For malizing the Softwar e Development Process

ClaudiaPons RoxanaGiandini Gabridl Baum

LIFIA — Laboratorio de Investigaciény Formacion en Informatica Avanzada
Universidad Nacional de La Plata
calle50esq.115 ler Piso, CP 1900 Buenos Aires, Argentina

email: [cpons,giandini,gbaum] @info.unlp.edu.ar

1. Motivation and context of the project

Objed-oriented software development process such as the Unified Process[Jacbson 99, Catalysis [D”Souza
98] and Fusion [Coleman 94] among others, is a set of adivities needed to transform user’s requirements into a
software system. A software development processtypically consists of a set of software development artifads
together with a graph of tasks and adivities. Software atifads are the products resulting from software
development, for example, a use cae model, a dassmodel or source @de. Tasks are small behavioral units that
usually results in a software atifad. Examples of tasks are construction of a use cae model, construction of a
classmodel and writing code. Activities (or workflows) are units that are larger than a task. Activities generally
include several tasks and software atifads. Examples of adivities are requirements, analysis, design and
implementation.

Modern software development processes are iterative and incremental, they repea over a series of
iterations making up the life gscle of a system. Ead iteration takes placeover time and it consists of one pass
through the requirements, analysis, design, implementation and test adivities, building a number of different
artifads. All these atifads are not independent. They are related to ead other, they are semanticdly overlapping
and together represent the system as a whole. Elements in one atifad have tracedependencies to ather artifacts.
For instance, a use cae (in the use-case model) can be tracal to a wllaboration (in the design model)
representing its redization.

On the other hand, due to the incremental nature of the process ead iteration results in an increment of
artifads built in previous iterations. An increment is not necessarily additive. Generally in the ealy phases of the
life cycle, a superficial artifadt is replacal with a more detailled o sophisticaed one, but in later phases
increments are typicdly additive, i.e. a model is enriched with new fedures, while previous feaures are
preserved.

Figure 1 lists the dassicd adivities — requirements, analysis, design, implementation and test — in the
verticd axis and the iteration in the horizontal axis, showingthe following kinds of relations:

-horizontal relations between artifads belonging to the same adivity in different iterations (e.g. a use Gase
is extended by another use cae)

-vertical relations between artifads belonging to the same iteration in different adivities (e.g. an analysis
model isredized by adesign model).

Traditional spedfications of development processtypicdly consist of quite informal descriptions of a set
of software development artifads together with a graph of tasks and adivities. The ladk of accuracy in the
development processdefinition can cause problems, for example:

- Inconsistency among the different artifads: if the relation existing among the different sub-models is not
acarrately spedfied, it is not possble to analyze whether its integration is consistent or not.

- Evolution conflicts: when a atifad is modified, unexpeded behavior may occur in other artifacts that
depend onit.

- Confusion regarding the order in which tasks should be caried out by developers.

- It isnot posshble to reason about the mrredness of the development process

https://core.ac.uk/display/15778511?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Use Casé, ig ------ . > %g

Model % %
specified by

Analysis A 4 %
Model k % !
Design ‘
Model reallzed by %g/g

Deployment distributed by q)
Model
Implementation ifmplemented by 4 2 ‘:\‘ 2 .
Model . k
oo B A > Test Model

Test - verified by "
Model i Noyef

activities

fist iteration *. second iteration %

Figure 1. dimensions in the software development process

2. Objective of the project

The @m of this projed is to provide foundations for case tools asssting software engineas during the
development process

Existing case todls offering suppart to software process fadlit ate the construction and manipulation of
models, but they are not generally applicable throughout the entire software development process The principal
ladk of todlsresidesin the fad that they do not provide:

- Control on relationships between models belonging to dfferent workflows (e.g. relationships between an
analysis use aase model and its corresponding design interaction model).

- Automated evolution of models (i.e. propagation of changes when a model evolve, to its dependent
models).

- Chedks of consistency between models belonging to the same workflow but to different iterations in the
process(e.g. relationships between different versions of the same use case model).

In order to build case todls for software development process a general underlying formal foundation is
needed. The main criticism against the gplicaion of formalisms to the software processis that software process
has a high degree of indeterminism due to the human participation, and therefore it would not be amenable to
mathematicd formalization. If this view were to prevail, the use of formalisms to study software processwould
be auselessexercise. But there ae evidences derived form baoth empiricd and theoreticd studies supparting the
claim that formalisms can play an important role in the study of software process in the foll owing ways:

-Formalisms can be useful for reasoning about and justifying good padicesin software process providing
aformal rational for them [Bunse 2001 [Lehman 200Q.

-Frequently separate lines of software development are caried out in parallel and have to be merged.
Formali sms can provide suppart for merging parallel evolution of the same software [Mens 2001]].

-Formalism can provide ameans to analyze and reason about refadoring tasks [Opdyke 97]. Refadoring
improves the structure of an objed-oriented model in a behavioral preserving way [Mens 2007 [Whittle 200Q.

-Formalism can enable the verificaion of consistency between models creaed throughout the software
process[Bunse 2007 [Pons 2000b] [Giandini 200q [Whittle 2000].
3. Project description: Our approach

We propose to investigate about the gplication the well-known mathematica concept of contrad to the
description of software development processes in order to introduce predsion of spedficaion, avoiding
ambiguiti es and inconsistencies, and enabling devel opers to reason about the arrednessof their adivities.

A computation can generally be seen as involving a number of agents (objeds) carying out adions
acording to a document (spedfication, program) that has been laid aut in advance This document represents a
contrad between the aents involved. The notion of contrad regulating the behavior of a software system has
been already introduced by several authors [Helm 90] [Meyer 92] [Meyer 97] Badk 98 [Andrade 99]. A contrad
impases mutual obligations and benefits. It proteds both sides (the dient and the contracor):

While the notion of formal contrad regulating the behavior of software agents is accepted, the concept of
contrad regulating the adivities of software developers is quite vague. In general there is not documented
contrad establishing obligations and benefits of members of the development team. As we remarked in sedion 1,
in the best of the cases the development processis edfied by either graph of tasks or objed-oriented diagrams
in a semi-formal stylefHruby 99], while in most of the caes adivities are caried out on demand, with little
previous planning.

However, a disciplined software development methoddogy should encourage the existence of formal
contrads between developers, so that contrads can be used to reason about corredness of the development
process and comparing the capabiliti es of various groupings of agents (coalitions) in order to acomplish a
particular contrad.

Assume you are planning a task to be performed by a development team in order to adapt the model of a
system to new requirements (e.g. during the n+1 iteration of the development procesgy. This task can be
expressed as a combination (in sequence or in parallel) of sub-tasks, each of them to be performed by a member
of the development team. It is necessary to make sure that sub-tasks will be performed as required. This is only
posdbleif the ayreement is pelled out predsely in a mntrad document.

4. Comparison to related work

The spedficaion of the standard graphicd modeling notation UML [UML 200q and the Unified Process
[Jambson 9] is smi-formal, i.e. certain parts of it are spedfied with well-defined languages whil e other parts
are described informally in netural language. There ae an important number of theoreticd works giving a
predse description of core @mncepts of the UML and providing rules for analyzing their properties (see for
instance [Badk 99|, [Breu97], [Evans 99], [Kim 99|, [Overgaad 99, [Overgaad 2000], [Pons 2000], [Pons
2000], [Reggio 200Q, while less effort has been dedicaed to the formali zation of software processs that use the
UML as modeling language. In this diredion, there ae works expressng model transformations and analyzing
relationships between steps in the development process such as relationships from analysis models to design or
implementation models (e.g. [Mens2001], [Hedkel 2001],[Giandini 2000], [Pons 2000b],[Bunse 2001], [Sendall
2000], [Whittle 2000]). Our formalism of process contrads is more dosely related to the mechanism of reuse
contrads [Steyaat 96] [Lucas 97]. A reuse mntrad describes a set of interading participants. Reuse mntrads
can only be alapted by means of reuse operators that record bah the protocol between developers and users of a
reusable cmponent and the relationship between different versions of one mmponent that has evolved.
Similarly, in [Mens 2004 the authors extend the ideaof reuse cntradsin order to cope with reuse and evolution
of UML models.

The originality of process contrads resides in the fact that software developers are incorporated into the
formalism as agents (or codliti on of agents) who make dedsions and have responsibilities. Given a spedfic goal
that a aoalition of agents is requested to achieve, we can use traditional corrednessreasoning to show that the
goa can in fad be adieved by the oadlition, regardiess of how the remaining agents ad. The wedakest
precondition formalism allows us to analyze asingle contrad from the point of view of different coaliti ons and
compare the results. For example, it is possble to study whether a given coalition A would gain anything by
permitting an outside agent b to join A.

5. Project Staff

The projed is caried out under the diredion of Prof.Claudia Pons and Prof.Gabriel Baum. The team of
reseachers is integrated by Roxana Giandini, Wanda Russo, Vanesa Mola, Maria Agustina Cibran, Paula
Mercado, Jose Luis Garbi and Gabriela Perez

References

Andrade,L and Fiadeiro,J.L, Interconneding objeds via Contrads. Procealings of the UML"99 conference, Lecture Notes in
Computer Science 1723, Springer Verlag. (1999).

Badk, R and von Wright, J., Refinement Calculus: A Systematic Introduction, Graduate texts in Computer Science, Springer
Verlag, 1998.

Badk, R. Petre L. and Porres Paltor I., Analysing UML Use Cases as Contrad. .Procs of the UML"99 conference, Lecture
Notes in Computer Science 1723, Springer. (1999).

Breu,R., Hinkel,U., Hofmann,C., Klein,C., Paet,B., Rumpe,B. and Thurner,V., Towards a formalization o the Unified
modeling language. ECOOP’ 97 procs., Ledure Notesin Computer Sciencevol.1241, Springer, (1997).

Bunse & Atkinson, Implementation o component-based system by systematic refinement and trandation steps, WTUML.:
Workshopon Transformationsin UML ETAPS satellite event, Italy, April 7th, 2001.

Coleman, D..Arnadls, P Boddff,S, Dollin, C, Gilchrist,H, Hayes,F, Jeremaes,P. Objed Oriented Development: The Fusion
Method. Prentice-Hall 1994.

D’SouzaD. and Will s, A. Objeds, Comporents and Frameworks with UML: the Catalysis approach, Addison Wesley, 1998.

EvansA., FranceR., Lano,K. and Rumpe,B., Towards a @mre metamodelli ng semantics of UML, Behavioral spedfications of
businesses and systems, H,Kilov editor, , Kluwer Academic Publishers, (1999).

Giandini,R Pons, C, and Baum,G.. An algebra for Use Cases in the Unified Modeling Language. OOPSLA 00 Workshop on
Behavioral Semantics, Minnegpalis, USA, October 2000.

Hedkel, R. and Engels,G. Graph transformation as meta language for dynamic modeling and model evolution. 5" European
Conf. on Software Maintenance and Reengineeing, Sesson onFormal Foundation of Software Evolution., March 2001.

Helm,R. Holland,I and Gangopadhyay,D. Contrads. spedfying behaviora compositions in objed-oriented systems, Proc.
OOPSLA'90. ACM Press Oct 1990.

Hruby, Pavel, Framework for describing UML compatible development processes. in Procealings of <<UML>>"99 - The
Unified Modeling Language. Beyondthe Standard. Ledure Notes in Computer Science 1723, Springer Verlag. (1999).

Jambson, |..Booch, G Rumbaugh, J., The Unified Software Development Process Addison Wesley. (1999)

Kim, S. and Carrington,D., Formalizing the UML Class Diagrams using Objed-Z, In Proc. <<UML>>"99 - The Secnd
International Conference on the Unified Modeling Language, Ledure Notesin Computer Sciencie 1723, (1999).

LehmanM and Ramil J, Towards a theory of software evolution —and its pradicd impad, invited talk ISPSE 2000, Int.
Symp. on the Principles of Software Evolution, Japan, Nov.2000.

Lucas, Carine “Documenting Reuse and evolution with reuse mntrads’, PhD Dissertation, Programming Techndogy Lab,
Vrije Universiteit Brussl, September 1997.

Mens,T., Lucas,C. and D’Hondt, T.. Automating support for software evolution in UML. Automated Software Engineeaing
Journa 7:1, Kluwer Academic Publishers, February 200Q

Mens, T. Transformational software evolution by assertions. 5" European Conference on Software Maintenance and
Reengineaing, Speda Sesson on Forma Foundation of Software Evolution. Portugal, March 2001.

Meyer, B. Advancesin objed oriented software engineeing. Chapter 1 “Design by contrad”. PrenticeHall, 1992.
Meyer,B. Objed-Oriented Software Construction, Second Edition, PrenticeHall, 1997.
Opdyke,W., Refadoring objed-oriented frameworks, PhD.Thesis, University of Illi nois at Urbana Champain

Overgaad, G., A forma approach to collaborations in the UML, In Proc. <<UML>>99 - The Sewnd International
Conference on the Unified Modeling Language, Ledure Notesin Computer Science 1723, Springer. (1999).

Overgaad,G.. Using the Boom Framework for formal spedficaion o the UML. in Proc. ECOOP Workshop on Defining
Predse Semantics for UML, France June 2000.

Pons Claudia and Baum Gabriel. Formal founchtions of objed-oriented modeling rnotations 3 International Conference on
Formal Engineaing Methods, ICFEM 2000, Y ork, UK.IEEE Computer Society Press September 2000.

Pons, C., Giandini, R. and Baum, G. Spedfying Relationships between models through the software development process
Tenth Int.Wrkshp onSoftware Spec and Design (IWS D), Cdlifornia, IEEE Computer Society Press November 2000.

Pons,C, Cibran, M., Mola, V., Russo,W. Building a bridge between the syntax and semantics of UML Collaborations. In
ECOOP 2000 Workshop onDefining Predse Semantics for UML. Cannes/Sophia-Antipdlis, France, June 2000.

Reggio,G., Astesiano,E., Choppy, C. and HussmannH., Analysing UML adive dasss and asciated state macdhines. In
Proc. FASE 2000 —Foundamental Approaches to Software Engineeing, LNCS 1783, Spring Verlag, 2000.

Sendall,S. and Strohmeier,A From Use caes to system operation spedficaions.. Proc. of The Third International Conference
onthe UML. York, UK. LNCS. October 2000

Steyaat, P..Lucas, CMens K and D’Hondt, T. Reuse Contrads. Managing the evolution of reusable asts. In proceealings of
OOPSLA’96, New York, Oct 199%.

UML, The Unified Modeing Language Spedficaion — Version 1.3, UML Spedficaion, revised by the OMG,
http://www.omg.org, March, 2000.

Whittle, J.. Aradjo, JToval, A Fernandez Aleman J.. Rigorously automating transformations of UML behavioral models,
UML"00Workshop a1 Semantics of Behavioral Models. York, UK, October 2000.

