
Automated reasoning in a Collaborative Problem Solving Process -
A first approach.

Marı́a Clara Casalini and Guillermo Simari
Departamento de Ciencias e Ingenierı́a de la Computación, Universidad Nacional del Sur

Bahı́a Blanca, 8000, Buenos Aires, Argentina
{mcca,grs}@cs.uns.edu.ar

Abstract

Collaborative systems are becoming a widely used tool particularly among professional communities and re-
search groups. They provide a suitable context for distributed people working on the same subject to concentrate
their work in a shared place to which everyone has access and can keep updated. The Semantic Web, intended
to provide well defined semantics and cooperation between machines and people offers a range of technologies
that underpin the development of intelligent collaborative systems. Defeasible reasoning has been shown to
appropriately model common-sense reasoning. This work presents a first approach to incorporating defeasible
reasoning with a software agent that collaborates with humans in a collaborative problem solving process. The
process relies in a shared knowledge repository which is also modeled to incorporate defeasible knowledge.

Keywords: defeasible reasoning, argumentation, semantic web, collaborative systems, knowledge reposito-
ries, collaborative problem solving

1 INTRODUCTION

During the last years there have been important advances around the Semantic Web; research in the
area is extensive, new tools are being developed, and many applications are being constructed that
implement the existing standards and technologies. However there is still a considerable shortage of
applications that provide capabilities for reasoning on the web, partly due to the shortage of accepted
standards and frameworks to facilitate the implementation. As the authors in [13] exhibit there is
a wide use of Semantic Web technologies and standards, particularly in research communities. Its
usage can also be appreciated in government initiatives as well as business and commerce efforts.
However there is still an important need of a web of data with shared semantics and support for rules
and inferencing -an intelligent web. A similar scenario can be described in the area of collaborative
systems. The spread of virtual communities of every kind: organized or spontaneous, local or global,
formal or informal, is exposing the need for systems capable of fulfilling the needs that the members
of these communities have. One of the features that users could take advantage of is the possibility
of having software agents -some systems called them bots- to collaborate as pairs in the diverse tasks
that human users usually perform.

This work proposes the incorporation of defeasible reasoning in a collaborative system that was
designed following Semantic Web standards. It shows the re-definition of a collaborative problem
solving process that relies on a repository of knowledge based on Semantic Web technologies. The
repository of knowledge is defined to incorporate defeasible knowledge and the problem solving
process integrates the tasks performed by human participants with the participation of a software
agent that collaborates automating parts of the process.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15778478?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The article is organized as follows. Section 2 introduces related work on the knowledge areas
relevant for this work: Semantic Web and its languages; and Defeasible Knowledge Representation,
some formalisms and proposals. Section 3 presents the proposed repository of defeasible knowledge
and Section 4 describes the problem solving process based on the presented repository. The problem
solving process is described in terms of the rules defined for the implementation of a software agent
that collaborates with the humans in the process, and the facts and rules that are created for every
piece of knowledge that the users add to the repository. Finally Section 5 presents the conclusions
and some ideas for future work.

2 BACKGROUND

This section presents the relevant concepts and knowledge areas for this work. The Semantic Web
definition and objectives are briefly explained and two of the languages defined for the implementation
of the Semantic Web are introduced: RDF [9] and OWL [10] both closely related with the models we
describe for a repository of knowledge and collaborative problem solving. Next a brief description
of the main aspects of the DeLP framework is given. The DeLP language and the argumentation
formalism main components are also explained. A summary of the proposal presented in [1] to
introduce rules -defeasible and strict- in the Semantic Web closes the section.

2.1 Semantic Web Languages

The Semantic Web was described in [2] as an extension of the current web, in which the focus is
set on giving information a better-defined meaning, enabling the cooperation between machines and
people. To achieve this goal, new and redefined web technologies were needed. Among other things it
was predicted that it was necessary to define new languages for the web, software tools to understand
them and use them, together with well defined practices and recommendations to standardize its use
and enable true integration of the diverse applications. With this objective in mind a set of layers was
defined, to be implemented with a stack of languages and tools such as XML [11] -the eXtensible
Markup Language- and XML Schema [14], RDF -the Resource Description Framework- and RDF
Schema [3], OWL -a Web Ontology Language- and SPARQL [12] -a query language.

The Resource Description Framework (RDF) is a framework for representing information in the
Web. The framework includes the RDF language -a general purpose language designed for repre-
senting information on the web, and RDF Schema -the vocabulary description language for RDF.
Information expressed using RDF consists in a collection of triples formed by a subject, a predicate
and an object. The underlying structure is that of a graph, where each triple is represented by two
nodes connected by an arc: the nodes are the subject and the object, which in turn are related by the
predicate (the arc). Each triple represents a sentence that expresses the value (object) for a certain
property (predicate) describing a particular resource (subject) -see Figure 1. The graph representation
of RDF is useful when showing information to human users of the language, however to exchange
information among applications RDF has a recommended XML serialization form (RDF-XML).

Figure 1: RDF graph notation.

To capture the semantics of data, an ontology layer was designed to be on top of the RDF layer. A
special language to define and instantiate web ontologies was defined in the context of the Semantic
Web Activity: the Web Ontology Language (OWL). An ontology includes descriptions of classes
-to classify resources-, properties and their instances. The OWL formal semantics specifies how
to derive logical consequences from the data present in the ontology, i.e. information not explicitly
present in the ontology but entailed by its semantics [10]. Three sub-languages were defined for OWL,
each with different expressiveness: OWL Lite, OWL DL and OWL Full. The Lite version supports
classification hierarchies and simple constraints such as cardinality constraints with values 0 or 1.
The second version was called OWL DL for its correspondence with Description Logics. OWL DL
gives support for users who need more expressiveness than OWL Lite without losing computational
completeness and decidability. For maximum expressiveness but with no computational guarantees,
the Full version of OWL is provided. This version gives more freedom to the user, allowing for
instance a class to be treated at the same time as a collection of individuals and as an individual itself.

2.2 Defeasible Knowledge Representation

2.2.1 Defeasible Logic Programming

Defeasible Logic Programming (DeLP) is a formalism that combines results of logic programming
and defeasible argumentation. This formalism provides the possibility of representing information in
the form of weak rules in a declarative manner and a defeasible argumentation inference mechanism
for warranting the entailed conclusions [6]. Contradictory knowledge can be represented since it
allows strong negation in the head of program rules. DeLP incorporates an argumentation formalism
for the treatment of contradictory knowledge that allows the identification of the pieces of knowledge
that are in contradiction. A dialectical process is used for deciding which information prevails. A
warrant procedure implements such dialectical analysis.

DeLP Language. The DeLP language is defined in terms of three disjoint sets: a set of facts -
literals: atoms or strict negation of atoms-, a set of strict rules and a set of defeasible rules. A strict
rule is an ordered pair, denoted Head← Body, where the head is a literal and the body is a finite
non-empty set of literals. A defeasible rule is an ordered pair Head —≺ Body., where the head is a
literal and the body is a finite non-empty set of literals. Strict rules are different from defeasible rules
because the latter ones represent defeasible knowledge i.e. information that may be used if no other
information is known that contradicts it. The syntactic distinction between them is achieved by the
symbol ≺ .

A Defeasible Logic Program (de.l.p.)P is a possibly infinite set of facts, strict rules and defeasible
rules. In a program P , also denoted as (Π, ∆), Π is the subset of facts and strict rules and ∆ is the
subset of defeasible rules.

Let P = (Π, ∆) be a de.l.p.and L a ground literal. A defeasible derivation of L from P , denoted
P |∼ L, consists of a finite sequence L1, L2, . . . , Ln = L of ground literals, and each literal Li is in
the sequence because:

(a). Li is a fact in Π, or

(b). there exists a rule Ri in P (strict or defeasible) with head Li and body B1, B2, . . . , Bk and every
literal of the body is an element Lj of the sequence appearing before Li (j < i)

Defeasible derivations can use both defeasible and strict rules, or only one kind of rule. Strict
derivations instead, only use strict rules and facts, as the following definition explains.

Let P = (Π, ∆) be a de.l.p.and h a literal with a defeasible derivation L1, L2, . . . , Ln = h, h has
a strict derivation from P , denoted P ` L, if either h is a fact or all the rules used for obtaining the
sequence L1, L2, . . . , Ln are strict rules.

Defeasible Argumentation. In the following lines we present some of the main concepts relevant to
the argumentation formalism of the DeLP framework. Queries in DeLP are supported by arguments;
let h be a literal, and P = (Π, ∆) a de.l.p., 〈A, h〉 is an argument structure for h, if A is a set of
defeasible rules of ∆, such that:

1. there exists a defeasible derivation for h from Π ∪ A,

2. the set Π ∪ A is non-contradictory, and

3. A is minimal: there is no proper subset A′ of A such that A′ satisfies conditions 1 and 2.

An argument A for h is a minimal non-contradictory set of defeasible rules, obtained from a
defeasible derivation for a given literal h. This literal is also called the ‘conclusion’ supported by A.
A sub-argument structure of 〈A, h〉 is an argument structure 〈B, q〉 such that B ⊆ A.

An argument structure 〈A1, h1〉 counter-argues, rebutts, or attacks 〈A2, h2〉 at literal h, if and only
if there exists a sub-argument 〈A, h〉 of 〈A2, h2〉 such that h and h1 disagree. Two literals h and h1

disagree if and only if the set Π ∪ {h, h1} is contradictory.

2.2.2 Defeasible Rules for the Semantic Web

The use of rules for providing reasoning capabilities to the Semantic Web is discussed in the work
presented in [1]. The authors show how description logics and definite Horn logic are not reducible
to each other, both having the ability to express things that the other cannot express. While it seems
natural and highly useful to add rules on top of web ontologies (RDF and OWL) this approach presents
computational and linguistic difficulties. The work proposes the use of rules for the ontology, logic
and proof layers of the semantic web. Their modeling of RDF(S) and OWL statements with rules
(based on the work of [8]) is shown in Table 2. The authors exemplify the usage of strict as well as
defeasible knowledge.

RDF(S) Statements OWL Statements
Statement(a, P, b) P (a, b) C sameClassAs D C(X) → D(X)
type(a,C) C(a) D(X) → C(X)
C subClassOf D C(X) → D(X) P samePropertyAs Q P (X,Y) → Q(X, Y)
P subPropertyOf Q P (X, Y) → Q(X,Y) Q(X, Y) → P (X, Y)
domain(P, C) P (X, Y) → C(X) transitivePoperty(P) P (X,Y), P (Y,Z) → P (X, Z)
range(P, C) P (X, Y) → C(Y) inverseProperty(P,Q) P (X,Y) → Q(X, Y)

Q(X, Y) → P (X, Y)
functionalProperty(P) P (X,Y), P (X, Z) → Y = Z

Figure 2: RDF(S) and OWL constructs using rules.

2.3 Knowledge Repositories for Collaborative Systems

In previous works [5, 4] a model for a collaborative problem solving process in virtual communities of
practice was presented. This process relies on a repository of knowledge, the body of information and
resources collected and developed by the members of the community. The repository is structured

following the RDF language model; formed by three different sets of components: resources -the
community assets-, properties -relations between resources and data to describe the resources- and
statements -sentences expressing information about resources through their properties-. The resources
contained in the repository are categorized according to a hierarchy of classes or resource types.
Properties are binary relations of two kinds: with resource types as domain and range, and with a
resource type as domain and a simple (predefined) value type as range. The first kind of property
allows to express relations between different resource types while the second helps on describing the
resource types with expressions using basic value types such as strings or numeric values. The last
set of components -the statements- are triples formed by three elements: a subject, a predicate and
an object. The subject is a resource, the element being described by the statement; the predicate is a
property, what describes the subject; and the object is the value of the property or resource to which
the subject is being related by the property.

The collaborative problem solving process was designed to provide members of online communi-
ties with computer support to help them share their knowledge and experience throughout the process
of solving a new problem. The model of problem solving process presented is defined in terms of
six steps, starting with the introduction of a new problem and finishing with the consolidation of its
solution. The process relies in the contents and form of the repository and interacts with it by using
the existing knowledge as well as enriching it with new. The six steps are:

i. problem registration,
ii. problem exploration,

iii. problem matching,
iv. solution design,
v. solution refinement and

vi. solution integration.

Problem registration is the triggering step and takes place when a member adds a new problem to
the repository, inviting the community to work in collaboration to build a solution for it. The second
step is the problem exploration, during this phase the people working on the process analyze the
problem with the objective of discovering information about the problem that will help members
understand it. Every piece of information about the problem is added to the repository in the form of
statements; new resources and properties may also be created. The following step is called problem
matching. In this step the new problem is compared against every other problem existing in the
repository to find similarities that may guide the process of building the solution. A number of
predefined criteria are used for the comparison. The fourth is the solution design step. A new resource
is added to the repository to represent the solution being built, this resource will be the subject of the
statements describing the solution. New statements are added to the repository to express the fact that
the new solution resource is being built to solve that particular problem. Whenever it is considered
possible, the problem is decomposed into sub problems to be solved by a similar process. After
the solution resource has been created, the solution refinement starts. This fifth step is where the
construction of the solution takes place. In the same way the problem was explored, the knowledge
discovered and created during the construction of the solution is incorporated as new elements of the
repository. New resources described by statements and possibly new properties to describe them are
obtained as a result of this step. Finally the solution integration step concludes the process. When the
solution construction can be considered finalized new statements expressing this fact are added to the
repository and the statements added during the solution design are deleted.

3 DEFEASIBLE KNOWLEDGE REPOSITORY

The objective is to incorporate the possibility of expressing defeasible knowledge in the shared repos-
itory as well as the participation of agents in the problem solving process to automate reasoning. In
order to do this it is necessary to perform a translation from the RDF(S) language used to model and
express the repository content to rules in a language that allows possibly inconsistent and incomplete
knowledge such as the DeLP language. In [1] and [7] the authors explain how to express RDF(S)
and OWL constructs in the form of rules; particularly in [7] a translation is shown from OWL-DL to
DeLP programs.

This section introduces the representation in DeLP language for each of the elements of the repos-
itory of knowledge presented in section 2.3. Figure 3 depicts the representation for each element of
the repository and exemplifies each rule with possible real values of elements in a repository.

Element Rule Examples
Classes (Resource Types) 1. C(X) book(X)

person(X)
string(X)

(SubClassOf relation) 2. C(X) —≺ D(X). publication(X) —≺ book(X).
Properties (Property domain) 3. C(X) —≺ P(X,Y). person(X) —≺ author(X,Y).

person(X) —≺ surname(X,Y).
book(X) —≺ book title(X,Y).

(Property range) 4. C(Y) —≺ P(X,Y). book(Y) —≺ author(X,Y).
string(Y) —≺ surname(X,Y).
string(Y) —≺ book title(X,Y).

(SubPropertyOf relation) 5. P(X,Y) —≺ Q(X,Y). title(X,Y) —≺ book title(X,Y).
Resources 6. C(a) person(res01)

book(res02)
string(saramagoJose)
string(EnsaioSobreACegueira)

Statements 7. P (a, b) author(res01, res02)
surname(res01, Saramago)
book title(res02, EnsaioSobreACegueira)

Figure 3: DeLP representation of the Knowledge Repository

The first and second rules show how classes (resource types in the repository) are modeled and
how the SubClassOf relation between two classes is represented. Properties are defined using
two rules, one to specify the domain class of the property and the other one to specify the range.
A third rule is given to specify the relation SubPropertyOf between properties. The resources
comprising the repository are modeled with the sixth rule which specifies the identifier representing
the resource and the class to which the resource belongs. The last rule models statements specifying
their predicate, subject and object.

4 PROBLEM SOLVING PROCESS

Solving problems is a process that human beings carry on sometimes in an unstructured manner and
sometimes following very precisely defined steps. In any case the process requires from the problem
solver to have the basic knowledge to support the construction of the solution, the ability to find out
the right tools to use, and some amount of creativity and reasoning capabilities to “join the pieces
together”. However, the human solver could obtain great benefits from the automation of parts of the

process. An intelligent software agent can ease the job of the human problem solver by taking care of
repetitive tasks and by providing automated reasoning. The software agent can present to the human
solver the results from its work for him to accept or decline the new generated knowledge and -when
accepted- to incorporate it to the shared repository. This section describes how this automation can
take place in each step of the process.

Classes Properties
Domain Range

person(X) thing(X) —≺ is about(X,Y). topic(Y) —≺ is about(X,Y).
practice area(X) person(X) —≺ expert in(X,Y). topic(Y) —≺ expert in(X,Y).
problem(X) report(X) —≺ best practice(X,Y). practice area(Y) —≺ best practice(X,Y).
report(X) topic(X) —≺ is relevant(X,Y). practice area(Y) —≺ is relevant(X,Y).
solution(X) person(X) —≺ can help(X,Y). problem(Y) —≺ can help(X,Y).
thing(X) report(X) —≺ recommended report(X,Y). problem(Y) —≺ recommended report(X,Y).
topic(X) solution(X) —≺ is solving(X,Y). problem(Y) —≺ is solving(X,Y).
. . . solution(X) —≺ solves(X,Y). problem(Y) —≺ solves(X,Y).

problem(X) —≺ sub problem(X,Y). problem(Y) —≺ sub problem(X,Y).
problem(X) —≺ depends on(X,Y). problem(Y) —≺ depends on(X,Y).
. . .

Table 1: Knowledge Repository Examples of Content: Classes and Properties

1. Problem Registration
The problem solving process is started by a member that presents a new problem for the com-

munity to consider and analyze in collaboration. This step is called the Problem Registration and it
consists of the member adding a new resource of type Problem to the repository. This is done by
adding a new fact to the knowledge base:

A member adds a new problem called problemIdXX. The new fact is:
problem(problemIdXX)

2. Problem Exploration
After the problem has been added to the repository and can be identified as a resource, the next

step is to acquire knowledge about the problem in order to provide members and the software agent
with a proper base to develop a solution. As a result of this Problem Exploration step, the mem-
bers will discover properties of the problem. Some of this properties will be already defined in the
repository so the members will add the statements to assert that information. Other properties will
need to be added to the repository. In any of these cases the properties relate the problem with other
resources, for those that do not already exist at this stage in the repository, the corresponding fact
to define them will be added. It may also be necessary sometimes to add new classes or resource
types to the repository definition in order to be able to represent every discovered resource. While the
members continue to add information about the problem, the software agent performs an analysis of
this information: an automated reasoning job that seeks the discovery of information and generation
of new knowledge from the existing in the repository. This task is performed by following a set of
rules that are given to the agent.

The people working on the construction of the solution for problemIdXX add new ele-
ments to the repository as new information about the problem is discovered. The software
agent follows the given rules to discover useful information. The example shows the
rules given to the agent. Once a member adds a sentence to state the topic of the prob-
lem (is about(problemIdXX, topicT)) the first rule indicates how to discover experts that
might help in the process. A second rule is given to find reports on best practices for any
practice area relevant for the topic of the problem.
can help(E, P) —≺ is about(P,T); expert in(E, T).
recommended report(R, P) —≺ is about(P,T); is relevant(T, A); best practice(A,R).

3. Problem Matching
In the third phase, -the Problem Matching step- the information added to the repository concerning

the new problem is compared against the information existing about the rest of the problems already
added and probably solved in the repository. For every problem in the repository the agent will
consider a set of queries designed to compare that problem with the problem under consideration. The
results will be of use for the problem solvers during the next phase of the process, when the solution
is designed. Finding similarities with other problems in the repository helps in the understanding of
the problem and shows possibilities for reusing work.

Three rules are defined for comparing the existence of statements about two problems using a
certain property: aANDb, aANDNOTb, aANDbV alues. The first and second rules ensure the
similarity (or difference) of the problems in terms of the property that describes them and the third
ensures the similarity in terms of the property as well as the value such property takes for the prob-
lems. These three rules are used to define a set of rules that compare the complete descriptions of
the problems. The first in this set of rules is describedSubset(P1, P2) which represents the fact that
the problem P1 has been described using a subset of the properties used to described the problem
P2. This is only accepted if there is a strict derivation proving that there exists a property common
to both problems and there is no property used to described P1 and not used to described P2. A
second rule describedSubsetProper(P1, P2) represents in a similar way the fact that the problem P1
has been described using a proper subset of the properties used to describe problem P2. A third
rule describedEq(P1, P2) represents pairs of problems with descriptions using the exact same set of
properties. Three more rules similar to these are defined to compare the description of the problems
considering in the comparison the values the properties take.

aANDb(property, A, B)← property(A,); property(B,)
aANDNOTb(property, A,B)← property(A,);∼ property(B,)
aANDbV alues(property,A, B)← property(A,X); property(B, X)

describedSubset(P1, P2)← aANDb(, P1, P2);∼ aANDNOTb(, P1, P2)
describedSubsetProper(P1, P2)← aANDb(, P1, P2); aANDNOTb(, P2, P1);∼ aANDNOTb(, P1, P2)
describedEq(P1, P2)← describedSubset(P1, P2); describedSubset(P2, P1)

describedSubsetV (P1, P2)← aANDbV alues(, P1, P2);∼ aANDNOTb(, P1, P2)
describedSubsetProperV (P1, P2)← aANDbV alues(, P1, P2); aANDNOTb(, P2, P1);∼ aANDNOTb(, P1, P2)
describedEqV alues(P1, P2)← describedSubsetV (P1, P2); describedSubsetV (P2, P1)

4. Solution Design
The solution design step can take place when the problem has been analyzed and it can be under-

stood enough to be able to decompose the problem into sub-problems, whenever this is possible. The
objective is to divide the problem into sub-problems following the divide-and-conquer strategy. Each
sub-problem is added to the repository in the same way as the original problem, and related to it by

creating a statement using the predicate sub problem. The relation among the different sub-problems
is analyzed to detect possible dependencies. A new resource to represent the solution is created and
the fact is added to the repository, together with a statement with predicate is solving to relate the
solution to the problem. If the problem was divided into sub-problems, the corresponding statements
to relate them to the original problem are added as shown here.

Examples of statements to relate the problem with created sub-problems and a statement
to express dependence between two problems are shown.
is solution(solutionIdXX)
is solving(solutionIdXX, problemIdXX)
sub problem(subprobIdXX1, problemIdXX)
sub problem(subprobIdXX2, problemIdXX)
. . .
sub problem(subprobIdXXn, problemIdXX)
depends on(subprobIdXX3, subprobIdXX5)

5. Solution Refinement
During the solution refinement step the members develop the solution to the problem. Every result

obtained during this step is incorporated to the repository as a new element: resources, statements,
properties, classes.

Examples of possible resources and statements discovered, created, and described during
the solution refinement step are shown below.
text document(documentXX)
software(applicationXX)
describes(documentXX, solutionIdXX)

6. Solution Integration
The solution refinement step finishes once the solution construction has been completed. This

event leads to the solution integration step, when the statement is solving(solutionIdXX, problemIdXX)
is removed from the repository and a new statement is added using the predicate solves.

A new statement relates the new solution to the problem, using the property solves as
predicate.
solves(solutionIdXX, problemIdXX)

After the sixth step is finished the solution to the problem has been developed and the information
has been stored in the repository. These steps are followed for every problem that the members add
to the shared repository. The process enriches the knowledge of the community significantly: the
number of facts and rules is increased with every step of the problem solving process. This is not
merely new information, it is new and valuable knowledge since many of these new rules and facts
are new relations between existing resources of the repository.

5 CONCLUSIONS

The work presented an initial approach to incorporating automated reasoning in a collaborative prob-
lem solving process based on Semantic Web languages. Relevant material was gathered, studied and
presented: the Semantic Web technologies and standards, appropriate logic and argumentation frame-
works and the ongoing work on these subjects. It showed how to represent the knowledge repository

using rules and including strict as well as defeasible knowledge. The problem solving process was
revised, explaining step by step how each phase in the process should be performed working with
the redefined knowledge repository. The tasks performed by the human solvers did not change. The
result is a simple but powerful model for the automation of the problem solving process that allows to
incorporate the help of software agents as collaborators, easing the job of the humans and providing
support for the knowledge discovery. While the work is in its initial stages, it provides a solid base
for the next steps. Among the goals for future work are the improvement and extension of the crucial
steps of the process from the point of view of automation such as the Problem Matching step, and the
exploration of different methods for problem comparison.

REFERENCES

[1] Grigoris Antoniou and Gerd Wagner. Rules and Defeasible Reasoning on the Semantic Web. In
Rules and Rule Markup Languages for the Semantic Web, volume 2876/2003 of Lecture Notes
in Computer Science, pages 111–120. Springer Berlin / Heidelberg, 2003.

[2] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific American, May
2001.

[3] Dan Brickley and Ramanathan V. Guha. RDF vocabulary description language 1.0: RDF
schema. W3C recommendation, W3C, February 2004. http://www.w3.org/TR/2004/REC-rdf-
schema-20040210/.

[4] Marı́a Clara Casalini, Elsa Estevez, and Tomasz Janowski. Collaborative Problem Solving in
Virtual Communities of Practice. - A Case Study in Disaster Prevention and Handling. In XII
Congreso Argentino de Ciencias de la Computación, pages 206–217. RedUNCI, 2006.

[5] Maria Clara Casalini, Tomasz Janowski, and Elsa Estevez. A Process Model For Collaborative
Problem Solving In Virtual Communities Of Practice. In Seventh IFIP Working Conference on
Virtual Enterprises., pages 343–350. Springer, September 2006.

[6] Alejandro Garcia and Guillermo Simari. Defeasible Logic Programming: An Argumentative
Approach. Theory and Practice of Logic Programming, 2002.

[7] Sergio A. Gómez, Carlos I. Chesñevar, and Guillermo R. Simari. Inconsistent Ontology Han-
dling by Translating Description Logics into Defeasible Logic Programming. INTELIGENCIA
ARTIFICIAL, 11(35):11–22, 2007.

[8] B. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic programs: Combining logic
programs with description logic, 2003.

[9] Graham Klyne and Jeremy J. Carroll. Resource description framework (RDF): Concepts and ab-
stract syntax. W3C recommendation, W3C, February 2004. http://www.w3.org/TR/2004/REC-
rdf-concepts-20040210/.

[10] Deborah L. McGuinness, Michael K. Smith, and Chris Welty. OWL web ontology language
guide. W3C recommendation, W3C, February 2004. http://www.w3.org/TR/2004/REC-owl-
guide-20040210/.

[11] Jean Paoli, C. M. Sperberg-McQueen, and Tim Bray. XML 1.0 recommendation. first edition
of a recommendation, W3C, February 1998. http://www.w3.org/TR/1998/REC-xml-19980210.

[12] Andy Seaborne and Eric Prud’hommeaux. SPARQL query language for RDF. W3C recommen-
dation, W3C, January 2008. http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/.

[13] Nigel Shadbolt, Tim Berners-Lee, and Wendy Hall. The semantic web revisited. IEEE Intelli-
gent Systems, 21(3):96–101, May 2006.

[14] Priscilla Walmsley and David C. Fallside. XML schema part 0: Primer second edition.
W3C recommendation, W3C, October 2004. http://www.w3.org/TR/2004/REC-xmlschema-
0-20041028/.

