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Abstract

This paper presents an efficient method for implementation of digital filters targeted FPGA architectures. The
traditional approach is based on application of general purpose multipliers. However, multipliers implemented
in FPGA architectures do not allow to construct economic Digital Filters. For this reason, multipliers are
replaced by Lookup Tables and Adder-Substractor, which useBit-Serial Arithmetic. Lookup Tables can be
of considerable size in high order filters, thus interconnection techniques will be used to construct high order
filters from a set of low order filters. The paper presents several examples confirming that these techniques
allow a reduction in logic cells utilization of filters implementation based on Bit-Serial Arithmetic concept.

Keywords: Digital Filter, FIR-Filter, FPGA, IIR-Filter, Lookup Tables.

1 INTRODUCTION

A Digital Filter is a Linear Time Invariant (LTI) system, which performs numerical calculations on
sampled values of the signal. The analog input signal must first be sampled and digitized using an
Analog to Digital Converter (ADC). The resulting binary numbers, representing successive sampled
values of the input signal, are transferred to the filter, which carries out numerical calculations on
them. These calculations typically involve multiplying the input values by constants and adding the
products together. If necessary, the results of these calculations, which now represent sampled values
of the filtered signal, are output through a Digital to AnalogConverter (DAC) to convert the signal
back to analog form. In the last years digital filters have been recognized as primary digital signal
processing (DSP) operation.

There are two basic types of digital filters, Finite Impulse Response (FIR) and Infinite Impulse
Response (IIR) filters. FIR and IIR filters are used in many digital signal processing systems to per-
form a variety of signal filtering and conditioning functions. An IIR filter is capable of emulating the
transfer functions of analog continuous-time filters, suchas low-pass, band-pass, high-pass, and all-
pass (phase-shifting) types of filtering. IIR filters exhibit similar phase characteristics as their analog
counterparts. For arbitrary transfer functions with linear-phase response, FIR filters are utilized and
have no equivalent in the analog domain.
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On the other hand, the advances in Field Programmable Gate Arrays (FPGA) technology have
enabled these devices to be applied to a variety of applications traditionally reserved for Application
Specific Integrated Circuits (ASICs). The advantages of theFPGA approach to digital filter imple-
mentation include: higher samples rates than those that areavailable form traditional DSP chips,
lower costs than an ASIC for moderate volume applications, and are more flexible than the alternate
approaches.

A filtering function is usually carried out by a number of multiplication operations, which are
expensive in terms of time and space. Therefore, several techniques are used to minimize the hard-
ware needed to implement a filter. A technique widely used is to replace Bit-Parallel by Bit-Serial
structures.

Bit-Parallel structures process all the bits of input data simultaneously at a significant hardware
cost. Bit-Serial, by comparison, process the input one bit at a time. The advantage of the last one
is that all the bits pass through the same logic, resulting ina huge reduction in the required hard-
ware. Typically, the Bit-Serial approach requires1/nth of the hardware required for the equivalent
n-bit parallel design. The price of this logic reduction is that serial hardware taken clock cycles to
execute, while the equivalent parallel structure executesin one clock cycle. Since for certain classes
of applications, FPGA utilization is high, performance goals are achieved while using economically
attractive FPGA devices. For applications that require high speed performance, Bit-Parallel structures
yields the highest performance.

This paper illustrates a new approach to the design of digital filters using Bit-Serial Arithmetic,
which will reduce the logic cells utilization in an FPGA considerably, it allow us to construct high or-
der filters (FIR-filters require a large number of coefficients to produce adequate frequency response,
so these filters can occupy all the FPGA), or have others applications running on our FPGA simultane-
ously. Although this approach degrades the performance of filters, this degradation is not considerable
for the practical purposes since the most applications do not require high speed performance. Others
approaches can be see in [1],[2],[3],[4] and [5], which keephigh performance but do not reduce the
logic cells utilization significantly due to the fact that these try a balance between time and space.

2 IIR-DIGITAL FILTERS

IIR-Digital Filters are widely used in digital signal processing applications. They compute an output
from a set of input samples and a set of previous outputs, which are multiplied by a set of coefficients
and then added together to produce the output. The digital filter behaviour is determined by the filter
coefficients. A general IIR-filter is characterized by the following equation:

yn = a0x
n + a1x

n−1 + · · · + apx
n−p + b1y

n−1 + · · ·+ bpy
n−p (1)

wherep is the filter order, theap’s andbp’s are coefficients,xn is the filter input at the time stepn,
andyn is the filter output at the time stepn.
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Expanding the equation 1 foryn in terms of the individual bits for the two-complements (2’C)
operandsx = (x(0).x(−1)x(−2)....x(−l))2 andy = (y(0).y(−1)y(−2)....y(−l))2 we get [6]:

yn =a0

(

− xn
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Definef(s, t, . . . , u, v, . . . , w) = a0s+a1t+ · · ·+apu+ b0v+ · · ·+ bpw, wheres,t,. . .,u,v,. . ., andw
are single-bit variables. If the coefficients arem-bits constants, then each of the22p+1 possible values
for f is representable in(m+ ⌈log2 (2p + 1)⌉) bits, as it is the sum of(2p+1) m-bit operands. These
values can be precomputed and stored in a((22p+1) × (m + ⌈log2 (2p + 1)⌉))-bit table.

Using the functionf , we can rewrite the expression foryn of the equation 2 as follows:

yn =

(

−1
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(0) , . . . , yn−p

(0) )

(3)
Figure 1 shows the filter architecture (using Bit-Serial Arithmetic) to compute the equation 3,

where the mappingf is presented as a Lookup Table (LUT) that includes all the possible linear com-
binations of the filter coefficients, as was mentioned previously.
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Figure 1: IIR-Digital Filter Architecture.

The architecture shown in Figure 1 has bit serial input and output. The ROM memory is addressed
by the Least Significant Bits (LSB) of thex’s andy’s shift registers, and its output together with the
S register value are fed to theadder-substractor where are processed. Then theadder-substractor
result is accumulated in theS register again. Afterl + 1 cycles the obtained value is the filter output,
which is stored into they(1) shift register for future computations. Then, theS register is reset in 0
and a new accumulation cycle begins.
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We can construct high order filters by using the previously mentioned method, but the size required
for the LUTs will grow exponentially with the number of filtercoefficients. For this reason, a scheme
is shown to construct high order IIR-filters making use of theproperties of LTI systems such as
association andcommutation. The associative property means that we may analyze a complicated
LTI system by breaking it down into a number of simpler subsystems. The commutative property of
LTI systems means that if subsystems are arranged in series,or cascade, then they can be rearranged
in any order without affecting overall performance [7]. Therefore, interconnecting low order sub-
filters appropriately we can make high order filters. This technique permits us to use a set of smaller
LUTs instead one huge LUT, which reduces considerably the space occupied in an FPGA. Figure 2
shows the interconnection scheme, where the input, the output and the internal connections (between
the filters) are serials, and the(i)-filter output is connect to the(i + 1)-filter input straight forward.

(1) (2) (k−1) (k)
IIR IIR IIR IIR

input
serial serial

output

Figure 2: High Order IIR-Filter Interconnection Scheme.

For example, if we need to build a fifth-order IIR-filter we canuse two second-order IIR-filters
and one first-order IIR-filter. This allows us to use two 32-entry tables and one 8-entry table instead
of one 2048-entry table.

3 FIR-DIGITAL FILTERS

In a FIR-Digital Filter the output depends only of present and previous input samples, which are
multiplied by a set of coefficients and then added together toproduce the output. The filter behaviour
is determined by the filter coefficients. A general FIR-filteris characterized by the following equation:

yn = a0x
n + a1x

n−1 + · · ·+ aqx
n−p (4)

Wherep is the filter order, theap’s are the filter coefficients,xn is the input signal at the time step
n, andyn is the output signal at the time stepn. The major disadvantage of these filters is that usually
a large number of coefficients are required to control adequately their frequency response. Practical
FIR-Filters typically need between 10 and 150 coefficients.This make them slower in operation than
most IIR-filter design.

Expanding the equation 4 foryn in terms of the individual bits for the 2’C operandsx = (x(0).x(−1)

x(−2)....x(−l))2 andy = (y(0).y(−1)y(−2)....y(−l))2, like it was made for IIR-filter, we get:

yn =

(

−1
∑

j=−l

2jf(xn
(j), x

n−1
(j) , . . . , xn−p

(j) )

)

− f(xn
(0), x

n−1
(0) , . . . , xn−p

(0) ) (5)

Figure 3 shows the filter architecture to compute the equation 5.

In the previous section was explained how to build high orderIIR-filters from a set of low order
filters making use of the properties of LTI systems and interconnecting them appropriately. The same
technique will be used for FIR-filters. As we know, the FIR-filters have no feedback coefficients. Due
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Figure 3: FIR-Filter Architecture.

to this, afterl + 1 cycles, theadder-substractor output is only stored intoy(n) register.

To construct high order FIR-filters we need to interconnect acascade low FIR sub-filters; in that
way the input pass through them serially and the sub-filters outputs are added (by serial adders) to
produce the high order FIR-filter output. The interconnection scheme is shown in Figure 4.

FIR
(1)

FIR
(2)

FIR
(k−1)

FIR
(k)

+ +

+

Log(k)

serial
input

serial
output

Figure 4: High Order FIR-Filter Interconnection Scheme.

If we want to construct a high order FIR-filter making use ofk sub-filters, its result will have
⌈log2(k)⌉ additional bits due to the fact that the tree adder have depth⌈log2(k)⌉ and each level may
add one bit. Therefore, if the filter input havel bits the filter will produce one result eachl+⌈log2(k)⌉
clock cycles.

Like it was said in the section 2, this technique reduces considerably the space required in an
FPGA. For example, if we need to build a eighth-order FIR-filter we can use one fourth-order and
one third-order FIR-filter. This allow us to use two small tables, a 32-entry table and a 16-entry table,
instead of one 512-entry table.
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(a)

(b)

(c)

Figure 5: Removing mains-frequency interference from an electrocardiogram.

4 EXPERIMENTAL RESULTS

For experiments, several examples of filters with differentorder were implemented to analyze their
behaviour, performance and logic cells utilization in an FPGA. All filters implemented have 8-bit
input samples and their coefficients have 8-bit precision, the FPGA selected was Actel ProAsic250
series, and the ACTEL LIBERO IDE v7.3 tool was used for the synthesis. In addition, AD9102 and
DAC1654 chips were used to digitize input signals and convert the output signals in analog form re-
spectively.
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Table 1: Synthesized Result.
Filter Type Filter Order Logic Cell Clock Frequency

IIR 2 3.06 % (188) 112.020 MHz
IIR 4 6.28 % (386) 102.281 MHz
FIR 4 3.22 % (198) 110.156 MHz
FIR 8 6.62 % (407) 96.330 MHz
FIR 18 13.07% (803) 94.295 MHz

To see the good behaviour of the architectures presented in the previous sections we will show the
functioning of a digital filter. In particular, we will consider a digital filter for an electrocardiogram.
In medicine, the electrical activity of the heart can be recorded using electrodes placed on the chest, a
filter can be used to reduces the fluctuations due to electric activity in the resulting electrocardiogram
(60 Hz in the USA, 50 Hz in Europe). In this case the needed digital filter is a band-stop IIR-filter,
because we must reject the mains supply frequency (60 Hz or 50Hz). This filter is characterized by
the following equation:

yn = xn + (−1.9021)xn−1 + xn−2 + (1.8523)yn−1 + (−0.94833)yn−2 (6)

If the interference is at 60 Hz, the filter is effective at sampling frequency of 1200 samples per
second (1.2 kHz); if it is at 50 Hz, the filter is effective at 1000 samples per second (1 kHz) [7]. The
VHDL specification for this can be see in Appendix I. Figure 5 (a) shows a typical EKG waveform,
corresponding to several heartbeat. In part (b) of the figureit is badly contaminated by sinusoidal in-
terference of 60 Hz frequency. Figure 5 (c) shows the dramatic effect of this filter on the contaminated
signal of part (b). The interference has been greatly reduced, without distorting the signal waveform.

Now, we will show the FPGA resources utilization of filters implemented with the techniques
described in this paper. Table 1 presents these results. We can note that these techniques allow an
important reduction in the logic cells utilization, also wecan see that the size of filters grows lineally
with the numbers of coefficients, degrading their performance slightly. We must have in mind that the
overall performance of each implementation is: its clock frequency divide by the number of bits of
its input signal (because this is processes serially). Therefore our implementations work at about 10
MHz, which is adequate for the most applications. These are important results, especially for FIR-
filters, since they usually require many coefficients to control adequately their frequency response. In
fact, using these techniques, we could synthesize a hundredth-order filter with a performance of 10
MHz approximately, it is not possible using traditional techniques with which we could synthesize
sixtieth-order filters only.

5 CONCLUSION

The presented results lead to the conclusion that the use of Bit-Serial Arithmetic and Lookup Tables
allow us to construct economic IIR and FIR digital filters, degrading slightly their performance. In ad-
dition, we could see that by the interconnection techniqueswe can construct efficient high order filters
without use huge Lookup Tables. The results produced by these techniques can be straight forward
translated from their schematic representation into VHDL code and then synthesize it on an FPGA.
Finally, through all the examples, we could see that the behaviour of digital filters implementation is
correct.
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APPENDIX I (VHDL CODE)

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity dig_filtro is port (
x : in unsigned(0 to 7);
clk : in std_logic;
rst : in std_logic;
y : out unsigned(0 to 7));

end;

architecture df of dig_filtro is
constant cBitsx : integer := 8;
constant cCoef : integer := 5; -- number of coeficient
constant cLogNumCoef : integer := 3; -- ciel of cCoef logaritm
constant cBitsM : integer := 8; -- number of coeficient bits
type TableCoef_type is array(0 to 2**cCoef-1) of

unsigned(0 to cBitsM+cLogNumCoef-1);
constant cTableCoef : TableCoef_type

:=(
"00000000000",
"11110000110",
"00011101101",
"00001110011",
"00010000000",
"00000000110",
"00101101101",
"00011110011",
"11100001100",
"11010010011",
"11111111001",
"11110000000",
"11110001100",
"11100010011",
"00001111001",
"00000000000",
"00010000000",
"00000000110",
"00101101101",
"00011110011",
"00100000000",
"00010000110",
"00111101101",
"00101110011",
"11110001100",
"11100010011",
"00001111001",
"00000000000",
"00000001100",
"11110010011",
"00011111001",
"00010000000"

);
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signal x_n_reg : unsigned(0 to cBitsx-1);
signal x_n_input : unsigned(0 to cBitsx-1);
signal x_n_1_reg : unsigned(0 to cBitsx-1);
signal x_n_1_input : unsigned(0 to cBitsx-1);
signal x_n_2_reg : unsigned(0 to cBitsx-1);
signal x_n_2_input : unsigned(0 to cBitsx-1);
signal y_n_1_reg : unsigned(0 to cBitsx-1);
signal y_n_1_input : unsigned(0 to cBitsx-1);
signal y_n_2_reg : unsigned(0 to cBitsx-1);
signal y_n_2_input : unsigned(0 to cBitsx-1);
signal y_input : unsigned(0 to cBitsx-1);
signal y_reg : unsigned(0 to cbitsx-1);
signal counter_reg : unsigned(0 to cBitsx-1);
signal counter_input : unsigned(0 to cBitsx-1);
signal s_reg : unsigned(0 to cBitsM+cLogNumCoef-1);
signal s_input : unsigned(0 to cBitsM+cLogNumCoef-1);
signal f : unsigned(0 to cBitsM+cLogNumCoef-1);
signal opndo_1 : unsigned(0 to cBitsM+cLogNumCoef-1+2);
signal opndo_2 : unsigned(0 to cBitsM+cLogNumCoef-1+2);
signal add : unsigned(0 to cBitsM+cLogNumCoef-1+2);
signal address : unsigned(0 to 4);

begin -- df
counter_input <= counter_reg(counter_reg’high) &

counter_reg(0 to counter_reg’high-1);

x_n_input <= x when counter_reg(counter_reg’high)=’1’ else
’0’ & x_n_reg(0 to x_n_reg’high-1);

x_n_1_input <= x_n_reg(x_n_reg’high) & x_n_1_reg(0 to x_n_reg’high-1);
x_n_2_input <= x_n_1_reg(x_n_1_reg’high) & x_n_2_reg(0 to x_n_1_reg’high-1);
y_n_1_input <= add(4 to 4+y_n_1_input’high) when

counter_reg(counter_reg’high) =’1’ else
’0’ & y_n_1_reg(0 to y_n_1_reg’high-1);

y_n_2_input <= y_n_1_reg(y_n_1_reg’high) & y_n_2_reg(0 to y_n_1_reg’high-1);
y_input <= add(4 to 4+y_n_1_input’high) when

counter_reg(counter_reg’high)=’1’ else
y_reg;

y <= y_reg;

opndo_1 <= ’0’ & s_reg(0) & s_reg(0 to cBitsM+cLogNumCoef-2) & ’1’;
opndo_2 <= ’0’&(f xor (0 to (cBitsM+cLogNumCoef-1) =>

counter_reg(counter_reg’high)))& counter_reg(counter_reg’high);

add <= opndo_1 + opndo_2;

s_input <= (others => ’0’) when counter_reg(counter_reg’high) = ’1’ else
add(1 to cBitsM+cLogNumCoef);

address <= (x_n_reg(x_n_reg’high), x_n_1_reg(x_n_1_reg’high),
x_n_2_reg(x_n_2_reg’high), y_n_1_reg(y_n_1_reg’high),
y_n_2_reg(y_n_2_reg’high));

with address select f <=
cTableCoef(0) when "00000",
cTableCoef(1) when "00001",
cTableCoef(2) when "00010",
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cTableCoef(3) when "00011",
cTableCoef(4) when "00100",
cTableCoef(5) when "00101",
cTableCoef(6) when "00110",
cTableCoef(7) when "00111",
cTableCoef(8) when "01000",
cTableCoef(9) when "01001",
cTableCoef(10) when "01010",
cTableCoef(11) when "01011",
cTableCoef(12) when "01100",
cTableCoef(13) when "01101",
cTableCoef(14) when "01110",
cTableCoef(15) when "01111",
cTableCoef(16) when "10000",
cTableCoef(17) when "10001",
cTableCoef(18) when "10010",
cTableCoef(19) when "10011",
cTableCoef(20) when "10100",
cTableCoef(21) when "10101",
cTableCoef(22) when "10110",
cTableCoef(23) when "10111",
cTableCoef(24) when "11000",
cTableCoef(25) when "11001",
cTableCoef(26) when "11010",
cTableCoef(27) when "11011",
cTableCoef(28) when "11100",
cTableCoef(29) when "11101",
cTableCoef(30) when "11110",
cTableCoef(31) when others;

write: process(clk,rst)
begin
if rst=’1’ then

s_reg <= (others => ’0’);
x_n_reg <= (others => ’0’);
x_n_1_reg <= (others => ’0’);
x_n_2_reg <= (others => ’0’);
y_n_1_reg <= (others => ’0’);
y_n_2_reg <= (others => ’0’);
y_reg <= (others => ’0’);
counter_reg <= (0 to counter_reg’high-1 => ’0’,

counter_reg’high => ’1’);
elsif clk=’1’ and clk’event then

counter_reg <= counter_input;
s_reg <= s_input;
x_n_reg <= x_n_input;
x_n_1_reg <= x_n_1_input;
x_n_2_reg <= x_n_2_input;
y_n_1_reg <= y_n_1_input;
y_n_2_reg <= y_n_2_input;
y_reg <= y_input;

end if;
end process;

end df;
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