
Towards an Abstract Characterization
of the Subargument Relation

Diego Martı́nez Nicolás Rotstein

Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET)
Artificial Intelligence Research and Development Laboratory (LIDIA)

Department of Computer Science and Engineering
Universidad Nacional del Sur (UNS) – Bahı́a Blanca, Argentina

email: {dcm,ndr}@cs.uns.edu.ar

Abstract

Dung’s classic framework is formed by abstract arguments and a binary relation denoting
attacks between arguments. Several semantic elaboration and extensions based on this framework
are present in the literature. The notion of subargument, however, was not widely studied as an
abstract concept although it is an important part of fully implemented argument systems. In this
paper we introduce the characterization of properties of a sensible subargument relation in abstract
argumentation frameworks.

1 Introduction
Since Dung’s seminal work [6], a broad community has grown, exploring the capabilities of its ab-
stract framework, and providing new semantics for accepting arguments. A classical argumentation
framework is formed by a pair (A,R) where A is a set of arguments and R is a set of attacks between
arguments in A. In this fashion, arguments are an inference black box that provides a reason for a
particular claim from certain premises. The consideration of arguments as abstract entities, with no
reference to their inner structure, proved to be a suitable basis to study high-level properties of general
argumentation. Since its introduction in [6], this framework was used in its original form by several
authors [8, 3, 12]. Nonetheless, a part of the abstract argumentation community went even further, by
extending Dung’s framework to encompass new capabilities [1, 2, 10, 14]. An important element in
defeasible argumentation, which has not been widely explored as an extension in the abstract frame-
work, is the consideration of subarguments, i. e., inner portions of an argument that are arguments by
themselves. subarguments constitute a vital part of their enclosing structure, called superarguments.
As subarguments are also arguments, they verify the same properties as any other argument in the
system.

Formalizing subarguments in an abstract level is not an easy task. The main difficulty is that
subarguments relate to the inner structure of arguments, and thus some degree of abstraction in the
treatment of arguments is lost. In this paper we address the problem of defining an abstract subargu-
ment relation towards an extended argumentation framework. The formalization is centered in a set
of properties and characterizations of a sensible subargumentation.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15778553?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


In the following section we discuss the general notion of subarguments. In Section 3 basic pos-
tulates about argumentation are introduced. In Section 4 the closure of sets of arguments regarding
the subargument relation is presented. In Section 5 several semantics notions are considered in the
context of subarguments. Finally the conclusions and related work are shown in Section 6

2 Subarguments
An abstract formalization of the notion of subargument is interesting because this concept is already
present in several argumentation theories [15, 17, 16, 14] and in fully specified argumentation systems
[7, 13]. The abstract approach leads to a general study of this special structural relation between
arguments. Perhaps the most general definition of subargument is as follows:

Definition 1 (Subargument) LetA be an argument. A subargument ofA is an inner structural piece
of A that can be considered an argument by itself.

The most important open issue in the previous definition is the meaning of the term “inner struc-
tural piece”. Clearly, the notion of piece is strongly related to how the arguments are constructed,
which in turn is related to the underlying logic. Thus, given the desired level of abstraction, the con-
cept of piece will not be formally specified in this work. It is sufficient to state that a subargument A
is somehow included in (or taking part of) other argument B, with two important considerations:

• the inclusion is morphologic (i. e., argument A is a structural piece of B)

• the inclusion is complete, in the sense that no part of A is not included in B (i. e., argument A
is an inner piece of B)

Throughout this paper we will use the following binary relation to denote subarguments, by the
symbol commonly used in [17, 10].

Definition 2 (Subargument Relation) A subargument relation is a binary relation v between argu-
ments, such that AvB if A is a subargument of B. It is also said that argument B is a superargument
of A.

In previous works by the authors, two forms of representing subarguments are used, as shown in
Figure 1, meaning that B is a subargument of A. The first one is used in complex argument graphs,
while the second (triangles resembling derivation trees) is used to emphasize the structural relation
between subarguments.

A N N• B
B

A

(a) (b)

Figure 1: Argument B is a subargument of A



Definition 3 (Direct subargument) Let A be an argument. An argument B is a direct subargument
of A if BvA and there is no other argument C such that BvCvA.

We will often refer to all the subarguments of a given argument. This is formalized in the following
definition.

Definition 4 (Set of subarguments) Let A be an argument. The set of all subarguments of A is
denoted subs(A). The set of all direct subarguments of A is denoted subsd(A).

As an argument is considered a subargument of itself, then clearlyA ∈ subs(A). Thus, it is never
the case that subs(A) = {} for any argumentA. In the same way, an argument is a superargument of
itself. The notion of direct subarguments of a given A refers to a somehow minimal set of arguments
needed to support A. Therefore, A 6∈ subsd(A).

Definition 5 (Atomic argument) An argument A is said to be atomic if subs(A) = {A}.

An atomic argument has no subarguments other than itself. This notion denotes an elemental
piece of reasoning and there are several examples in the literature. The difference, of course, lies
on the underlying logic and how the arguments are structurally composed. For instance, when the
construction of arguments is based on deductive logic as in [13, 17], an atomic argument may be a
simple fact. In that case, an argument is atomic if it is a particular element in the language. Thus,
atomicity of arguments can be identified by examining the structure of individual arguments and then
this property is independent of the overall set of arguments, i. e., the total framework. On the other
hand, in DeLP [7], an argument A may include several defeasible rules (i. e., is not a simple fact and
it includes several steps of reasoning). However, if there is no other argument using a subset of those
rules, then A is an atomic argument. Thus, in DeLP atomicity of arguments is determined by the
lack of arguments sharing rules, not by the solely structure of single arguments. Clearly then, atomic
arguments are not necessarily “small” arguments. The existence of atomic arguments is addressed by
the following proposition.

Proposition 1 Given a non-empty set of arguments A and a subargument relation defined over A. If
A is finite, then the set of atomic arguments is non-empty.

Proof: Let assume an empty set of atomic arguments from a non-empty finite set of arguments A. If
the set of atomics is empty, then every argument in A has at least one subargument, otherwise the
remaining ones will be atomic. Each of these subarguments is an argument in A. In order for none of
them to be atomic, they have to have at least one subargument, again. And each one will be also in
A. This analysis yields an infinite set A, which violates the hypothesis. The contradiction arose from
the sole extra assumption of an empty set of atomics ¤

The applicability of an infinite set of arguments can be put under discussion, in the same way log-
ical systems with an infinite set of rules could. However, the reader might think of many logic-based
argumentation systems that define arguments as a particular kind of minimal consistent derivation
upon an instance of the rules used, and since rules might contain functions, the range of instances is
potentially infinite. This line of reasoning can be misleading, because at any time the argumentation
system is going to handle a finite set of instances, and this is what our abstract representation is aiming
for. Following the usual fashion in abstract frameworks, we assume a finite set of arguments. Next,
we define the basic notion of subargumentation-capable argumentation framework, which extends
the usual abstract argumentation framework to be able to handle subarguments.



Definition 6 (Subargumentation-capable argumentation framework) A subargumentation-capable
argumentation framework (ScAF) is a triplet (A,R,v) where A is a set of arguments, R is a binary
relation defined over A denoting attacks between arguments, and v is the subargument relation be-
tween arguments of A.

The following proposition establishes the relation between the ScAF and Dung’s framework,
showing that the former is an extension of the latter.

Proposition 2 Let S = (A,R,v) be a ScAF. If every argument in A is atomic (i. e., v = ∅), then
S ′ = (A,R) is a Dung’s classical framework.

A high level of abstraction is desirable towards universality, and then no strong reference to the
structural composition of arguments can be made. It is possible, however, to characterize properties
and postulates that a good, sensible subargument relation should satisfy. This is the objective of this
article, and the corresponding analysis is made in the following sections.

3 Subargumentation postulates
As stated before, the notion of subargumentation can be modeled by its behaviour in the system and by
its structural composition. This composition, however, cannot be referenced in an abstract approach.
Therefore, in this section we provide a set of properties a sensible subargument relation should satisfy.
We begin with a set of basic postulates that takes into account that subargumentation is naturally a
binary relation between arguments.

Postulate 1 The subargument relation is a partial order, therefore meeting the properties of reflexiv-
ity, antisymmetry and transitivity.

This is a natural postulate. The subargument relation is reflexive, because any argument is con-
sidered a subargument of itself. It is antisymmetric, because if A is a subargument of B, argument B
can be a subargument of A only if A = B. It is transitive because if argument A is a subargument of
B which in turn is a subargument of C, then clearly also A is taking part of the structure of argument
C and thus A is a subargument of C.

Proposition 3 As the subargument relation is transitive, then subs(B) ⊆ subs(A) for any argument
BvA.

Proposition 3 makes explicit the fact that an argument may have several levels of subarguments.
Some traditional properties of arguments can be formalized in terms of subarguments, as stated in the
following postulate.

Postulate 2 Let A be an argument in A and let R be an attack relation between arguments such that
ARB if A attacks B. An argument is required to verify consistency: A is consistent if there are no
two subarguments A1vA and A2vA such that A1RA2.

Note that the consistency postulate trivially eliminates the possibility of having a self-defeating
argument (i. e., ARA), since an argument is a subargument of itself.

Other postulates and characterizations are related to a particular element in argumentation, the
preference criteria. This preference is used to compare arguments when convenient, usually because
a conflict is present.



Comparison criteria and subarguments
Comparison of arguments is an essential part of argumentation systems and some authors explicitly
add preference orders in their frameworks [1, 2, 11]. It is very likely that at some point, arguments
will be evaluated and compared to each other, mostly because a conflict needs to be solved. An
appropriate abstract definition for a comparison criterion is as follows:

Definition 7 [9] Given a set of argumentsA, an argument comparison criterionº is a binary relation
on A. If AºB but not BºA then A is preferred to B, denoted A Â B. If AºB and BºA then A
and B are arguments with equal relative preference, or indistinguishable strength, denoted A ≡ B. If
neither AºB or BºA then A and B are incomparable arguments, denoted A ./ B.

Note that we are speaking of preference without reference to conflict. When comparing argu-
ments, there are some interesting properties that can be considered under the presence of a subargu-
ment relation. For instance, an argument should not be stronger than any of its subarguments, since
every subargument represents another level of defeasibility within the argument at issue. In other
words, the more subarguments an argument has, the more likely is to be attacked. This was initially
proposed in [17].

Definition 8 (Monotonic preference) Let º be a preference order defined over A. Then º is mono-
tonically non-increasing, if ∀A,B ∈ A such that BºA1, A1vA then BºA.

This is the only preference property we consider relevant for the topics addressed in this work.
We do not, however, impose restrictions on specific properties. It could be the case in which the
preference order should be transitive. That is, there is no sequence AºBº . . .A. However, this is
not imposed as a requirement in this paper, since there are applications in which the preference order
is not supposed to meet the property of transitivity. For instance, in decision making, a situation like
the following is considered possible: BºA and CºB, but CºA on a completely different basis than
the principles for comparing these two arguments with B. Furthermore, when taking a set of equally
strong arguments, the transitivity of preference may also broken.

Definition 8 has an important implication. When a monotonically non-increasing preference order
is used, then attackers are inherited through superarguments, as stated in the following proposition.

Proposition 4 Ifº is monotonically non-increasing and attacker arguments are always stronger than
attacked arguments, then every attacker of an argument A1 is also an attacker of any argument A,
such that A1vA.

Proof: Let B be an argument, attacker of A1. This means that B is considered stronger than A1.
As the preference order is monotonically non-increasing, then B is also considered stronger than A.
Because of this, and the fact that B and A cannot be accepted simultanously (the former is attacking
a part of the latter), then B implicitly attacks A ¤

Proposition 4 establishes a sufficient condition for an interesting property regarding an argument
and its subarguments. If the preference order is monotonically non-increasing, then every attacker
of an argument A is also an attacker of any superargument of A. We will refer to this condition as
conflict inheritance.

In the following section we present an elemental kind of cohesion of sets containing arguments and
subarguments. We also present some operations to make sound modifications to sets of arguments.



4 Closed sets of arguments
For a set of arguments following a sensible subargument relation, a notion of consequence has to
be associated, as an analogy of the logical consequence. However, there is a significant difference
that we address next. The subargument relation allows us to “derive” superarguments when every
subargument is present, but it also lets us pose a strong requirement: whenever an argument belongs
to a set, all of its subarguments should be also in it. This is not something that could be expected
on any logical system, but it does make sense in an argumentation system including subarguments,
since they are a necessary, structural piece of the argument they belong to. This is formalized by the
following definition.

Definition 9 (Set closed under subargumentation) A set of arguments S is said to be closed under
subargumentation, if for every A ∈ S, then subs(A) ⊆ S.

Any set of arguments presented as a semantic extension should be closed under subargumentation,
since subarguments are vital parts of their superarguments. If an argument A belongs to a certain set,
i. e., it is collectively accepted under some particular criteria, then all of its subarguments should
also belong to that set, because an argument is accepted as a whole and all its parts are accepted.
Therefore, there are arguments that could be incorporated into a set of arguments without violating
closure. These arguments are those that have every subargument within that set. We say that an
argument verifying this property can be derived from the set, as formalized next.

Definition 10 (Argument Derivation) Let S be a set of arguments and A, an argument. Set S is
able to derive A, denoted S

4→ A, if and only if subsd(A) ⊆ S.

Definition 11 (Minimal Argument Derivation) An argument derivation S
4→ A is said to be mini-

mal if there is no S ′ ⊂ S such that S ′
4→ A.

Minimal derivations allow us to isolate the set of arguments needed to derive an argument; thus,
no superfluous arguments are considered. It is interesting to note that the inverse for a minimal proper
derivation is the subsd function.

Proposition 5 If A is an atomic argument then {} 4→ A.

That is, by definition an atomic argument lacks subarguments and thus the minimal derivation is
minimally achieved from the empty set.

Proposition 6 If a set of arguments S is closed under subargumentation, then for every A ∈ S it
holds S

4→ A.

Proof: As S is closed under subargumentation, then all the subarguments of any A ∈ S are in S. In
particular, every direct subargument of A is in S and thus S

4→ A ¤

Proposition 7 subs(A)
4→ A.



Proof: Clearly, for any argument A, it holds that subsd(A) ⊆ subs(A), and thus subs(A)
4→ A ¤

Closure under subargumentation means that all the subarguments of every argument in a set are
also included in that set. We are also interested in another form of closure, based on argument deriva-
tion. We call this property completeness.

Definition 12 (Complete set of arguments) A set of arguments S is said to be complete, if for every
A such that S

4→ A then A ∈ S.

The union of sets closed under subargumentation is also a set closed under subargumentation. The
union of complete sets may not be a complete set.

It is possible to define derivation as an function over sets of arguments, based on Definition 10.

Definition 13 (Set Derivation) Let S be a set of arguments. The set derivation operator
4⇒ is de-

fined as S
4⇒ S1 if and only if S1 = {A : S

4→ A}.

Proposition 8 The union of sets closed under subargumentation is also a set closed under subargu-
mentation.

Definition 14 (Sensible Argumentation Framework) A subargumentation-capable argumentation
framework AF = (A,R,v) is said to be sensible iff AF is closed under subargumentation and
verifies conflict inheritance.

Change over the set of arguments
Argument semantics is about characterizing sets of arguments according to different rational posi-
tions. We have previously defined properties that a set of arguments should satisfy, towards a sensible
subargument notion. In order to maintain closure of the subargument relation, we should perform
safe operations over any set of arguments. For instance, when subtracting an argument, the set should
be kept closed, and so it should be when adding an argument. To understand the reason behind these
change operations, recall that, for any argument in a sensible subargumentation setting, we require all
of its subarguments to hold along with it.

Definition 15 (Argument Safe Subtraction) Let S be a set of arguments and A an argument in S.
The operator 4 is defined as S 4 A = S − Sp(A) where Sp(A) is the set of all superarguments of
A.

Definition 15 states that when removing (for semantic reasons) an argument A from a set S,
then also every superargument of A should be removed. This is because an argument is accepted
as a whole, and its acceptance naturally implies the acceptance of every subargument. Thus, if an
argument A is not taken into account under a semantic notion, then every argument that includes A
should not be considered under the same semantic notion.

Remark 1 If A has no superarguments, then S 4 A = S \ {A}.

The argument subtraction as defined in Definition 15 preserves closure under subargumentation.
This is formalized in the following proposition.



Proposition 9 If S is closed under subargumentation, then S 4 A is closed under subargumentation.

Proof: Suppose S 4 A is not closed under subargumentation. This means that, for an argument B ∈
S 4 A, subs(B) * S 4 A. Argument B cannot be a superargument of A as it belongs to S 4 A. If
B is a subargument of A then it is not affected by the subtraction of A and thus subs(B) ⊆ S 4 A,
which is a contradiction. Thus, B cannot be related to A. But then subs(B) ⊆ S 4 A which is a
contradiction. Therefore, S 4 A is closed under subargumentation ¤

This proposition states an important result: when changing a closed under subargumentation set
of arguments through the argument safe subtraction, it maintains the closure of the set. Now that the
argument safe subtraction is defined, we can use it to define the framework safe subtraction; that is,
now we can remove a subset of the arguments in the framework, and propagate that change over the
attack relation.

Definition 16 (Framework Safe Subtraction) Let AF = (A,R,v) be a framework and A 4 A, an
argument safe subtraction of A over A. The framework safe subtraction of AF wrt. A is AF −A =
(A 4 A,R−), where R− = {(B, C) ∈ R | B 6= A, C 6= A}.

Analogously, when we add an argument to a set, we should include all of its subarguments, in
order to preserve the closure. Remember that an argument is accepted as a whole, and then also its
subarguments are all accepted. This motivates the following definition.

Definition 17 (Argument Safe Addition) Let S be a set of arguments and A, an argument. The
operator 4

+ for an argument safe addition is defined as S 4
+ A = S ∪ subs(A).

Proposition 10 S 4
+ A = S ∪ {A} iff:

• A ∈ S and S is closed under subargumentation, or

• S
4→ A and A is atomic.

Proposition 11 If S is closed under subargumentation, then S 4
+ A is closed under subargumenta-

tion.

Again, this important result ensures that a closed set of arguments will remain that way after
performing a safe addition.

As the subtraction operator removes subarguments and the addition operator adds superarguments
in a set, the order in which both operations are applied is relevant.

Proposition 12 (S 4 A) 4+ A = S if and only if A is an atomic argument without superarguments.

The definition for the argument safe addition allows us to build a framework safe addition, analo-
gously to the framework safe subtraction. Framework addition, however, implies the inclusion of new
arguments and the definition of new attack relations.

Definition 18 (Framework Safe Addition) Let AF = (A,R,v) be a framework and A 4
+ A, an

argument safe addition of A over A. The framework safe addition of AF wrt. A is AF + A =

(A 4
+ A,R).

Note that the framework safe addition only adds a new argument looking for the closure of the
resulting set. It would be interesting to perform similar operations, i. e., additions and subtractions, of
attacks between arguments. Moreover, this would motivate change operations at a framework level,
like the merge introduced in [4]. These mechanisms, however, fall beyond the scope of this article.



5 Argumentation semantics and subarguments
Abstract argumentation is a pathway to study argumentation semantics, i. e., the understanding of
the consequences of a set of attacking arguments. These consequences (or outcome) of an attack
scenario may obbey different rational principles, according to specific purposes. The most elemental
collectively acceptable sets of arguments, called extensions, were proposed in [5], but other authors
proposed new semantic elaborations.

Regarding acceptance of arguments, there is an important premise that any subargumentation-
capable argumentation system must satisfy. It is related to the fact that arguments are accepted as a
whole, including any information exposed by them.

Postulate 3 Let S be a semantic notion, and let ES be an argument extension under S. For any
argument A ∈ ES , then subs(A) ⊆ ES .

Any extension, under any semantic notion, must include all the subarguments of its members.
This is because when accepting an argument (i. e., by including it in semantic extensions), every
piece of information of that argument should also be accepted under the same criteria. Thinking it
by opposition, the non-acceptance of an argument will affect every superargument of it, since a piece
of their own reasoning structure is rejected. This is particulary evident when the preference order
is monotonically non-increasing, as an argument cannot be stronger than any of their subarguments.
Because of this, the argument cannot survive to the attacks to its subarguments. The previous postulate
has an interesting consequence.

Proposition 13 Let S be a semantic notion, let ES be an argument extension under S and let A be
an argument. If A 6∈ ES , then any superargument of A does not belong to ES .

This means that any evaluation process of argument acceptance may discard superarguments of
rejected arguments, despite any further conflict that may exists on these subsequent superarguments,
as they will be rejected anyway. Proposition 13 states an important result towards the definition of
algorithms for generalized calculation of semantics, while implying the following observation.

Observation 1 Let S be a semantic notion, and let ES be an argument extension under S . Let S be
a set of arguments, and A an argument such that S

4→ A. If S ⊆ ES , then not necessarily A ∈ ES .

5.1 Computing subargumentation-closed extensions
In the literature, semantics are defined on top of conflict-free sets, defense sets (in which every ar-
gument that attacks an argument in the set is attacked by the set), and admissible sets of arguments
(conflict-free defense sets). For instance, a preferred extension is a maximally admissible set of argu-
ments. All of these notions remain the same in a subargumentation-capable argumentation framework
when speaking of atomic arguments. However, if we intend to include non-atomic arguments in any
of these sets of arguments while keeping the set closed under subargumentation, we need to calculate
them by iteratively deriving new arguments, being careful not to violate any of the conditions we are
seeking. Next, we provide a way to build an admissible set of arguments closed under subargumenta-
tion, in order to define the subargumentation version of the preferred extension.

Definition 19 (Conflict-free set of arguments closed under subargumentation) The set C of conflict-
free arguments closed under subargumentation is the least fixed point of the operator cf :



• cf 0 = ∅;

• cfk = cfk−1 ∪ {A | cfk−1 4→ A,@B ∈ cfk such that BRA or ARB}

There are two points worthwhile to mention: first, note that atomic arguments are derived from
the empty set; second, the conflict-free set is not unique: according to the order in which arguments
are added to the set, different conflict-free sets can be obtained.

Example 1 Let S1 = ({A,B1,B, C1, C,D, E}, {(A,D), (D,A), (A,B1), (B1, C), (D, C)}, {(B1,B),
(C1, C)}) be a ScAF, as depicted in Figure 2. Then, three possible maximal outcomes of the conflict-
free fixed-point operator are:

C1 C2 C3
cf 0 = ∅ cf 0 = ∅ cf 0 = ∅
cf 1 = {E ,D,B1} cf 1 = {E ,A, C1} cf 1 = {D, E , C1}
cf 2 = {E ,D,B1,B} cf 2 = {E ,A, C1, C} cf 2 = cf 1

cf 3 = cf 2 cf 3 = cf 2

The first iteration always includes conflict-free atomic arguments, while beginning from the second
iteration derived arguments are added. In particular, note that in set C3 argument C is not derived
because D is attacking it.

N B

A N //

¸¸

N

•

// N

•

C1

B1

N E
D N

UU

++ N C
Figure 2: Example 1

In the same fashion as the conflict-free closed set was defined, an admissible set of arguments
(also closed under subargumentation) can be calculated.

Definition 20 (Admissible set of arguments closed under subargumentation) The admissible set
A of arguments closed under subargumentation is the least fixed point of the operator adm:

• adm0 = ∅;

• admk = admk−1∪{A | admk−1 4→ A,@B ∈ admk such that BRA orARB and if ∃D 6∈ admk

such that DRA, then ∃C ∈ admk such that CRD}

Example 2 From Example 1 we have that C1 and C2 are maximally admissible sets of arguments in
S1, whereas C3 is not, since C1 is attacked by B1, and there is no argument in the set that attacks B1;
the inclusion of A is out of the question, due to D belonging to C3.

The subargumentation-closed admissible set is also non-univocally determined and several can be
obtained. Finally, it becomes trivial to define the preferred extension closed under subargumentation.



Definition 21 (Preferred extension closed under subargumentation) Given a framework AF =
(A,R,v), a set of arguments E ⊆ A is a preferred extension of AF iff E is a maximally (wrt.
set inclusion) admissible set of arguments closed under subargumentation from AF .

Since there are possibly multiple closed admissible sets of arguments, the property held in usual
argumentation frameworks of having at least one preferred extension is maintained. In order to be
compatible with the abstract argumentation community, a definition for the grounded and stable se-
mantics should be given, but it is left as future work due to space limitations –although when looking
to the definition for the preferred semantics they seem to be a rather straightforward analogy.

6 Conclusions and future work
In this article, we have illustrated a preliminary formalization for a subargumentation-capable argu-
mentation framework. The first definitions cope with the subargument relation per se, its meaning
and usage. Afterwards, a definition for closure is given, in concordance with the expected behavior
of a system defined to use subargumentation. The closure under subargumentation of a given set
of arguments states a requirement expected to be satisfied by any set of arguments compliant with
our definitions for a sensible subargument relation. Then, the matter of argumentation semantics is
addressed, analyzing the role of subarguments when computing the set of acceptable arguments, in-
dependently of the chosen semantics. Finally, a fixed-point operator is defined to obtain conflict-free
and admissible sets of arguments, both of them closed under subargumentation. Thus, it is trivial to
define the preferred semantics, which, along with the grounded and the stable semantics, is one of the
better known semantics in the literature of computational abstract argumentation.

References
[1] Leila Amgoud and Laurent Perrussel. Arguments and Contextual Preferences. In Computational

Dialectics-Ecai workshop (CD2000) , Berlin, August 2000.

[2] T.J.M. Bench-Capon. Value-based argumentation frameworks. In Proc. of Nonmonotonic Rea-
soning, pages 444–453, 2002.

[3] Martin Caminada. Semi-stable semantics. In Proceedings of I International Conference on
Computational Models of Arguments, COMMA 2006, pages 121–130, 2006.

[4] Sylvie Coste-Marquis, Caroline Devred, Sébastien Konieczny, Marie-Christine Lagasquie-
Schiex, and Pierre Marquis. On the merging of dung’s argumentation systems. Artif. Intell.,
171(10-15):730–753, 2007.

[5] Phan M. Dung. On the Acceptability of Arguments and its Fundamental Role in Nomonotonic
Reasoning and Logic Programming. In Proc. of the 13th. IJCAI 93., pages 852–857, 1993.

[6] Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence, 77(2):321–358, 1995.

[7] Alejandro J. Garcı́a and Guillermo R. Simari. Defeasible logic programming: An argumentative
approach. Theory and Practice of Logic Programming, 4(1-2):95–138, 2004.



[8] Hadassa Jakobovits. Robust semantics for argumentation frameworks. Journal of Logic and
Computation, 9(2):215–261, 1999.

[9] D.C. Martı́nez, A.J. Garcı́a, and G.R. Simari. On acceptability in abstract argumentation frame-
works with an extended defeat relation. In Proc. of I Intl. Conf. on Computational Models of
Arguments, COMMA 2006, pages 273–278, 2006.

[10] D.C. Martı́nez, A.J. Garcı́a, and G.R. Simari. Modelling well-structured argumentation lines. In
Proc. of XX IJCAI-2007., pages 465–470, 2007.

[11] D.C. Martı́nez, A.J. Garcı́a, and G.R. Simari. On defense strength of blocking defeaters in
admissible sets. In To appear in Proceedings of Second International Conference on Knowledge
Science, Engineering and Management KSEM 07. Melbourne, Australia., 2007.

[12] M. Giacomin P. Baroni. Characterizing defeat graphs where argumentation semantics agree. In
ArgNMR, Workshop on Argumentation and Non-Monotonic Reasoning, pages 33–48, 2007.

[13] Henry Prakken and Giovanni Sartor. A system for defeasible argumentation, with defeasible
priorities. In Dov M. Gabbay and Hans Jürgen Ohlbach, editors, Proc. of the International
Conference on Formal and Applied Practical Reasoning (FAPR-96), volume 1085 of LNAI,
pages 510–524, Berlin, June 3–7 1996. Springer.

[14] Nicolás D. Rotstein, Martı́n Moguillansky, Marcelo A. Falappa, Alejandro Javier Garcı́a, and
Guillermo Ricardo Simari. Argument theory change: Revision upon warrant. In Philippe
Besnard, Sylvie Doutre, and Anthony Hunter, editors, COMMA, volume 172 of Frontiers in
Artificial Intelligence and Applications, pages 336–347. IOS Press, 2008.

[15] Guillermo R. Simari. A Mathematical Treatment of Defeasible Reasoning and its Implementa-
tion. PhD thesis, Washington University, Department of Computer Science (Saint Louis, Mis-
souri, EE.UU.), December 1989.

[16] Bart Verheij. Rules, Reasons, Arguments: formal studies of argumentation and defeat. PhD
thesis, Maastricht University, Holland, December 1996.

[17] Gerard A. W. Vreeswijk. Abstract argumentation systems. Artificial Intelligence, 90(1–2):225–
279, 1997.


