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Abstract

In this paper, we present a novel model of an artificial immsystem (AlS), based on the process that
suffers the T-Cell. The proposed model is used for globahupation problems. The model operates on four
populations: Virgins, Effectors (CD4 and CD8) and Memorgck of them has a different role, representation
and procedures. We validate our proposed approach with af $est functions taken from the specialized
literature and we also compare our results with the resbligined by different bio-inspired approaches.
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Resumen

En este trabajo, se presenta un nuevo modelo de Sistemadnimtificial (SIA) basado en los procesos que
sufren las células T para resolver problemas de optintinagiiobal. El modelo, denominado MCT, trabaja so-
bre cuatro poblaciones con diferentes representaciomadgsacélulas y cada poblacion atraviesa por distintos
procesos. Se validd el modelo con 23 funciones tomadadlitiertdura especializada. El modelo es comparado
con diferentes enfoques bio-inspirados.
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1 INTRODUCTION

Problem optimization has been an active area of researchthé\seal world problems are more
complex the algorithms for solving them have to be fasterauuirate.

Over the last years, a bio-inspired system has call thetaiteaf some researchers, the Natural
Immune System (NIS) and its powerful capacity of informatgrocessing [5]. The NIS is a very
complex system with several defense mechanisms agaimsgfoorganisms. The main purpose of
the NIS is recognize all cells of the host and categorize tiemrder to induce the appropriate
immune response. The NIS learns through the evolution tondisish between self and non-self. The
NIS has many desirable characteristics from the point aff\égemputational, such as: uniqueness,
pattern recognition, diversity, tolerance faults, leagnand memory, self-organization, robustness,
cooperation between different layers, among others. Timese characteristics and a well-known
functionality about the NIS are excellent motivations teelep Artificial Immune Systems (AIS) to
hand global optimization problems.

The main motivation of the work presented in this paper iseiafy the behavior of a new model
of artificial immune system, it is called CTM, in the contextghobal optimization, the algorithm
solves some function minimization problems taken from fhecgalized literature.

The remainder of the paper is organized as follows. In SecBipwe define the problem we want
to solve. Section 3 describes some previous related wokedtion 4, we introduce the approach. In
Section 5, we present our experiments. In Section 6, oultsesme presented and they are discussed.
Finally, in Section 7, we present our conclusions and sonssipte paths for future work.

2 STATEMENT OF THE PROBLEM

A global optimization problem can be formalized as a péirf) whereS C R" andf :— R is an
n-dimensional real-value function. The goal is to find (if we minimizing) ar™* = (x1,...,2,) € S
such asr™ is a global optimum (minimum) of, i.e. V¥ € S : f(z*) < f(&). This generic function
can be difficult to optimize due to the presence of many logdinma. In general, the difficulty
increases when the dimensionality of the problem is growing

3 PREVIOUS WORK

Fast Evolutionary Programming (FEP) is one of the best ¢nolary algorithms for numerical opti-
mization. FEP is based on Conventional Evolutionary Prnognang and it uses a mutation operator
based on Cauchy random numbers to escape from local optiEraw@as validated with 23 functions
taken from the specialized literature [7].

Conventional Evolutionary Programming (CEP) is a Convwerdl Evolutionary Programming
which uses three different mutation operators: a Gaussiatatidn Operator (GMO), a Cauchy Mu-
tation Operator (CMO) and a Mean Mutation Operator (MMO)RGkas validated with 11 functions
taken from the specialized literature [1].

Olivetti de Franca F., Von Zuben F. and Nunes de Castro Lpgse a multimodal optimization
algorithm inspired by the immune human system, it is call@IAINET. It encoded the solutions
with real values in an Euclidean shape-space, OPT-AINEBR$&8 on the clonal selection principle.
OPT-AINET was validated with 18 functions taken from the@pkzed literature [3].

Cutello V., Narzisi G., Nicosia G. and Pavone M. propose amimological algorithm for con-
tinuous global optimization problems called OPT-IA. It iaded on the clonal selection principle.



OPT-IA uses a cloning operator, an inversely proportiogimutation operator and an aging oper-
ator, in order to eliminate the oldest cells or solutionsTa#R was validated with 23 functions taken
from the specialized literature [6].

Cutello V. and Nicosia G. and Pavone M. propose an improvesioe of OPT-IA [6] called OPT-
IMMALG. This approach uses real-code representation andwansely proportional hypermutation
operator. OPT-IMMALG was validated with 23 functions takemm the specialized literature [2] .

4 OUR PROPOSED MODEL

This paper presents a novel bio-inspired model, it is c&I€M. It is a new model of adaptive immune
system based on the immunitary responses mediate by thié Tte@remise is that the T-cells only
react with the presence of an antigen plus co-stimulantagsgithrough a series of actions. These
actions are influenced by a set of signal emitted by the Bceb., the signal determine the level
which the actions are trigged: proliferation and differation of the T-cells.

This model operates on four populations, correspondinigagddur groups in which the T-cells are
divided: (1) Virgin Cells (VC), (2) Effector Cells with cltsr denomination CD4 (CD4), (3) Effector
Cells with cluster denomination CD8 (CD8) and (4) MemoryI€€MC). The cluster denomina-
tion determines the properties of the cells. Each populaiacomposed by a set of T-cells whose
characteristics are subject to the population which betong

CTM consists on two phases, the firsgdognizing phages about the processes that suffer only
the virgin cells and the second orefféctor phaskis related to the processes that suffer the cells in
CD4, CD8 and MC. Theecognizing phaskas to provide two populations (CD4 and CD8) with some
diversity in order to the next phase can find a cell to optinti|egiven problem. While, theffector
phaseis in change to find this cell.

The characteristics of each cell and the processes thatsuaife the following.

¢ Virgin Cells (VC): these cells do not suffer the activatialgess, i. e., they do not proliferate
(clonal selection) nor differentiate. The VC’s functiorside the model is to provide diversity.
This is reached through the random acquisition of TCR rexspiThe T-Cell Receptor (TCR)
can be represented by bit strings or strings of real valuthdmatural immune system, the pos-
itive selection and negative selection have as goal to eéieithose cells that do not cooperate
or could be dangerous for the host. Taking into account thi€ept, the cells in the model are
exposed to these selections. The positive selection dis¢hose cells with a low recognizing
level to the antigen. The negative selection discard thdaimells (according to a threshold)
in order to mantain diversity in the population. The virgells are represented by:

— A TCR(TCR.b): represented by bit strings, it identifies the decisionaldes of the
problem.

— A TCR(TCRu): represented by a string of real values, it identifies theislon variables
of the problem.

— A cluster denominatio@D4: if it is active then the valid TCR is TCR.
— A cluster denominatio@DS: if it is active then the valid TCR is TCR
— Obijective function values for TCRR.
— Obijective function values for TCR

At the beginning both cluster denominations are active oBethe positive selection only one
of them will be active, the one that shows the best recoggitarthe antigen.



o Effector Cells with cluster denomination CD4: these cellfes the activation process. The
goal of these kind of cells is to explore the conflicting regi®f the search space using the
properties of the bit strings representation. A cell fromdd®composed by:

— A TCR(TCR.b): represented by a bit string, it identifies the decisionaldes of the
problem.

— Obijective function values for TCRR.
— Proliferation Level: it indicates the number of clones tvdt be receive the cell.

— Differentiation: it indicates the number of bits that wi bhange, when the differentiation
process is applied.

e Effector Cells with cluster denomination CD8: these cellfes an activation process. The
goal of these kind of cells is the same that CD4. But they uethperties of the real values
encoded. A cell from CD8 is composed by:

— A TCR(TCR.): represented by a string of real values, it identifies theislon variables
of the problem.

— Obijective function values for TCR
— Proliferation Level: it indicates the number of clones tidt be receive the cell.

— Differentiation: it indicates the number of decision vates that will be change, when
the differentiation process is applied.

e Memory Cells (MC): these cells too suffer the activationqass. The goal of these kind of cells
is to explore the neighborhood of the best found solutionpleying the real value represen-
tation. These cells are represented by the same compohahtSD8, but they suffer different
processes.

e The activation of the effector cells implies to select a deadivator (or stimulating) cells
and for each of them the cell which be the receptor of the dtimuThen, the stimulated (or
activated) cells proliferate and differentiate, accogdio their corresponding levels.

e The stimulating cells are those with the lowest recognitwvgl. The stimulated cells are those
with the highest recognizing level.

¢ At the beginning the proliferation level of each stimulatedl is given by a random value, but
then it is determined taking into account the proliferatievel of its stimulating cells. If the
stimulated cell is better than the stimulating cells, th&t finantain its own proliferation level,
otherwise the stimulated cells receive a level 10% lesstimastimulating cell.

e Memory cells proliferate and differentiate according teithproliferation and differentiation
levels, respectively. Both levels of a memory cell are iretefent from the others memory
cells.

e Exist a comunication process between CD4 and CDS8, the bistara CD4 is include into
CD8, replacing the worst cell in CD8.

e Each type of cell has its own differentiation process, whschlind to their representation and
population.



Differentiation for CD4 : the number of bits that will be changed is given by the peoétion
level, each decision variable and the bit are chosen in soranelay and the bit changes
according to a mutation (or reaction) probability preb ¢ pa.

Differentiation for CD8 : the number of decision variables that will be changed igwgily
the proliferation level, each variable is chosen in a rangh@ay and it changes according
to:

B N(0,1)
Sy (N k=) "
10000000gen

wherez andz’ are are the original and mutated decision variables, réispgc N (0, 1)
refers to a random number with a uniform distribution betwé®1). [« andll are the
upper and lower bounds af and gen is the current generation number. At the moment
of the differentiation of a cell, it taking into account thalwe of objective function of

its stimulating cell. In order to determinateif = (%)N(O’l), will be add or
substrates ta;, the following criterion are considered: 1) if the stimuitatcell is better
than the stimulated cell and the decision variable valuenheffirst cell is less than the
second one or if the stimulated cell is better than the stting cell and the decision
variable value of the first cell is less than the second one ths rested tar and 2) if
the stimulating cell is worst than the stimulated cell areldlecision variable value of the
first cell is less than the second one or if the stimulatingisdietter than the stimulated
cell and the decision variable value of the first cell is larp@n the second one thens

added tor. Both criterion are aimed to guide the search to the bestdsotutions.

Differentiation for MC : the number of decision variables that will be changed isigivy the
proliferation level, each variable is chosen in a random a@y it changes according to:

B N(0,1)
oy (N1 2
10000000gen

wherex andz’ are are the original and mutated decision variables, réispbc N (0, 1)
refers to a random number with a uniform distribution betwé®1). [« andll are the

upper and lower bounds afandgen is the current generation number. In a random way

) ) _ N(0,1 )
we decide ifr = (%) O \ill be added or subtracted 1o

Therefore, the general structure of our proposed modellfdrad optimization problems is given
in Algorithm 1.

5 EXPERIMENTAL SETUP

In order to validate our proposed model we tested it with acherark of 23 test functions taken
from the specialized literature [7] (see Table 1). The fiord can be divided on three groups with
different degree of difficulty: unimodal functiongi(to f;) which are relatively easy to optimize
but their complexity increases with the dimensionality;ltinuodal functions (s to fi3) they have
many local optima and they are hard to be solving by some dagdiion algorithms; multimodal
functions (f14 to f53) with a few local optima. Note thafs; is a discontinuous step function with
only one optimum angl; is a noise function which involves an uniformly distributechdom variable



Algorithm 1 Pseudo-code for CTM
1: Initialize_VC();

2: EvaluateVC();

3: AssignProliferation();

4: Active_CDs();

5. Divide_CDs();

6. PositiveSelectionCD4();

7. PositiveSelectionCD8();

8: NegativeSelectionCDA4();

9: NegativeSelectionCD8();
10: while Repeat a predeterminated number of evaluatitms
11:  while Repeat a predeterminated number of times{rgpdo
12: Active_CD4();
13:  end while

14:  SortCD4();

15:  ComunicationCD4.CD8();

16:  while Repeat a predeterminated number of times{rgpdo
17: Active_CD8();

18: end while

19:  SortCD8();
20: InsertCDsenMC();
21:  while Repeat a predeterminated number of times,(epdo
22: Active_MC();
23:  end while
24:  SortCM();

25.  Statistics();
26: end while

within [0, 1]. All problems are minimization problems. 50 independeuatswere performed for each
problem and the parameter settings are given in Table 2.

Our results are compared with respect to a Differential &voh algorithm (DE) [4], a Particle
Swarm Optimizer (PSO) [4], a simple Evolutionary Algorit{®EA) [4], an immunological algo-
rithm for continuous global optimization problems (OPT}[&] and an improved version of OPT-1A
(OPT-IMMALG) [2]. OPT-IA and OPT-IMMALG use the same numbafrfunction evaluations that
CTM. DE, PSO and SEA usex 10° function evaluations for all test functions.

6 DISCUSSION OF RESULTS

Table 3 shows the results obtained with CTM. We can see thit ®@&s able to reach the optimum
in 13 of the 23 test functionsf{, fs, f7, fi2, fia: fi6: fi7, fis, fi9, f20, fo1, fo2 @nd fo3). Besides,
CTM was able to reach the optimum on the 50 runs in 11 of the &3ftections (5, f7, fi2, fi4,
fie» f17, f18y f19, fo0, f21 @nd fo2). Additionally, it found acceptable (i.e., not too far frahe global
optimum) solutions for the rest of the test functions.

If we consider the groups in which the test functions areddidi we can see that CTM does
not have an excellent performance under the easier fursc{iario f), only in three of the seven
test function of this group CTM reaches the optimum. Undergbcond groupf§ to fi;3) CTM



Table 1: The 23 test functions used in our experimental sfjdivheren is the dimension of the
function, f,,.;, is the minimum value of the function, arfle R"

Test Function n S fmin
ASED: 30 [-100,100]" 0
fa(x) =320, | 27 [+ 115 ~1 | z7 | 30 [—10,10]" 0

f3(x) = S0 (27 ) xj) 30 [~100,100]" 0

fa(x) = maz; {| 2?2 ],1<i<n} 30 [—100, 100]™ 0

f5(x) =30 [100(xl+1 - x2)2 + (2 — 1)?] 30 [-30, 30]™ 0

Jolx) = S0y (2 +0.5)° 0 [-30,30 0

fr(x) = >0 iz} + random [0, 1) 30 [—1.28,1.28]" 0

fs(x) =201 | —wisin ( |£Cz|) 30 [—500, 500]™ -12569.5

fo(x) =Y (2 — 10 cos(2mz;) + 10) 30 [-5.12,5.12]" 0

f10(x) = —20exp (—0.21 [iN i) —exp (230 cos(2mz;)) 30 [—32,32]" 0

+20+e

Fi1(x) = o + 30, 22 — [, cos (17) 30 [-600,600]" 0

f12(x) = Z10sin®(my;) + Z::ll(yl — 1)2[1 + 10sin?(ry;41)]+ 30 [—50,50]™ 0

(yn_ ) +Zz 1 (xi110710014)7
yi=1+1(z; +1)

k(x; —a)™,  x;>a
u(zi,a,k,m)= ¢ 0, —a<z;i<a
k(—x; —a)™, x; < —a
fi3(x) = 0.1 {szn (3721) + X0 @i — 1)2[1 + sin?(3rzipa)] 30 [=50,50]" 0
+(zp — D[1 + sin? (27rx,)]} + ZZ L u(x;,5,100,4)
~1
- 25 n
Fua(@) = LOO X s } 2 [—65.536,65.536] 1
12
N 1 b+b T2 n
fis(®) = 212, [aw] 4 5, 5] 0.0003075
flG(f) = (4 2 1171 34 )1171 + 12 —|— (—4 —|— 4$%)ZC% 2 [—5, 5]" -10316285
f17(Z) = (x2 — 2523 + 221 — 6)2 + 10(1 — &) cos(z1) + 10 2 [-5,10] x [0,15] 0.398
flg( ) [1 + (ml + 22 + 1) (19 — 14z + 3z — 14z9 2 [—2, 2]” 3.0
+62172 + 373)] X [30 + (221 — 322)%(18 — 3221 + 1227 + 487>
—36x122 + 2723)]
flo(x) = — Zf 1 Ci - exp -1 Z;l 1z — a;j)? 4 [0,1]" -3.86
Jao(x) = =320y e - eap (—% Sy (ay — aiy)? 6 [0,1)" -3.32
for(x) = — Zle [(x —a;)(x —a;)T +¢]t 4 [0, 10]™ -10.15
foa(x) = =7 [(x — a;) (@ — a))T + ¢! 4 [0, 10]™ -10.39
foz(x) = — 23:1 0[(z — a;)(x —a;))T + ¢t 4 [0,10]™ -10.53

shows a good performance and for the last grofip to f23), our proposed model has an excellent
performance, only in one of the eleven functions CTM doegedthe optimum.

Comparing CTM with respect to the two AIS (OPT-IMMALG and O] (see Table 4), CTM
and OPT-IMMALG get a similar performace, if we consider thenber of test functions in which
the approaches reach the optimum in all runs. OPT-IMMALGeatdy than CTM under the first and
second groups of test functions and CTM is better under fing ginoup. CTM, in general, overcome
the performance of OPT-IA. Comparing CTM with respect to BEQ, SEA (see Table 4), DE is the
only approach that shows a performance better than CTM Hutfonthe first and second function



Table 2: Setting Parameters for each Problem

Function || Evaluations| |VC| | |CD4| | |CD8| | | MC'| | probhut—cpa | repepa | repeps | repuc
1 150000 100 20 20 20 0.01 800 10 10
2 200000 10 5 5 5 0.01 800 10 10
3 500000 10 5 5 5 0.01 800 10 10
4 500000 10 5 5 5 0.01 800 10 10
5 150000 100 20 20 20 0.01 800 10 10
6 150000 100 20 20 20 0.01 800 10 10
7 300000 100 20 20 20 0.02 800 10 10
8 900000 10 5 5 5 0.01 800 10 10
9 500000 10 5 5 5 0.02 80 10 10
10 150000 10 5 5 5 0.01 800 10 10
11 200000 100 20 20 20 0.02 800 10 10
12 150000 10 5 5 5 0.01 800 10 10
13 150000 100 20 20 20 0.02 800 10 10
14 10000 100 20 20 20 0.02 800 10 10
15 400000 100 20 20 20 0.02 800 10 10
16 10000 100 20 20 20 0.02 800 10 10
17 10000 100 20 20 20 0.02 800 10 10
18 10000 100 20 20 20 0.02 800 10 10
19 10000 100 20 20 20 0.02 800 10 10
20 20000 100 20 20 20 0.02 800 10 10
21 10000 100 20 20 20 0.02 800 10 10
22 10000 100 20 20 20 0.02 800 10 10
23 10000 100 20 20 20 0.01 100 10 10

groups. Figures 1a) and 1b) show the best mean obtained by, OPNMHIMMALG and OPT-1A and
CTM, DE, PSO and SEA, respectively, for all test functionsept £. Figure 1c) shows the mean

obtained by all approaches.

Table 3: Results obtained by CTM

Function | Optimum Best Worst Mean Std.Dev.
1 0.0 1.0x10-10 4.1x1077 7.0x10~10 9.0x10~10
2 0.0 4.45%x10~% 1.04486x10~° 1.4591x10~° 1.9639x10~°
3 0.0 0.0 0.0 0.0 0.0
4 0.0 9.70431x10~° 5.21267229x 102 8.6612784x 103 9.0135040x 103
5 0.0 2.193588k% 103 2.7374691261 3.892737636<10~ ! | 6.100025859% 10T
6 0.0 0.0 1.0 0.02 0.141421
7 0.0 0.0 0.0 0.0 0.0
8 -12569.5 || -12569.486618173(0 -12450.6911288609 -12540.9514628515 51.05865
9 0.0 2.0513% 10~ % 21.8890734828 7.8122983770 5.4742058641
10 0.0 1.469x10~" 5.52060x 10> 6.4684x10—° 8.5423x10~°
11 0.0 1.340x10~ " 1.32443213< 102 2.077314%103 3.7243454x 1073
12 0.0 0.0 0.0 0.0 0.0
13 0.0 1.0x1077 5.214x10~7 2.41x107°% 7.49x10~°%
14 1.0 0.998 0.998 0.998 0.0
15 0.000307 || 4.3612055x 103 4.3612227x10~3 4.3612060x 103 25x1077
16 -1.031628 -1.031628 -1.031628 -1.031628 0.0
17 0.398 0.397 0.397 0.397 0.0
18 3.0 3.0 3.0 3.0 0.0
19 -3.86 -3.86 -3.86 -3.86 0.0
20 -3.32 -3.32 -3.32 -3.32 0.0
21 -10.1422 -10.15 -10.15 -10.15 0.0
22 -10.3909 -10.40 -10.40 -10.40 0.0
23 -10.53 -10.53 -5.22 -10.38 0.76919




Table 4: Performance Comparision among CTM, OPT-IMMALG,, [PPSO, SEA and OPT-1A

Function | Optimum CTM OPT-IMMALG DE PSO SEA OPT-IA
1 0.0 7.0x10-10 0.0 0.0 0.0 1.789x10~3 | 9.23x10~ 12
2 0.0 1.4591x10~© 0.0 0.0 0.0 2.77x107% 0.0
3 0.0 0.0 0.0 2.02x1079 0.0 1.589x 102 0.0
4 0.0 8.6612784x 103 0.0 3.85x10~% | 2.107x10~ 18 1.982x10~2 1.0x10~2
5 0.0 3.89273763& 10 L 12 0.0 4.026 31.3189 3.02
6 0.0 2.0x10~2 0.0 0.0 4x10~2 0.0 0.2
7 0.0 0.0 1.521x10~° 4.939¢10~3 1.908<10~3 7.106x10~% 3.0x10~3
8 -12569.5 -12540.95 -12560.41 -12569.48 -7187.0 -11669.0 -12508.38
9 0.0 7.8122983770 0.0 0.0 49.17 0.71789 19.98
10 0.0 6.4684x10° 0.0 -1.19x10~ 15 1.4 1.0468<10~2 18.98
11 0.0 2.0773141x1073 0.0 0.0 2.35x10~2 4.63669<103 7.7x102
12 0.0 0.0 1.77x10~ 2T 0.0 3.819x10° 1T 4.56x10~F 0.137
13 0.0 2.41x10°8 1.686x10 2T - - - 1.51
14 1.0 0.998 0.998 1.02
15 0.000307 || 4.3612060x103 3.2x10~% 7.1x10~ %
16 -1.031628 -1.031628 -1.013 -1.03158
17 0.398 0.397 0.423 - - - 0.398
18 3.0 3.0 5.837 - - - 3.0
19 -3.86 -3.86 -3.72 - - - -3.72
20 -3.32 -3.32 -3.3292 -3.31
21 -10.1422 -10.15 -10.153 -9.11
22 -10.3909 -10.40 -10.402 -9.86
23 -10.53 -10.38 -10.536 -9.96

7 CONCLUSIONS AND FUTURE WORK

This paper presents a novel model AlS for solving globalmation problems. Itis called CTM and
it is based on the process that suffers the T-cells. The naultates on four populations: Virgins,
Effectors (CD4 and CD8) and Memory. The cells in each popriatave a different representation
and the processes they are subject do not are the same.

The approach was found to be competitive in a well-known berartk commonly adopted in the
specialized literature on global optimization problemse Bpproach was also found to be robust and
able to converge to optimum solutions in most cases and @yl golutions in others cases. CTM
was compared with five different bio-inspired approacheBTIMMALG, OPT-IA, DE, PSO and
SEA ) and it was very competitive.

We argue that the mutation operators adopted by our appreaapable of performing an efficient
local search over each clone, which allows the algorithnmiorove the found solutions .

Although there is room for improving our proposed, we haveieically shown that this approach
is able of dealing with a variety of global optimization pleims (i.e., unimodal functions, multimodal
functions with many and a few local optima).

Future work will be dedicated to improve the quality of sorakisons found, so that the approach
can be competitive with respect to the algorithms repregmetof the state-of-the-art in the area. For
example, we plan to analyze alternative mutation schemesidBs, we are working on the application
of this model in dynamic global optimization problems andstoained optimization problems .
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