the ACS with different heuristics we use the Mallba project [6]. It is an integrated
way to develop a skeleton library for combinatorial optimization that includes exact, heuristic, and
hybrid methods. The skeletons are based on the separation oftwo concepts: the problem to be solved
and the general resolution method to be used. The skeletons can be seen as generic templates that
only need to be instanced with the characteristics of the problem in order to solve it. All the features
related to the method of selected generic resolution and their interaction with the problem itself, are
implemented by the skeleton, while the particular characteristics of the problem must be provided by
the user.

4 EXPERIMENTAL DESIGN

As it is not usual to find published benchmarks for the scheduling problems we worked on, we built
our own test suite with data, based on selected data corresponding to weighed tardiness problems
taken from the OR-Library [9]. For problems of 40 jobs, 20 instances are selected and for problems
of 100 jobs, 20 instances are selected as well, each instancewith the same identification number,
although they are not the same problem. That is to say that we have a problem numbered 1 with

40 jobs and another one numbered 1 with 100 jobs, and so on. Thenumbers of the problems are
not consecutive because each one was selected randomly fromdifferent groups. The tardiness factor
is harder for those with the highest identification number. In the OR-Library 125 test instances are
available for each problem sizen = 40, n = 50 andn = 100.

The instances were randomly generated as follows: For each job j (j = 1, ..., n), an integer
processing timep{j} was generated from the uniform distribution [1,100] and integer processing
weightw{j}was generated from the uniform distribution[1, 10]. Instance classes of varying hardness
were generated by using different uniform distributions for generating the due dates. For a given
relative range of due dates RDD(RDD = 0.2, 0.4, 0.6, 0.8, 1.0) and a given average tardiness factor
TF (TF = 0.2, 0.4, 0.6, 0.8, 1.0), an integer due dated(j) for each jobj was randomly generated from
the uniform distribution[P (1 − TF − RDD/2), P (1 − TF + RDD/2)], whereP = SUM{j =
1, ..., n}p(j). Five instances were generated for each of the 25 pairs of values of RDD and TF, yielding
125 instances for each value of n. These data were the input for dispatching rules and conventional
heuristics, and for the implemented ACS algorithm.

To evaluate the dispatching rules and the conventional heuristics we used PARSIFAL [16], a
software package provided by Morton and Pentico to solve different scheduling problems by means
of different heuristics, as for exampleEDD andSPT used in this work.

To compare the ACS algorithm with four heuristics, the following relevant performance variables
were chosen from previous works [3]:

• Ebest = ((best value−opt-val)/opt-val) ∗ 100: it is the percentage error of the best found
solution when compared with the known or estimated (upper bound) optimum valueopt-val. It
gives a measure on how far the best solution is from thatopt-val. When this value is negative,
it means that theopt-val has been improved.

• Mean Ebest (MEbest): it is the mean value ofEbest throughout all runs.

• Mean Best (µBest): it is the mean objective value obtained from the best found solutions
throughout all runs.

• Hit Ratio: it is the percentage of runs where the ACS reaches or improves the known or esti-
mated optimum value.

The initial phase of the experiments consisted in establishing the best results from dispatching
rules and conventional heuristics to use them as upper bounds for the objective function values. Also,
the best parameter values for the ACS were obtained after performing a set of previous experiments
and some from the related literature [7], and they are presented in Table 1.

In all the experiments, we used the same maximum number of evaluations, in order to compare the
different variants of the implemented ACS, and also to compare them with the results obtained by the
simple genetic algorithm reported in a previous work [3]. Wetook a maximum number of 140,000
evaluations, and usedelitism. We performed several experiments withTmax, for three systems of
parallel machines scheduling problems:

• 20 instances of 40 jobs andp = 2 processors.

• 20 instances of 40 jobs andp = 5 processors.

• 20 instances of 100 jobs andp = 5 processors.

Parameters

Names Values

numbers of runs 10 and 30
number of steps 1000

colony size 140
α 1
β 5 and 10
ρ 0.5 and 0.9
q0 0.9
φ 0.02 and 0.05
t0 0.5
ξ 0.02 and 0.05

Table 1:The Parameters values

5 ANALYSIS OF RESULTS

In this section we present the results obtained by the implemented ACS algorithm with four different
heuristics. Table 2 shows theMEbest values obtained ofTmax objective, for the first system problem,
table 3 for the second problem, and table 4 for the third problem. Here we shaded cells with the
intention of showing the following: darker cells representbest values. That is, darker cells reach
higher performance of the ACS with the respective heuristicvalue. In turn, to indicate statistical
significant differences we used the different shades. Similarly, we used the same shade to indicate
any statistical significant differences. In order to accomplish this, we took one instance at a time and
we applied an ANOVA theMEbest values of four heuristics with a confidence level of 95 percent,
doing the same for all the instances of the three problems.

Seeing the different shades in tables 2, 3, and 4, we can notice that theEDD heuristic is the darkest
in all the problems and instances, followed bySLACK heuristic in the second place, andSPT in the
third place. TheLPT heuristic is the lightest in all instances of the three problems, meaning that it was
the worst performance. We can also see that the heuristicsSLACK is not the best when the problem
instances have a higher numeration. From all this, we may saythat the heuristic information related to
due date asEDD andSLACK incorporate more information to search process of the ACS algorithms
and this is lower average percentage error in the dataMEbest.

Besides, we present tables 5, 6, and 7, in which it can be observed the columnsOpt-val (best
known value, obtained by Parsifal),µBest, andHRatio are obtained by simple genetic algorithms
GAs reported in [3], and by ACS algorithms using four heuristicsfor each problem studied.

In the tables 5 and 6, we can see theµBest, values obtained byEDD heuristic were the best
minimun values, and theHit Ratio values were the higher. However, for the instance number 66,91,
111, 116, and 121, theHit Ratio is zero, except en table 5 for instance number 116. That meansthe
optimum value never has been reached. For the other hand, theHit Ratio values ofGAs are zero for
111 and 116 instances in the three problems.

In table 7 the minimunµBest values were obtained byGAs, even the instances with higher iden-
tification, but theHit Ratio were better forEDD andSLACK heuristics.

We could say that the performance of ACS algorithms were the best using the heuristicsEDD and
SLACK is that because the due date values used for heuristic also are related to the objective function.
It is important to note that this relationship between the heuristics and objective function can improve
the process of searching for ACS algorithms. However, the bestµBest values for instances of higher

Maximun Tardiness: MEbest

Inst. n=40 y p=2

N EDD SPT LPT SLACK

1 -8,085 2,128 111,915 -8,08
6 -0,835 1,002 40,902 -0,835
11 -5,849 -4,151 20,849 -5,849
19 -0,246 0,369 9,521 -0,246
21 -1,506 -1,506 8,494 -1,084
26 -50,909 201,818 721,818 -50,909
31 -4,049 27,530 122,267 -4,049
36 -1,956 8,861 44,879 -1,956
41 -0,703 9,766 39,609 -0,703
46 -2,339 -2,984 17,581 8,226
56 -7,287 53,036 261,538 -7,287
61 0,332 37,874 176,246 0,332
66 0,459 23,395 74,954 0,459
71 -0,859 1,094 38,281 0,391
86 -7,302 45,233 222,718 -7,302
91 6,696 29,911 111,161 16,183
96 -0,130 10,735 29,343 1,301
111 9,408 85,584 226,555 13,050
116 -2,923 47,385 184,000 134,154
121 5,175 14,336 51,049 23,636

AVG -3,645 29,571 125,684 5,471

Table 2:The MEbest values for four different Heuristics

identification of the three problems were the obtained byGAs algorithms.

6 CONCLUSIONS

In this work we have presented an ACS algorithm with four different heuristics implemented: 1)
Earliest Due Date (EDD), 2) Shortest Processing Time (SPT),3) Largest Processing Time (LPT), and
4) Least Slack (Slack). The experiments have been based uponstudying 20 instances, for each three
of the problems, where the parallel identical machine scheduling problems (Pm || Tmax) were intented
to be minimized. The obtained results were analized statisticaly by ANOVA test which was used to
measure the differences beetwen the means of four data groups belonging to each problem.

We see that a best performance was achieved when theACS algorithm is used with information
heuristic which more has related to the problem, such asEDD andSLACK. However, this results could
be compared with simpleGAs as well, but we can not say the same for advancedGAs. Clearly, more
experiments are necessary because none of the algorithms found the optimum values for all problem
instances, such as instances 66, 91, 111, 116, and 121. In a future work, we plan to incorporate local
search to theACS using hybridization techniques, and to use other set of instance problems.

References

[1] Bauer A., Bernd B., Hartl R., and Strauss C. An ant colony optimization approach for the single
machine total tardiness problem.IEEE, pages 1445–1450, 1999.

[2] Bauer A., Bernd B., Hartl R., and Strauss C. Minimizing total tardiness on a single machine
using ant colony optimization.Central European Journal of Operations Research, 8(2):125–
141, 2000.

Maximun Tardiness: MEbest

Inst. n=40 y p=5

N EDD SPT LPT SLACK

1 -15,845 14,789 67,254 -19,014
6 -5,828 3,067 28,988 -7,055
11 -9,381 -3,363 13,274 -10,000
19 -3,294 1,412 5,118 -3,529
21 -1,395 0,349 4,360 -0,291
26 -30,000 156,00 334,00 -35,000
31 -13,665 16,460 73,603 -14,441
36 -8,130 4,370 29,980 -8,130
41 -1,866 7,015 32,015 -1,269
46 0,763 -0,382 11,069 1,069
56 -19,182 78,616 189,623 -20,755
61 -4,206 35,007 121,981 -9,227
66 1,532 15,726 50,726 6,855
71 -0,752 6,466 32,331 3,910
86 -10,526 40,747 182,513 -7,131
91 4,038 31,539 76,442 7,019
96 -1,302 6,627 18,935 -1,065
111 22,175 79,113 204,006 34,478
116 25,149 59,375 179,762 122,619
121 6,646 14,557 36,709 2,848
AVG -3,253 28,374 84,634 2,095

Table 3:The MEbest values for four different Heuristics

[3] Ferretti E. and Esquivel S. A comparison of simple and multirecombinated evolutionary algo-
rithms with and without problem specific knowledge insertion, for parrallel machines schedul-
ing. International Transaction on Computer Science and Engineering, 3(1):207–221, 2005.

[4] Ferretti E. and Esquivel S. An efficient approach of simple and multirecombinated genetic
algorithms for parallel machine scheduling. InIEEE Congress on Evolutionary Computation,
volume 2, pages 1340–1347, Scotland, UK, September 2005. IEEE Center.

[5] Ferretti E. and Esquivel S. Knowledge insertion: An efficient approach to simple genetic algo-
rithms for unrestricted for parallel equal machines scheduling. In GECCO’05, pages 1587–1588,
Washington DC, USA, 2005.

[6] Alba Enrique, Luque Gabriel, Garcia Nieto Jose, Ordónez Guillermo, and Leguizamón
Guillermo. MALLBA: A software library to design efficient optimisation algorithms.Inter-
national Journal of Innovative Computing and Applications, 1(1):74 – 85, 2007.

[7] Botee M. Hozefa and Eric Bonabeau. Evolving ant colony optimization. Complex Systems,
pages 149–159, 1998.

[8] Heinonen J. and Pettersson F. Hybrid ant colony optimization and visibility studies applied to a
job-shop scheduling problem.Applied Mathematics and Computation, 2006.

[9] OR library Beasley J. http://people.brunel.ac.uk/mastjjb/info.html.

[10] Dorigo M. and Gambardella L.M. Ant colony system: A cooperative learning approach to the
traveling salesman problem.IEEE Transaction Evolutionary Comput., 1(1):53–66, 1997.

[11] Dorigo M. and Stülzle T.Ant Colony Optimization. Massachusetts Institute of Tecnology, 2004.

[12] Pinedo M.Scheduling: Theory, Algorithms and System. Prentice Hall, 1995.

Maximun Tardiness: MEbest

Inst. n=100 y p=5

N EDD SPT LPT SLACK

1 -7,288 27,797 134,407 -8,475
6 -6,190 1,310 29,583 -6,012
11 -2,328 4,504 23,473 -2,786
19 -0,376 5,430 24,409 -0,511
21 0,420 1,660 8,015 3,531
26 -38,095 254,167 934,524 -47,024
31 -1,780 45,170 141,356 -4,237
36 -2,217 13,066 81,274 -2,736
41 -2,264 12,911 46,119 -2,453
46 1,288 6,572 17,795 12,227
56 -5,522 158,657 338,657 -9,403
61 -0,920 89,939 146,564 -0,982
66 3,648 38,730 80,738 22,377
71 4,319 24,817 36,649 9,293
86 0,887 150,645 263,952 2,016
91 25,650 53,049 117,040 28,655
96 11,692 31,077 51,692 26,308
111 63,099 173,028 240,282 60,916
116 22,716 57,974 113,147 54,741
121 9,183 41,830 67,157 56,699
AVG 3,796 59,617 144,842 9,607

Table 4:The MEbest values for four different Heuristics

[13] Bank Markus and Honing Udo. An aco-based approach for scheduling task graphs with com-
munication costs.International Conference on Parallel Processing, pages 623–629, 2005.

[14] Chandrasekharan Rajendran and Hans Ziegler. Ant colony algorithms for permutation flowshop
scheduling to minimize makespan/total flowtime of jobs.European Journal of Operational
Research, pages 426–438, 2004.

[15] Saravana Sankar, Ponnambalam S.G., Rathinavel V., andVisveshvaren M.S. Scheduling in
parallel machine schop: An ant colony optimization approach. Industrial Technology, 2005,
ICIT 2005 IEEE International Conference, pages 276–280, 2005.

[16] Morton T. and Pentico D.Heuristic Scheduling Systems. John Wiley and Sons, New York, 1993.

Maximun Tardiness: n=40 y p=2

Inst. Opt. GAs EDD SPT LPT SLACK

N val. µBest HRatio µBest HRatio µBest HRatio µBest HRatio µBest HRatio

1 235 225.73 9 216.0 100 259.4 0.0 509.2 0.0 216.0 100
6 599 614.7 17 594.0 100 615.1 0.0 860.2 0.0 594.0 100
11 1060 1018.1 93 998.0 100 1025.6 100 1284.4 0.0 998.0 100
19 1628 1635.93 20 1624.0 100 1644.8 0.0 1785.0 0.0 1624.0 100
21 1660 1639.67 100 1646.2 90 1640.5 100 1801.9 0.0 1688.5 20
26 55 66 60 27.0 100 209.9 0.0 465.8 0.0 27.0 100
31 494 527.47 7 474.0 100 671.8 0.0 1126.4 0.0 474.0 100
36 869 920.23 7 852.0 100 979.0 0.0 1292.8 0.0 852.0 100
41 1280 1421.8 7 1271.0 100 1431.7 0.0 1814.0 0.0 1271.1 100
46 1240 1224.0 80 1230.1 80 1233.2 50 1458.8 0.0 1381.8 0.0
56 247 293.17 0.0 229.0 100 483.0 0.0 906.4 0.0 229.0 100
61 602 762.73 0.0 604.1 0.0 915.8 0.0 1675.2 0.0 604.0 0.0
66 1090 1244.43 0.0 1236.3 0.0 1386.0 0.0 1923.1 0.0 1272.2 0.0
71 1280 1289.27 53 1346.0 10 1350.1 0.0 1770.0 0.0 1398.8 0.0
86 493 535.43 17 457.0 100 810.4 0.0 1694.0 0.0 457.0 100
91 896 1014.07 3 1164.4 0.0 1272.8 0.0 1926.0 0.0 1192.1 0.0
96 1537 1592.03 13 1630.6 30 1747.6 0.0 2016.8 0.0 1615.6 0.0
111 659 956.97 0.0 1014.6 0.0 1311.1 0.0 2156.4 0.0 1206.7 0.0
116 650 799.3 0.0 900.3 20 1084.1 0.0 1866.4 0.0 1635.2 0.0
121 1430 1486.07 13 1676.6 0.0 1733.3 0.0 2160.4 0.0 1954.0 0.0
AVG 900,2 963.36 29.0 959.56 61.5 1090.26 12.5 1524.66 0.0 1034.55 51.0

Table 5: The Opt-val are obtained by Parsifal, the µBest and HitRatio are obtained by simple
genetic algorithms GAs and ACS algorithms using four different heuristics.

Maximun Tardiness: n=40 y p=5

Inst. Opt. GAs EDD SPT LPT SLACK

N val. µBest HRatio µBest HRatio µBest HRatio µBest HRatio µBest HRatio

1 284 283.67 50 242.8 100 352.9 0.0 504.5 0.0 232.5 100
6 652 647.2 67 621.5 100 702.4 0.0 858.6 0.0 608.0 100
11 1130 1059.83 100 1030.9 100 1113.1 80 1288.0 0.0 1019.9 100
19 1700 1666.4 97 1656.0 100 1741.9 0.0 1796.8 0.0 1648.0 100
21 1720 1681.37 90 1734.6 10 1738.5 0.0 1795.0 0.0 1730.5 30
26 100 127.77 13 79.5 100 307.5 0.0 472.4 0.0 71.1 100
31 644 613.2 77 560.2 100 800.4 0.0 1132.0 0.0 560.2 100
36 984 1001.8 37 919.3 100 1090.9 0.0 1295.7 0.0 908.1 100
41 1340 1446.07 3 1316.9 100 1498.4 0.0 1823.0 0.0 1326.0 100
46 1310 1270.43 100 1346.6 0.0 1333.7 20 1459.0 0.0 1340.8 0.0
56 318 403.97 0.0 263.7 100 610.7 0.0 935.1 0.0 255.1 100
61 737 896.37 0.0 717.9 100 1040.2 0.0 1653.3 0.0 684.7 100
66 1240 1363.9 0.0 1385.7 0.0 1500.0 0.0 1953.5 0.0 1429.1 0.0
71 1330 1352.97 10 1416.5 10 1462.6 0.0 1764.5 0.0 1464.9 0.0
86 589 624.0 23 541.6 100 917.6 0.0 1711.0 0.0 564.4 100
91 1040 1112.8 17 1239.3 0.0 1423.7 0.0 1902.5 0.0 1308.2 0.0
96 1690 1699.27 50 1731.8 20 1844.5 0.0 2040.5 0.0 1766.1 10
111 699 1036.73 0.0 1131.1 0.0 1422.3 0.0 2135.0 0.0 1239.8 0.0
116 672 943.57 0.0 1050.7 0.0 1208.4 0.0 1887.0 0.0 1588.0 0.0
121 1580 1639.67 20 1778.9 0.0 1847.2 0.0 2162.0 0.0 1893.0 0.0

AVG 987.95 1043.55 38.0 1038.275 57.0 1197.845 5.0 1528.47 0.0 1081.92 57.0

Table 6: The Opt-val are obtained by Parsifal. the µBest and HitRatio are obtained by simple
genetic algorithms GAs and ACS algorithms using four different heuristics.

Maximun Tardiness: n=100 y p=5

Inst. Opt. GAs EDD SPT LPT SLACK

N val. µBest HRatio µBest HRatio µBest HRatio µBest HRatio µBest HRatio

1 590 742.67 3 555.3 100 833.6 0.0 1436.27 0.0 547.53 100
6 1680 1676.1 57 1588.17 100 1773.3 0.0 2271.87 0.0 1583.40 100
11 2620 2686.03 7 2569.6 100 2774.4 0.0 3249.73 0.0 2556.13 100
19 3720 3889.10 0.0 3720.3 40 3995.3 0.0 4635.03 0.0 3704.87 100
21 5240 5330.9 0.0 5311.9 0.0 5404.57 0.0 5676.17 0.0 5495.93 0.0
26 168 499.87 0.0 129.2 100 781.43 0.0 1805.97 0.0 110.30 100
31 1180 1515.30 0.0 1167.67 100 1829.93 0.0 2900.0 0.0 1139.57 100
36 2120 2462.23 0.0 2092.33 100 2598.17 0.0 3908.77 0.0 2072.13 100
41 3710 4087.43 0.0 3646.27 100 4349.17 0.0 5456.0 0.0 3634.37 100
46 4580 4694.37 7 4762.17 0.0 4963.07 0.0 5401.5 0.0 5188.67 0.0
56 670 1465.93 0.0 658.33 80 1928.67 0.0 2957.4 0.0 613.0 100
61 1630 2620.43 0.0 1646.27 13.33 3263.7 0.0 4065.4 0.0 1631.03 46.67
66 2440 3276.7 0.0 3102.97 0.0 3610.1 0.0 4435.87 0.0 3474.13 0.0
71 3820 4436.1 0.0 4499.4 0.0 4841.23 0.0 5238.33 0.0 4612.17 0.0
86 1240 2695.53 0.0 1271.43 0.0 3299.53 0.0 4598.13 0.0 1457.57 0.0
91 2230 3096.47 0.0 3285.33 0.0 3633.07 0.0 4853.83 0.0 3643.63 0.0
96 3250 3933.7 0.0 4040.2 0.0 4354.0 0.0 4938.17 0.0 4561.57 0.0
111 1420 3214.43 0.0 3014.23 0.0 4052.6 0.0 4864.57 0.0 3075.23 0.0
116 2320 3390.9 0.0 3632.87 0.0 3903.97 0.0 4959.33 0.0 4441.80 0.0
121 3060 4192.17 0.0 4077.67 0.0 4460.87 0.0 5122.0 0.0 4867.33 0.0
AVG 2384.4 2595.28 3.0 2738.56 41.67 3332.53 0.0 4138.72 0.0 2920.52 47.33

Table 7: The Opt-val are obtained by Parsifal, the µBest and HitRatio are obtained by simple
genetic algorithms GAs and ACS algorithms using four different heuristics.

