
Improving TCP’s Resistance to Blind Attacks through Ephemeral 
Port Randomization 

Fernando Gont 
Facultad Regional Haedo, Universidad Tecnológica Nacional 

Haedo, Provincia de Buenos Aires, Argentina 
fgont@frh.utn.edu.ar

Abstract

Recently, awareness has been raised about a number of “blind” attacks that can be performed 
against the Transmission Control Protocol (TCP) and similar protocols.  The consequences of these 
attacks range from throughput-reduction to broken connections or data corruption.  These attacks 
rely on the attacker's ability to guess or know the four-tuple (Source Address, Destination Address, 
Source port, Destination Port) that identifies the transport protocol instance to be attacked. While 
there have been a number of proposals to mitigate these Vulnerabilities, the most obvious 
mitigation -- TCP port randomization -- has been the one least engineered. In this paper we analyze 
a number of approaches for the random selection of client port numbers, such that the possibility of 
an attacker guessing the exact value is reduced. We discuss the potential interoperability problems 
that may arise from some port randomization algorithms that have been implemented in a number 
of popular operating systems, and propose a novel port randomization algorithm that provides the 
obfuscation while avoiding the interoperability problems that may be caused by other approaches. 
While port randomization is not a replacement for cryptographic methods, the described port 
number randomization algorithms provide improved security/obfuscation with very little effort and 
without any key management overhead. 

Keywords: Transport protocols, port randomization, obfuscation, blind attacks 

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

 
II Workshop de Arquitecturas, Redes y Sistemas Operativos
_________________________________________________________________________

 
 

136

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15778483?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 INTRODUCTION 

Recently, awareness has been raised about a number of "blind" attacks that can be performed 
against the Transmission Control Protocol (TCP) [1] and similar protocols. The consequences of 
these attacks range from throughput-reduction to broken connections or data corruption [15] [12] 
[10]. All these attacks rely on the attacker's ability to guess or know the four-tuple (Source Address, 
Source port, Destination Address, Destination Port) that identifies the transport protocol instance to 
be attacked. 

Generally, the four-tuple required to perform these attacks is not known.  However, as discussed in 
[10] and [12], there are a number of scenarios (notably that of TCP connections established between 
two BGP routers [13]), in which an attacker may be able to know or guess the four-tuple that 
identifies a TCP connection.  In such a case, if we assume the attacker knows the two systems 
involved in the TCP connection to be attacked, both the client-side and the server-side IP addresses 
could be known or be within a reasonable number of possibilities.  Furthermore, as most Internet 
services use the so-called “well-known” ports, only the client port number might need to be 
guessed. Unfortunately, most systems choose the port numbers they use for outgoing connections 
(the so-called “ephemeral ports”) from a subset of the whole port number space, and implement 
ephemeral port selection algorithms that make it trivial for an attacker to guess the port numbers 
used by clients for outgoing connections. 

In this paper we describe a method for random selection of ephemeral ports, thereby reducing the 
possibility of an off-path attacker guessing the exact value.  This is not a replacement for 
cryptographic methods such as IPsec [7] or the TCP MD5 signature option [6].  However, the 
proposed algorithm provides improved obfuscation with very little effort and without any key 
management overhead. 

The mechanism described is a local modification that may be incrementally deployed, and does not 
violate the specifications of any of the transport protocols that may benefit from it [1] [2] [8] [9]. 

Since the mechanism is an obfuscation technique, focus has been on a reasonable compromise 
between level of obfuscation and ease of implementation.  Thus the algorithm must be 
computationally efficient, and not require substantial data structures. 

2 EPHEMERAL PORTS 

2.1 Traditional Ephemeral Port Number Range 

The Internet Assigned Numbers Authority (IANA) assigns the unique parameters and values used 
in protocols developed by the Internet Engineering Task Force (IETF), including well-known ports 
[11]. The Internet Assigned Number Authority (IANA) has traditionally reserved the following use 
of the 16-bit port range of TCP and UDP: 

The Well Known Ports, 0 through 1023 
The Registered Ports, 1024 through 49151 
The Dynamic and/or Private Ports, 49152 through 65535 

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

 
II Workshop de Arquitecturas, Redes y Sistemas Operativos
_________________________________________________________________________

 
 

137



The range for assigned ports managed by the IANA is 0-1023, with the remainder being registered 
by IANA but not assigned. The ephemeral port range has traditionally consisted of the 49152-65535 
range.

2.2 Traditional Ephemeral Port Selection Algorithm 

As each communication instance is identified by its four-tuple {local IP address, local port, remote 
IP address, remote port}, selection ephemeral port numbers must result in a unique four-tuple. 

TCP implementations have traditionally implemented a very simple ephemeral port selection 
algorithm, which simply selects ephemeral ports incrementally. Figure 1 shows the traditional 
ephemeral port selection algorithm in pseudocode. We will refer to this as 'Algorithm 1'.   

   next_ephemeral = 1024;  /* init., could be random */ 

   count = max_ephemeral - min_ephemeral + 1; 

   do { 

        port = next_ephemeral; 

        if (four-tuple is unique) 

            return next_ephemeral; 

        if (next_ephemeral == max_ephemeral) { 

            next_ephemeral = min_ephemeral; 

        } else { 

            next_ephemeral_port++; 

        } 

        count--; 

   } while (count>0); 

Figure 1: Traditional ephemeral port selection algorithm 

A global variable “next_ephemeral” stores the port number that should be selected the next time the 
port selection function is called. Table 1 shows how the algorithm could possibly select port 
numbers when a host establishes a number of consecutive connections to both the same and 
different remote sockets. From the table we note that port numbers are selected incrementally, 
regardless of the remote TCP socket. 

Nr. IP:port min_ephemeral max_ephemeral next_ephemeral port 
#1 128.0.0.1:80 1024 65535 1024 1024
#2 128.0.0.1:80 1024 65535 1025 1025
#3 170.210.0.1:80 1024 65535 1026 1026
#4 170.210.0.1:80 1024 65535 1027 1027
#5 128.0.0.1:80 1024 65535 1028 1028

Table 1: Sample scenario for the traditional ephemeral port selection algorithm 

The algorithm is simple and efficient, and is used in most TCP implementations. However, it has 
two weaknesses. Firstly, given that it selects port numbers incrementally and independently of the 
remote TCP socket, the algorithm may quickly cycle through all the port numbers in the ephemeral 

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

 
II Workshop de Arquitecturas, Redes y Sistemas Operativos
_________________________________________________________________________

 
 

138



port range. This may potentially lead to a port number “collision”, that is, the algorithm may select 
a port number that results in a connection-id that is still in use in the network. Secondly, and most 
important for the purpose of this article, it reveals information about which port numbers will be 
selected for future outgoing TCP connections. If an attacker gets to know the port number selected 
for a recent outgoing TCP connection, he can easily guess the port numbers that will be selected for 
future outgoing connections. 

2.3 Port Number Collisions 

While it is possible for the ephemeral port selection algorithm to verify that the selected port 
number results in connection-id that is not currently in use at that system, there resulting 
connection-id may still be in use at a remote system. For example, consider a scenario in which a 
client establishes a TCP connection with a remote web server, and the web server performs the 
active close on the connection. While the state information for this connection will disappear at the 
client side (that is, the connection will be moved to the fictional CLOSED state), the connection-id 
will remain in the TIME-WAIT state at the web server for 2*MSL (Maximum Segment Lifetime). 
If the same client tried to create a new incarnation of the previous connection (that is, a connection 
with the same connection-id as the one in the TIME_WAIT state at the server), a port number 
“collision” would occur. The effect of these port number collisions range from connection-
establishment failures to TIME-WAIT state assassination (with the potential of data corruption). In 
scenarios in which a specific client establishes TCP connections with a specific service at a server, 
these problems become evident. Therefore, an ephemeral port selection algorithm should ideally 
lead to a low port reuse frequency, to reduce the chances of port number collisions. 

3 PORT RANDOMIZATION 

As discussed in Section 1, a simple mitigation approach for all those vulnerabilities that require the 
attacker to guess or know the four-tuple that identifies the target connection is to obfuscate that 
four-tuple through a careful selection of the client port number. 

There are a number of characteristics that an ideal port obfuscation algorithm should have. Firstly, it 
should minimize the predictability of the selected port numbers. Ideally, client port numbers should 
be selected randomly, and thus it would be impossible for an attacker to make an educated guess 
about the client port number in use by the target TCP connection. 

Secondly, it should minimize the port re-use frequency, to avoid interoperability problems. A high 
port reuse frequency might lead to port number collisions, in which a port number is reused leading 
to a connection-id that is still in use in the network. These port number collisions lead to 
interoperability problems (the connection request will fail) which are clearly undesirable. 

Finally, the port selection algorithm should avoid selecting port numbers that are needed by popular 
applications (such as port 80, port 6667, etc.). If a client binds a port number, and that port number 
is later needed by some application (while the port number is still in use), the application will fail.  

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

 
II Workshop de Arquitecturas, Redes y Sistemas Operativos
_________________________________________________________________________

 
 

139



3.1  Ephemeral Port Number Range 

As mentioned in Section 2.1, the ephemeral port range has traditionally consisted of the 49152-
65535 range.  However, it should also include the range 1024-49151 range. 

Since this range includes user-specific server ports, this may not always be possible, though.  A 
possible workaround for this potential problem would be to maintain in memory an arrays of bits, in 
which each bit corresponds to each of the ports in the range 1024-65535.  A bit set to 0 would 
indicate that the corresponding port is available for allocation, while a bit set to one would indicate 
that the port is reserved and cannot be allocated.  Thus, before allocating a port, the ephemeral port 
selection function would check this array of bits, avoiding the allocation of ports that may be 
needed for specific applications. 

Transport protocols should use the largest possible port range, since this improves the obfuscation 
provided by randomizing the ephemeral ports. 

3.2 Ephemeral Port Randomization Algorithms 

3.2.1 A Simple Port Randomization Algorithm 

In order to address the security issues discussed in Section 2.2, a number of systems have 
implemented simple port number randomization algorithm, shown in Figure 2. We will refer to this 
algorithm as ‘Algorithm 2’. 

    next_ephemeral = min_ephemeral + random() 

                        % (max_ephemeral - min_ephemeral + 1) 

    count = max_ephemeral - min_ephemeral + 1; 

    do { 

        if(four-tuple is unique) 

                return next_ephemeral; 

        if (next_ephemeral == max_ephemeral) { 

            next_ephemeral = min_ephemeral; 

        } else { 

            next_ephemeral_port++; 

        } 

        count--; 

    } while (count > 0); 

    return ERROR; 

                                 Figure 2: Simple port randomization algorithm 

This algorithm randomly selects a port number from the range {min_ephemeral, max_ephemeral} 
and, if the selected port number is in use, tries the next available port number (in the specified port 
range).

This algorithm is excellent from the point of view of obfuscation, as it selects the client port 
numbers randomly, making it hard for an attacker to make an educated guess about the client port 
number in use for the target TCP connection. However, it has a number of weaknesses.  

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

 
II Workshop de Arquitecturas, Redes y Sistemas Operativos
_________________________________________________________________________

 
 

140



Since this algorithm performs a completely random port selection (i.e., without taking into account 
the port numbers previously chosen), it has the potential of reusing port numbers too quickly. 
Consequently multiple ports may have to be tried and verified against all existing connections 
before a port can be chosen. Although carefully chosen random sources and optimized four-tuple 
lookup mechanisms (e.g., optimized through hashing), will mitigate the cost of this verification, 
some systems may still not want to incur this unknown search time. 

Additionally, potentially high port reuse frequency might lead to port number collisions at the 
server side, which would lead to the interoperability problems discussed in Section 3.2 of this paper. 
Systems that may be specially susceptible to this kind of repeated four-tuple collisions are those that 
create many connections from a single local IP address to a single service (i.e. both IP addresses 
and server port are fixed).  Gateways such as proxy servers are an example of such a system.  

3.2.2 A novel port obfuscation algorithm 

Figure 3 shows the pseudocode for a novel port obfuscation algorithm [14], modeled after the ISN 
(Initial Sequence Number) selection algorithm described in RFC 1948 (“Defending Against 
Sequence Numbers Attacks”). The algorithm aims to achieve the obfuscation quality of the simple 
port randomization algorithm described in the previous section, while keeping the port reuse 
frequency properties of the traditional TCP port selection algorithm.  

       next_ephemeral = 1024;  /*init., could be random */ 

       offset = F(local_IP, remote_IP, remote_port, secret_key); 

       do { 

           port = min_ephemeral + (next_ephemeral + offset) 

                      % (max_ephemeral - min_ephemeral + 1); 

           next_ephemeral++; 

           if(four-tuple is unique) 

               return port; 

           count--; 

       } while(count > 0);

             return ERROR; 

Figure 3: A Novel Port Obfuscation Algorithm 

The strategy to achieve both goals is to separate the port number space for each remote TCP socket, 
producing a monotonically-increasing port number sequence (with a random initial port number) for 
each of them. That is, two consecutive connection requests sent to different TCP sockets would use 
unrelated client port numbers, while two consecutive connection requests to the same TCP endpoint 
would use incremental port numbers. 

Ephemeral port numbers are selected as the sum of the result of a function F() and the variable 
“next_ephemeral”. F() is a hash function fed with the server TCP socket {server IP address, server 
TCP port} and a secret key specified by the system administrator or randomly chosen at system 
startup. This function F() provides a random “offset” that will be different for each remote TCP 

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

 
II Workshop de Arquitecturas, Redes y Sistemas Operativos
_________________________________________________________________________

 
 

141



socket. On the other hand, “next_ephemeral” is incremented each time the algorithm selects an 
ephemeral port, thus ensuring that two consecutive outgoing connections will use different 
ephemeral port numbers. 

Thus, F() provides for the obfuscation in the port number selection, while “next_ephemeral” 
provides for a monotonically-increasing sequence. Provided F() is a cryptographically-secure hash 
function, and that the attacker does not know the secret key used as input to F(), it will be very 
difficult for an off-path attacker to guess the ephemeral port number selected for the connection. 

Ideally, the algorithm would use one “next_ephemeral” variable for each of the possible results of 
F(). However, as this would require a probably unacceptable amount of memory, the algorithm uses 
a single global “next_ephemeral” variable. The downside of this engineering decision is that the 
selection of a port number in any port number sequence will cause all the other port number 
sequences to “skip” a port number they could have potentially used, unnecessarily.

An analysis of a sample scenario can help to understand how this algorithm works. For example, 
let’s suppose that some host tries to establish TCP connections with a number of remote TCP 
sockets. Table 2 illustrates, for a number of consecutive connection requests, some possible values 
for each of the variables used in this novel port obfuscation selection algorithm. Additionally, the 
table shows the result of the port selection function. 

Nr. IP:port offset min_ephemeral max_ephemeral next_ephemeral port 
#1 128.0.0.1:80 1000 1024 65535 1024 3048
#2 128.0.0.1:80 1000 1024 65535 1025 3049
#3 170.210.0.1:80 4500 1024 65535 1026 6550
#4 170.210.0.1:80 4500 1024 65535 1027 6551
#5 128.0.0.1:80 1000 1024 65535 1028 3052

Table 2: Sample scenario for the novel port obfuscation algorithm 

The first two entries of the table illustrate the contents of each of the variables when two ephemeral 
ports are selected to establish two consecutive connections to the same remote socket {128.0.0.1, 
80}. We can see that the two ephemeral ports that get selected belong to the same port number 
“sequence”, as the result of the hash function F() is the same in these two cases. 

The second and third entries of the table illustrate the contents of each of the variables when the 
algorithm later selects two ephemeral ports to establish two consecutive connections to the remote 
socket {172.0.0.1, 110}. We can see that the result of F() is the same for these two cases, and thus 
the two ephemeral ports that get selected belong to the same “sequence”. However, this sequence is 
different from that of the first two port numbers selected before, as the value of F() is different from 
the one obtained for those two ports numbers (#1 and #2) selected earlier. 

Finally, when the algorithm later selects another ephemeral port to connect to the same socket as in 
#1 and #2, we note that the selected port number somehow belongs to the same sequence as the first 
two port numbers selected (#1 and #2), but that two ports of that sequence (3050 and 3051) have 
been skipped. This is the consequence of having a single global next_ephemeral variable that gets 
incremented whenever a port number is selected. When next_ephemeral is incremented as a result 
of the port selections #3 and #4, this causes two ports (3050 and 3051) in all the other the port 
number sequences (including that of #1 and #2) to be “skipped”, unnecessarily. 

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

 
II Workshop de Arquitecturas, Redes y Sistemas Operativos
_________________________________________________________________________

 
 

142



As in the case of the traditional TCP port selection algorithm, having a single global counter for the 
port numbers that have so far been selected may result in a port reuse frequency higher than needed. 

The obvious mitigation for this effect would be to have a different “next_ephemeral” variable for 
each possible result of F(). Thus, assuming no hash collisions, the selection of a port number would 
increment only the corresponding next_ephemeral variable, without causing port numbers in other 
sequences to be skipped. However, this would likely require an unacceptable amount of memory.  

A middle-ground between a single global next_ephemeral variable and a large number of 
next_ephemeral variables (one for each possible result of F()) would be to have a small number of 
next_ephemeral variables, such that each possible value of F() is matched to one of these variables. 
For example, we could define an array of 256 variables, each of them representing a different 
next_ephemeral variable. The index into this array could be the result of a hash function G() 
computed with the remote TCP socket {remote IP address, remote TCP port} and a secret key, or 
even a value derived from the result of F() (for example, the result of performing an eXclusive-OR 
among each of the bytes composing the result of F(). Figure 3 shows the pseudocode for the 
improved algorithm. 

       /* Initialization code */ 

       for(i = 0; i < TABLE_LENGTH; i++)

           table[i] = random % 65536; 

       /* Ephemeral port selection */ 

       offset = F(local_IP, remote_IP, remote_port, secret_key); 

       index = G(offset); 

       count = max_ephemeral - min_ephemeral + 1; 

       do { 

           port = min_ephemeral + (offset + table[index]) 

                      % (max_ephemeral - min_ephemeral + 1); 

           table[index]++; 

           count--; 

             if(four-tuple is unique) 

           return port; 

       } while (count > 0); 

       return ERROR; 

Figure 4: An improvement to the novel port obfuscation algorithm 

In order to illustrate how this slight modification can improve the port reuse properties of the novel 
port obfuscation algorithm discussed earlier, we can analyze the scenario of the previous section, 
this time from the perspective of the improved algorithm. For the purposes of illustrating how the 
improved algorithm works, we will refer to the array of next_ephemeral variables as “table”, and 
for simplicity-sake we will assume that all the entries of the array have been initialized to 1024. 
Also, we will use the variable “index” to store the value used as the index into the array “table”.  

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

 
II Workshop de Arquitecturas, Redes y Sistemas Operativos
_________________________________________________________________________

 
 

143



Table 3 illustrates a possible result for the same sequence of events as those in table 2, along with 
the values of each of the involved variables.

Nr. IP:port offset min_ephemeral max_ephemeral index table[index] port 
#1 128.0.0.1:80 1000 1024 65535 10 1024 3048
#2 128.0.0.1:80 1000 1024 65535 10 1025 3049
#3 170.210.0.1:80 4500 1024 65535 15 1024 6548
#4 170.210.0.1:80 4500 1024 65535 15 1025 6549
#5 128.0.0.1:80 1000 1024 65535 10 1026 3050

Table 3: Sample scenario for the improved novel port obfuscation algorithm 

From the table we can see that the destinations “128.0.0.1:80” and “170.210.0.1:80” result in 
different values for “index” and, as a result, our slight modification successfully avoids the 
increments in one of the port number sequences to affect the other sequences, thus minimizing the 
port reuse frequency. 

3.2.3 Secret Key 

Every complex manipulation (like MD5) is no more secure than the input values, and in the case of 
ephemeral ports, the secret key.  If an attacker is aware of which cryptographic hash function is 
being used by the victim (which we should expect), and the attacker can obtain enough material 
(e.g. ephemeral ports chosen by the victim), the attacker might simply search the entire secret key 
space to find matches. 

To protect against this, the secret key should be of a reasonable length.  Key-lengths of 32-bits 
should be adequate, since a 32-bit secret would result in approximately 65k possible secrets if the 
attacker is able to obtain a single ephemeral port (assuming a good hash function).  If the attacker is 
able to obtain more ephemeral ports, key-lengths of 64-bits or more should be used. 

Another possible mechanism for protecting the secret key is to change it after some time.  If the 
host platform is capable of producing reasonable good random data, the secret key can be changed. 
Changing the secret will cause abrupt shifts in the chosen ephemeral ports, and consequently 
collisions may occur.  Thus the change in secret key should be done with consideration and could 
be performed whenever one of the following events occur: 

Some predefined/random time has expired 
The secret has been used N times (i.e. we consider it insecure). 
There are few active connections (i.e., possibility of collision is low). 
There is little traffic (the performance overhead of collisions is tolerated). 
There is enough random data available to change the secret key (pseudo-random changes 
should not be done). 

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

 
II Workshop de Arquitecturas, Redes y Sistemas Operativos
_________________________________________________________________________

 
 

144



4 CONCLUSIONS 

Ephemeral port randomization can provide efficient mitigation for blind attacks against transport 
protocols, without any key management overhead. Implementation and deployment experience have 
shown that trivial port randomization approaches can lead to interoperability problems. In this paper 
we have examined a novel algorithm to achieve port number obfuscation, while avoiding the 
potential interoperability problems introduced by other alternative approaches. 

4 ACKNOWLEDGEMENTS 

The author would like to thank Guillermo Gont and Juan Fraschini for reviewing a draft version of 
this paper. The author would also like to thank FreeBSD's Mike Silbersack for a very fruitful 
discussion about ephemeral port selection techniques 

5 REFERENCES 

[1]  Postel, J., "Transmission Control Protocol", STD 7,  RFC 793, September 1981. 

[2]  Postel, J., "User Datagram Protocol", STD 6, RFC 768, August 1980. 

[3]  Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321, April 1992. 

[4]  Eastlake, D., Schiller, J., and S. Crocker, "Randomness Requirements for Security", BCP 106, 
RFC 4086, June 2005. 

[5]  Bellovin, S., "Defending Against Sequence Number Attacks", RFC 1948, May 1996. 

[6]  Heffernan, A., "Protection of BGP Sessions via the TCP MD5 Signature Option", RFC 2385, 
August 1998. 

[7]  Kent, S. and K. Seo, "Security Architecture for the Internet Protocol", RFC 4301, December 
2005.

[8]  Stewart, R., Xie, Q., Morneault, K., Sharp, C., Schwarzbauer, H., Taylor, T., Rytina, I., Kalla, 
M., Zhang, L., and V. Paxson, "Stream Control Transmission Protocol", RFC 2960, October 
2000.

[9]  Kohler, E., Handley, M., and S. Floyd, "Datagram Congestion Control Protocol (DCCP)", RFC 
4340, March 2006. 

[10]  Watson, P., "Slipping in the Window: TCP Reset attacks", December 2003. 

[11]  “IANA Port Numbers”, <http://www.iana.org/assignments/port-numbers>. 

[12]  Touch, J., "Defending TCP Against Spoofing Attacks", draft-ietf-tcpm-tcp-antispoof-05 (work 
in progress), October 2006. 

[13]  Rekhter, Y., Li, T., Hares, S., “A Border Gateway Protocol 4 (BGP-4)”, RFC 4271,  January 
2006.

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

 
II Workshop de Arquitecturas, Redes y Sistemas Operativos
_________________________________________________________________________

 
 

145



[14] Larsen, M., Gont, F., "Port Randomization", draft-larsen-tsvwg-port-randomization-01.txt 
(work in progress), Feb. 2007. 

[15] Gont, F., "ICMP attacks against TCP", draft-ietf-tcpm-icmp-attacks-01 (work in progress), 
October 2006. 

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

 
II Workshop de Arquitecturas, Redes y Sistemas Operativos
_________________________________________________________________________

 
 

146




