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Abstract 
 
The Vehicle Routing Problem (VRP) deals with the assignment of a set of transportation orders to a 
fleet of vehicles, and the sequencing of stops for each vehicle to minimize transportation costs. In 
this paper we study the Capacitated VRP (CVRP), which is mainly characterized by using vehicles 
of the same capacity. Taking a basic GA to solve the CVRP, we propose a new problem dependent 
recombination operator, called Best Route Better Adjustment recombination (BRBAX). A 
comparison of its performance is carried out with respect to other two classical recombination 
operators. Also we conduct a study of different mutations in order to determine the best 
combination of genetic operators for this problem. The results show that the use of our specialized 
BRBAX recombination outperforms the others more generic on all problem instances used in this 
work for all the metrics tested. 
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1. INTRODUCTION  
 
The Vehicle Routing Problem (VRP) [10] consists in delivering goods to a set of customers with 
known demands through minimum cost vehicle routes, beginning and finishing at the depot. The 
VRP is a NP-hard problem [19] and has many industrial applications, being studied both theorical 
and practically. There are a large number of extensions to the canonical VRP [8]. One basic 
extension is known as the Capacitated VRP (CVRP), the one we focus on in this paper. 
The CVRP can be defined as follows. Let G = (V, E) be a complete undirected graph consisting of  
c + 1 nodes (V), and a set of edges E with non-negative weights and with associated travel times. 
The nodes represent c customers and the additional node is designated as the depot. Each customer i 
has associated a demand qi. There are k identical vehicles of capacity Q, which must deliver goods 
to a set of customers. Each route must start and end at the depot, and each customer must be served 
by exactly once by one vehicle. The problem is to minimize the total travel distance of a routing 
plan such that the total demand of any route does not exceed a vehicle capacity Q (the capacity 
constraint) and the duration of any route does not exceed an upper limit L (the route duration limit). 
Note that the above described VRP with the route duration limit is often separated from CVRP and 
called Distance-constrained VRP (DVRP). In this paper, this last extension is not considered.  
Due to the practical relevance of VRP and its NPhardness, many heuristic or metaheuristic solution 
methods have been proposed to solve the VRP. Some examples include Tabu Search [13], 
Simulated Annealing [20], Ant Colony [6], Evolutionary Algorithm [3, 24], among others.  
In this work, we have used Evolutionary Algorithms (EAs) [4, 17], in particular Genetic Algorithms 
(GAs), to find a minimum total travel distance of a route plan satisfying the vehicle capacity 
constraint. In recent years, GAs have drawn a great deal of attention from researchers to solve the 
CVRP due to its robustness and flexibility [7, 18]. 
GAs deal with a population of tentative solutions, each one encodes a problem solution on which 
genetic operators are applied in an iterative manner to progressively compute new higher quality 
solutions. Taking this GA as our basic algorithm to solve the CVRP, we here investigate the 
advantages of using a special built-in recombination, that incorporate problem specific knowledge, 
such as information about the customer’s demand and the distance of each route. The objective of 
this work is to find an effective recombination operator and to quantify the effects of including it 
into the algorithm procedure. Furthermore, we perform an empirical study where we compare the 
performance of the new recombination operator (BRBAX) with other classical recombination 
operators used in the literature to solve the CVRP. Also we use different mutation operators in order 
to determine the best combination of genetic operators. The central idea here is to evaluate the GA 
performance including these operators without using local search techniques, which was probed to 
improve the algorithm performance [1]. 
The remainder of this paper is organized as follows. The proposed GA is thoroughly described in 
Section 2. In Section 3 we review the studied genetic operators and present a detailed description of 
the new recombination operator. Section 4 reports on the algorithm performances, and finally, in 
Section 5 we give some conclusions and analyse future lines of research. 
 
 
2. GENETIC ALGORITHM FOR CVRP 
 
In this section we present a simple GA for solving the CVRP. In Algorithm 1 we can see the 
structure of a basic generational GA in which we will now explain the steps for solving our routing 
tasks. By simulating evolution, this algorithm maintains a population (P) of multiple individuals, 
which evolve throughout multiple generations (t) by allowing the reproduction and further 
enhancement of the fittest ones. 



Algorithm 1: Genetic Algorithm 
 
1:  t = 0; {current generation}  
2:  initialize(P(t)); 
3:  evaluate(P(t)); 
4:  while (not max_generations) do 
5:  P’(t) = evolve(P(t)); {recombination and mutation}  
6: evaluate (P’(t)); 
7: P(t + 1) = select new population from P’(t) U P(t); 
8: t = t + 1; 
9:   end while 
10: show best solutions; 
 
 
This algorithm creates an initial population (initialize(P(t))) of μ solutions in a random (uniform) 
way, and then evaluates these solutions. After that, the population goes into a cycle where it 
undertakes evolution. This consists of a recombination-mutation-selection cycle to compute 
improved individuals until a maximum number of generations (max_generations) is reached. The 
best solution is identified as the best individual ever found which minimizes the length of routes 
and respect the capacity constraint. Details of implementation are explained in following 
subsections. In fact, this metaheuristic provides not only one solution to the problem, but a set of 
solutions of good quality when the search finishes, since they end in a final population of well 
adapted individuals containing separate sub-optimal for the problem in hands. 
GAs are guided by the values computed by an objective function for each tentative solution until an 
optimum or an acceptable solution is found. The fitness value f(S) assigned to every individual S is 
computed as follows [14, 15]:  
 

f(S) = fRoutePlanCost(S) +  λ *  overcap(S)                                        
 
Function f(S) is computed by adding the total costs of all the routes (FRoutePlanCost(S)), and penalizes 
the fitness value only in the case that the capacity of any vehicle is exceeded. The function 
“overcap(S)” returns the overhead in capacity of the solution with respect to the maximum allowed 
value of each route. This value returned by “overcap(S)” is weighted by multiplying them by factor 
λ. In this work we have used λ = 1000 [11]. 
In a GA, individuals represent candidate solutions. A candidate solution to an instance of the CVRP 
must specify the number of vehicles required, the allocation of the demands to all these vehicles, 
and also the delivery order of each route.  
The adopted representation consists in a permutation of integer numbers (following the Alba and 
Dorronsoro’ ideas [1]). Each permutation will contain both customers and route splitters, which 
delimits different routes. The permutation of numbers [1…n] will have a length of n = c + k - 1 for 
representing a solution for the CVRP with c customers and k -1 route splitters. Each route is 
composed of the customers between two route splitters in the individual. Customers are represented 
with numbers [1…c], while the k - 1 route splitters belong to the range [c+1…n]. 
Note that due to the nature of the chromosome (permutation of integer numbers) route splitters must 
be different numbers, although it should be possible to use the same number for designating route 
splitters in the case of using other possible chromosome configuration. 
The number of vehicles k is calculated as follows:  
 

k = total_demand_Routes/vehicle_capacity * 1.3 
 
In this study, the length of routes is minimized independently of the number of vehicles used. 
Empty routes are allowed in this representation simply by placing two route splitters contiguously 
without customers between them. 
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Figure 1. Individual representing a solution for 10 customers and 4 vehicles 
 
For example, in Figure 1, we plot an individual representing a possible solution for a hypothetical 
CVRP instance with 10 customers using at most 4 vehicles. Values [1, … ,10] represent the 
customers while [11, …, 13] are the route splitters. Route 1 begins at the depot, visits customers 4, 
5, 2 (in that order), and returns to the depot. Route 2 goes from the depot to customers 1, 3, 10 and 
returns, and so on.  
 
 
3. GENETIC OPERATORS  
 
In this section we review the studied recombination and mutation operators and present a detailed 
description of the new recombination operator. 
 
3.1 Recombination Operators 
 
We have studied three recombination operators, from which two have been proposed for 
permutations representations in the past and used in previous works solving the VRP [1, 16, 21, 23, 
24]. Partial Mapped Crossover (PMX) [15] focuses on combining the order information from the 
two parents, taking into account the position and order of as many customers or splitter routes as 
possible. The other one, Edge Recombination Crossover (ERX) [22], focuses on the links between 
customers (edges) preserving the linkage between them. The main disadvantage of these traditional 
operators is that they do not incorporate knowledge of the problem to carry out the genetic 
exchange of information.  
The last operator, called Best Route Better Adjustment recombination (BRBAX), is a new one 
tailored for this problem. This operator transmits the best routes (groups of customers) of one parent 
to the offspring. In this work, good routes are the ones which make the best use of the vehicle 
capacity and also minimize the total travel distance. 
The BRBAX operator works as follows. Let m be the number of routes in one parent (parent1). In a 
first step, BRBAX sorts the m routes of parent1 in an increasing way regarding the difference 
between the demand of each route and the vehicle capacity. Then, it selects the best m/2 routes and 
placed them in the first positions of the child. The customers belonging to the selected routes are 
placed in the child separated by route splitters. Finally, the remaining positions of the child are 
filled with the customers or route splitters which do not belong to the inherited routes, in the order 
they appear in the other parent, parent2. Figure 2 gives an example for the route transfers in the 
course of a recombination operation and also the filling process of the remaining positions. 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2. Example of BRBAX recombination 
 
 
 
3.2 Mutation Operators 
 
The mutation operators will play an important role during the evolution since it is in charge of 
introducing a considerable degree of diversity in each generation. 
We have tested three mutation operators, they are Insertion [12], Swap [5], and the last one, called 
“Combined”, which is a combination of the previous ones [1]. The first two mutation operators are 
well-known methods found in the literature, and typically applied in routing problems. The 
Insertion operator selects a gene (either customer or route splitter) and inserts it in another 
randomly selected place of the same individual. On the other hand, Swap consists in randomly 
selecting two genes in a solution and exchanging them. Note that the induced changes might occur 
in an intra or inter-route way in all the two operators. The last operator, called combined, consists in 
applying Insertion and Swap operations to each individual with equal probability. 
 
 
4. IMPLEMENTATION 
 
Now we will comment on the actual implementation of the algorithms to ensure that this work is 
replicable in the future. Our algorithms are a basic GA including all possible combinations of 
recombination (BRBAX, ERX, and PMX) and mutation operators (Insertion, Swap and Combined). 
All these algorithms have been compared in terms of the quality of their results. The population size 
was set to 512 individuals. By default, the initial population is randomly generated. The maximum 
number of generations was fixed to 7500. The parents were selected using binary tournament. The 
recombination operators were applied with a probability of 0.65, while the mutation probability was 
set to 0.1. These parameters (population size, stop criterium, probabilities, etc.) were chosen after an 
examination of some values previously tested. Table 1 shows the parameterization used. 
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Table 1. Parameterization used in our GA 
 

Population Size 512 Individuals 
Number of Generations 7500 
Selection of Parents Binary Tournament 
Recombination Probability pc = 0.65 
Mutation Probability pm = 0.1 

 
 

Table 2. Used instances from the benchmark problems of Christofides et al. 
 

Instance Customers Best Value 
C2 75 835.26
C3 100 826.14
C4 100 1028.42
C5 200 1291.69
C11 120 1042.11
C12 150 819.56

 
 
The algorithms were implemented in C++ using the MALLBA software package [2] and executed 
on an Intel Pentium 4 at 2.4 GHz with 4 GB, under SuSE Linux with 2.4.19 kernel version. 
The computational tests were carried out with the standard CVRP benchmarks of Christofides et al. 
[9]. The 14 classical benchmark problems of Christofides et al. (C1–C14) consist of 50 – 200 
customers. Problems C6–C10, C13–C14, including the route duration constraint, are not considered 
in our experiments. The Table 2 shows the used instances in this work, together with  the number of 
customers and the best known solutions.  

 
 
4.1. Analysis Computational 
 
In this subsection we will analyze the results obtained with the different variants of the proposed 
GA acting on the selected problem instances. For each algorithm variant we have performed 30 
independent runs per instance using the parameter values described in the previous section.  
In order to obtain meaningful conclusions, we have performed an analysis of variance of the results. 
When the results followed a normal distribution, we use the ANOVA test to compare differences 
among three or more groups (multiple comparison test). We have considered a level of significance 
of α=0.05, in order to indicate a 95% confidence level in the results. When the results did not 
follow a normal distribution, we used the non-parametric Kruskal Wallis test (multiple comparison 
test), to distinguish meaningful differences among the means of the results for each algorithm. 
 
Table 3 shows the comparative results on the benchmarks of Christofides et al. The figures in this 
table stand for the best fitness values obtain (column Best), the average objective values of the best 
found feasible solutions (column Avg) and the average number of generations needed to reach the 
best values (column Gen) which represents the numerical effort. The minimum best values are 

with PMX recombination and for C3 and C12 w utation reaches the 

printed in bold. 
These results clearly show that the GA using Insertion operator outperforms the GAs using any 
other mutation operator, in terms of solution quality, for all instances; except for C5, C11 and C12 

ith ERX, where Combined m



 
Table 3.  Experimental results for the GA with all recombination and mutation operators 

 
In n Swap o dsertio C mbine  

Inst. Cross 
Best Avg Gen Best Avg Gen Best Avg Gen 

  BRBAX 906.48 1056.60 5297.47 1962.81 2172.97 3631.00 965.96 1105.97 6996.23
C2  1 1ERX 086.70 1408.60 4352.17 1892.01 2119.20 4381.80 195.93 1448.91 6296.90
  PMX 921.74 1028.30 6239.30 1822.45 2060.71 2283.83 963.90 1082.29 7044.13
  BRBAX 945.14 1094.80 7200.30 2361.80 2645.92 3589.83 1096.28 1229.36 7302.60
C3 1ERX 142.75 1399.60 6032.67 2190.21 2440.55 4361.93 1075.72 1441.81 6917.57
  PMX 977.78 1082.10 7063.40 2205.57 2480.12 2175.30 1065.61 1167.46 7244.10
  BRBAX 1377.53 1507.60 7425.20 3951.34 4284.78 3776.00 1624.47 1748.28 7433.30
C4 ERX 1618.78 1985.50 7123.53 3011.62 3545.34 4733.93 1690.40 2084.15 7275.23
  PMX 1441.90 1563.70 7301.00 3617.44 4046.62 2700.70 1523.14 1716.41 7390.50
  BRBAX 1964.08 2109.20 7462.50 5715.06 6787.96 4164.77 2284.22 2509.79 7443.67
C5  2ERX 2370.55 2919.40 7 18.27 4277.68 5600.36 4464.53 2416.88 3054.95 7317.30
  PMX 6495.7147731.00 59.37 5232.69 5852.00 3020.47 2160.18 2381.08 7348.23
  BRBAX 1737.77 2050.80 7369.70 4762.94 5292.54 3299.57 2103.54 2274.52 7283.13
C11  7 ERX 2279.79 2568.50 6 16.87 4283.55 5439.12 3770.83 2477.22 2806.27 7172.93
  PMX 5652.0014963.00 56.47 4417.25 5061.18 3386.53 2060.03 2336.40 7270.83
  BRBAX 1062.66 1190.90 7222.37 2809.05 3138.07 4158.33 1183.66 1334.32 7323.97
C12 3ERX 1235.73 1611.20 5 25.23 2284.26 2768.97 4948.93 1135.00 1500.90 6943.47
  PMX 3165.65 5858.70 38.83 2311.12 3049.54 2312.93 1147.51 1299.50 7227.23

 
 
best values. Using the test of multiple comparisons, we have verified that the differences among the 

ificant differences, in general, as shown by the 

utation of those studied regarding solution quality and 

rences in these cases with BRMAX are 

ation. As a result, BRBAX can discover and favour compact versions the useful building 

because it does not need to select the best routes to transmit to the child and to build the edges 

results are statistically significant. 
Regarding the average number of generations to reach the best value, Swap reaches their best 
solutions in a less number of generations but these solutions are of poor quality, except for C5, C11 
and C12 instances where PMX recombination is the fastest one. On the other hand, Insertion and
Combined mutations does not present mean sign
multiple comparison tests performed in each case. 
In conclusion, Insertion is the most suitable m
also minimum effort to reach the best value.  
Now, we turn to analyse the results obtained for the different recombination operators with the GA 
using Insertion (see Insertion columns of Table 3). For all instances, BRBAX reaches the best 
solutions but needs larger number of generations than the rest. This operator also gets the best 
averages values (statistically corroborated), except for C2 and C3 instances. For these two 
instances, PMX reaches the best mean values, but the diffe
not significant as it is shown by multiple comparison tests.  
Here we can infer that, in some way, BRBAX exploits the idea behind building blocks, in this case 
defined as a route, and tends to conserve good routes in the child produced during the 
recombin
blocks.  
Now we turn to analyze the time spent in the search. Figure 3 shows that Insertion mutation is the 
fastest mutation for all instances. In the other hand, PMX is the fastest recombination operator 
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Figure 3. Mean Spent time in the total search 

 
 
matrix as BRMAX and ERX, respectively. The ranking order is PMX, BRBAX and ERX from 
faster to slower ones. 
 
 
5. CONCLUSION 
 
In this paper we have analyzed the behavior of improved GAs for solving the CVRP. We employed 
a basic GA. We have compared some new problem specific operators with traditional ones. The 
study, validated from a statistical point of view, analyzes the capacity of the new recombination 
operator to improve the solution quality.  
Our results show that the use of operators incorporating specific knowledge from the problem 
works accurately, and, in particular, the combination of BRBAX recombination and the Insertion 
mutation obtains the best performance. These operators are based on the concept of building blocks, 
but here a building block is a group of customers which defines a route in the phenotype. This 
marks the difference with some of the traditional operators which randomly select the set of 
customers to be interchanged.  
As a future work, we plan to test the behavior of the GA using the proposed recombination with 
local search methods (i.e. 2-Opt and lambda-Interchange), which has shown an improvement in the 
quality solution in previous works. Also we proposed to construct parallel versions of  the 
algorithms studied in this work .  
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