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Abstract

In this paper, we present a novel model of an artificial immunesystem (AIS), based on the process that
suffers the T-Cell. The proposed model is used for global optimization problems. The model operates on four
populations: Virgins, Effectors (CD4 and CD8) and Memory. Each of them has a different role, representation
and procedures. We validate our proposed approach with a setof test functions taken from the specialized
literature and we also compare our results with the results obtained by different bio-inspired approaches.
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Resumen

En este trabajo, se presenta un nuevo modelo de Sistema Inmune Artificial (SIA) basado en los procesos que
sufren las células T para resolver problemas de optimización global. El modelo, denominado MCT, trabaja so-
bre cuatro poblaciones con diferentes representaciones para las células y cada población atraviesa por distintos
procesos. Se validó el modelo con 23 funciones tomadas de laliteratura especializada. El modelo es comparado
con diferentes enfoques bio-inspirados.
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1 INTRODUCTION

Problem optimization has been an active area of research. Asthe real world problems are more
complex the algorithms for solving them have to be faster andaccurate.

Over the last years, a bio-inspired system has call the attention of some researchers, the Natural
Immune System (NIS) and its powerful capacity of information processing [5]. The NIS is a very
complex system with several defense mechanisms against foreign organisms. The main purpose of
the NIS is recognize all cells of the host and categorize themin order to induce the appropriate
immune response. The NIS learns through the evolution to distinguish between self and non-self. The
NIS has many desirable characteristics from the point of view computational, such as: uniqueness,
pattern recognition, diversity, tolerance faults, learning and memory, self-organization, robustness,
cooperation between different layers, among others. Thus,these characteristics and a well-known
functionality about the NIS are excellent motivations to develop Artificial Immune Systems (AIS) to
hand global optimization problems.

The main motivation of the work presented in this paper is to verify the behavior of a new model
of artificial immune system, it is called CTM, in the context of global optimization, the algorithm
solves some function minimization problems taken from the specialized literature.

The remainder of the paper is organized as follows. In Section 2, we define the problem we want
to solve. Section 3 describes some previous related work. InSection 4, we introduce the approach. In
Section 5, we present our experiments. In Section 6, our results are presented and they are discussed.
Finally, in Section 7, we present our conclusions and some possible paths for future work.

2 STATEMENT OF THE PROBLEM

A global optimization problem can be formalized as a pair(S, f) whereS ⊆ Rn andf :→ R is an
n-dimensional real-value function. The goal is to find (if we are minimizing) a~x∗ = (x1, . . . , xn) ∈ S

such as~x∗ is a global optimum (minimum) onS, i.e. ∀~x ∈ S : f(~x∗) ≤ f(~x). This generic function
can be difficult to optimize due to the presence of many local optima. In general, the difficulty
increases when the dimensionality of the problem is growingup.

3 PREVIOUS WORK

Fast Evolutionary Programming (FEP) is one of the best evolutionary algorithms for numerical opti-
mization. FEP is based on Conventional Evolutionary Programming and it uses a mutation operator
based on Cauchy random numbers to escape from local optima. FEP was validated with 23 functions
taken from the specialized literature [7].

Conventional Evolutionary Programming (CEP) is a Conventional Evolutionary Programming
which uses three different mutation operators: a Gaussian Mutation Operator (GMO), a Cauchy Mu-
tation Operator (CMO) and a Mean Mutation Operator (MMO). CEP was validated with 11 functions
taken from the specialized literature [1].

Olivetti de França F., Von Zuben F. and Nunes de Castro L. propose a multimodal optimization
algorithm inspired by the immune human system, it is called OPT-AINET. It encoded the solutions
with real values in an Euclidean shape-space, OPT-AINET is based on the clonal selection principle.
OPT-AINET was validated with 18 functions taken from the specialized literature [3].

Cutello V., Narzisi G., Nicosia G. and Pavone M. propose an immunological algorithm for con-
tinuous global optimization problems called OPT-IA. It is based on the clonal selection principle.



OPT-IA uses a cloning operator, an inversely proportional hypermutation operator and an aging oper-
ator, in order to eliminate the oldest cells or solutions. OPT-IA was validated with 23 functions taken
from the specialized literature [6].

Cutello V. and Nicosia G. and Pavone M. propose an improved version of OPT-IA [6] called OPT-
IMMALG. This approach uses real-code representation and aninversely proportional hypermutation
operator. OPT-IMMALG was validated with 23 functions takenfrom the specialized literature [2] .

4 OUR PROPOSED MODEL

This paper presents a novel bio-inspired model, it is calledCTM. It is a new model of adaptive immune
system based on the immunitary responses mediate by the T-cell. Its premise is that the T-cells only
react with the presence of an antigen plus co-stimulant signals, through a series of actions. These
actions are influenced by a set of signal emitted by the T-cells, i.e., the signal determine the level
which the actions are trigged: proliferation and differentiation of the T-cells.

This model operates on four populations, corresponding to the four groups in which the T-cells are
divided: (1) Virgin Cells (VC), (2) Effector Cells with cluster denomination CD4 (CD4), (3) Effector
Cells with cluster denomination CD8 (CD8) and (4) Memory Cells (MC). The cluster denomina-
tion determines the properties of the cells. Each population is composed by a set of T-cells whose
characteristics are subject to the population which belongto.

CTM consists on two phases, the first (recognizing phase) is about the processes that suffer only
the virgin cells and the second one (effector phase) is related to the processes that suffer the cells in
CD4, CD8 and MC. Therecognizing phasehas to provide two populations (CD4 and CD8) with some
diversity in order to the next phase can find a cell to optimizethe given problem. While, theeffector
phaseis in change to find this cell.

The characteristics of each cell and the processes that suffers are the following.

• Virgin Cells (VC): these cells do not suffer the activation process, i. e., they do not proliferate
(clonal selection) nor differentiate. The VC’s function inside the model is to provide diversity.
This is reached through the random acquisition of TCR receptors. The T-Cell Receptor (TCR)
can be represented by bit strings or strings of real value. Inthe natural immune system, the pos-
itive selection and negative selection have as goal to eliminate those cells that do not cooperate
or could be dangerous for the host. Taking into account this concept, the cells in the model are
exposed to these selections. The positive selection discards those cells with a low recognizing
level to the antigen. The negative selection discard the similar cells (according to a threshold)
in order to mantain diversity in the population. The virgin cells are represented by:

– A TCR (TCR b): represented by bit strings, it identifies the decision variables of the
problem.

– A TCR(TCR r): represented by a string of real values, it identifies the decision variables
of the problem.

– A cluster denominationCD4: if it is active then the valid TCR is TCRb.

– A cluster denominationCD8: if it is active then the valid TCR is TCRr.

– Objective function values for TCRb.

– Objective function values for TCRr.

At the beginning both cluster denominations are active. Before the positive selection only one
of them will be active, the one that shows the best recognizing to the antigen.



• Effector Cells with cluster denomination CD4: these cells suffer the activation process. The
goal of these kind of cells is to explore the conflicting regions of the search space using the
properties of the bit strings representation. A cell from CD4 is composed by:

– A TCR (TCR b): represented by a bit string, it identifies the decision variables of the
problem.

– Objective function values for TCRb.

– Proliferation Level: it indicates the number of clones thatwill be receive the cell.

– Differentiation: it indicates the number of bits that will be change, when the differentiation
process is applied.

• Effector Cells with cluster denomination CD8: these cells suffer an activation process. The
goal of these kind of cells is the same that CD4. But they use the properties of the real values
encoded. A cell from CD8 is composed by:

– A TCR(TCR r): represented by a string of real values, it identifies the decision variables
of the problem.

– Objective function values for TCRr.

– Proliferation Level: it indicates the number of clones thatwill be receive the cell.

– Differentiation: it indicates the number of decision variables that will be change, when
the differentiation process is applied.

• Memory Cells (MC): these cells too suffer the activation process. The goal of these kind of cells
is to explore the neighborhood of the best found solutions employing the real value represen-
tation. These cells are represented by the same components that CD8, but they suffer different
processes.

• The activation of the effector cells implies to select a set of activator (or stimulating) cells
and for each of them the cell which be the receptor of the stimulus. Then, the stimulated (or
activated) cells proliferate and differentiate, according to their corresponding levels.

• The stimulating cells are those with the lowest recognizinglevel. The stimulated cells are those
with the highest recognizing level.

• At the beginning the proliferation level of each stimulatedcell is given by a random value, but
then it is determined taking into account the proliferationlevel of its stimulating cells. If the
stimulated cell is better than the stimulating cells, the first mantain its own proliferation level,
otherwise the stimulated cells receive a level 10% less thanthe stimulating cell.

• Memory cells proliferate and differentiate according to their proliferation and differentiation
levels, respectively. Both levels of a memory cell are independent from the others memory
cells.

• Exist a comunication process between CD4 and CD8, the best cell from CD4 is include into
CD8, replacing the worst cell in CD8.

• Each type of cell has its own differentiation process, whichis blind to their representation and
population.



Differentiation for CD4 : the number of bits that will be changed is given by the proliferation
level, each decision variable and the bit are chosen in a random way and the bit changes
according to a mutation (or reaction) probability probmut−CD4.

Differentiation for CD8 : the number of decision variables that will be changed is given by
the proliferation level, each variable is chosen in a randomway and it changes according
to:

x
′

= x ±

(

N(0, lu − ll)

10000000gen

)N(0,1)

(1)

wherex andx
′

are are the original and mutated decision variables, respectively. N(0, 1)
refers to a random number with a uniform distribution between (0,1). lu and ll are the
upper and lower bounds ofx andgen is the current generation number. At the moment
of the differentiation of a cell, it taking into account the value of objective function of

its stimulating cell. In order to determinate ifr =
(

N(0,lu−ll)
10000000gen

)N(0,1)
, will be add or

substrates tox, the following criterion are considered: 1) if the stimulating cell is better
than the stimulated cell and the decision variable value of the first cell is less than the
second one or if the stimulated cell is better than the stimulating cell and the decision
variable value of the first cell is less than the second one then r is rested tox and 2) if
the stimulating cell is worst than the stimulated cell and the decision variable value of the
first cell is less than the second one or if the stimulating cell is better than the stimulated
cell and the decision variable value of the first cell is larger than the second one thenr is
added tox. Both criterion are aimed to guide the search to the best found solutions.

Differentiation for MC : the number of decision variables that will be changed is given by the
proliferation level, each variable is chosen in a random wayand it changes according to:

x
′

= x ±

(

N(0, lu − ll)

10000000gen

)N(0,1)

(2)

wherex andx
′

are are the original and mutated decision variables, respectively. N(0, 1)
refers to a random number with a uniform distribution between (0,1). lu and ll are the
upper and lower bounds ofx andgen is the current generation number. In a random way

we decide ifr =
(

N(0,lu−ll)
10000000gen

)N(0,1)
, will be added or subtracted tox.

Therefore, the general structure of our proposed model for global optimization problems is given
in Algorithm 1.

5 EXPERIMENTAL SETUP

In order to validate our proposed model we tested it with a benchmark of 23 test functions taken
from the specialized literature [7] (see Table 1). The functions can be divided on three groups with
different degree of difficulty: unimodal functions (f1 to f7) which are relatively easy to optimize
but their complexity increases with the dimensionality; multimodal functions (f8 to f13) they have
many local optima and they are hard to be solving by some optimization algorithms; multimodal
functions (f14 to f23) with a few local optima. Note thatf6 is a discontinuous step function with
only one optimum andf7 is a noise function which involves an uniformly distributedrandom variable



Algorithm 1 Pseudo-code for CTM
1: Initialize VC();
2: EvaluateVC();
3: AssignProliferation();
4: Active CDs();
5: Divide CDs();
6: PositiveSelectionCD4();
7: PositiveSelectionCD8();
8: NegativeSelectionCD4();
9: NegativeSelectionCD8();

10: while Repeat a predeterminated number of evaluationsdo
11: while Repeat a predeterminated number of times (repCD4) do
12: Active CD4();
13: end while
14: Sort CD4();
15: ComunicationCD4 CD8();
16: while Repeat a predeterminated number of times (repCD8) do
17: Active CD8();
18: end while
19: Sort CD8();
20: Insert CDs en MC();
21: while Repeat a predeterminated number of times (repMC) do
22: Active MC();
23: end while
24: Sort CM();
25: Statistics();
26: end while

within [0, 1]. All problems are minimization problems. 50 independents runs were performed for each
problem and the parameter settings are given in Table 2.

Our results are compared with respect to a Differential Evolution algorithm (DE) [4], a Particle
Swarm Optimizer (PSO) [4], a simple Evolutionary Algorithm(SEA) [4], an immunological algo-
rithm for continuous global optimization problems (OPT-IA) [6] and an improved version of OPT-IA
(OPT-IMMALG) [2]. OPT-IA and OPT-IMMALG use the same numberof function evaluations that
CTM. DE, PSO and SEA use5 × 105 function evaluations for all test functions.

6 DISCUSSION OF RESULTS

Table 3 shows the results obtained with CTM. We can see that CTM was able to reach the optimum
in 13 of the 23 test functions (f3, f6, f7, f12, f14, f16, f17, f18, f19, f20, f21, f22 andf23). Besides,
CTM was able to reach the optimum on the 50 runs in 11 of the 23 test functions (f3, f7, f12, f14,
f16, f17, f18, f19, f20, f21 andf22). Additionally, it found acceptable (i.e., not too far fromthe global
optimum) solutions for the rest of the test functions.

If we consider the groups in which the test functions are divided, we can see that CTM does
not have an excellent performance under the easier functions (f1 to f7), only in three of the seven
test function of this group CTM reaches the optimum. Under the second group (f8 to f13) CTM



Table 1: The 23 test functions used in our experimental studies, wheren is the dimension of the
function,fmin is the minimum value of the function, andS ∈ Rn

Test Function n S fmin

f1(x) =
∑n

i=1 x2
i 30 [−100, 100]n 0

f2(x) =
∑n

i=1 | x2
i | +

∏n

i=1 | x2
i | 30 [−10, 10]n 0

f3(x) =
∑n

i=1

(

∑i

j=1 xj

)2

30 [−100, 100]n 0

f4(x) = maxi

{

| x2
i |, 1 ≤ i ≤ n

}

30 [−100, 100]n 0
f5(x) =

∑n−1
i=1 [100(xi+1 − x2

i )
2 + (xi − 1)2] 30 [−30, 30]n 0

f6(x) =
∑n

i=1 (⌊xi + 0.5⌋)2 30 [−30, 30]n 0
f7(x) =

∑n

i=1 ix4
i + random [0, 1) 30 [−1.28, 1.28]n 0

f8(x) =
∑n

i=1 −xisin
(

√

|xi|
)

30 [−500, 500]n -12569.5

f9(x) =
∑n

i=1(x
2
i − 10 cos(2πxi) + 10) 30 [−5.12, 5.12]n 0

f10(x) = −20exp
(

−0.2
√

1
n

∑n

i=1 x2
i

)

− exp
(

1
n

∑n

i=1 cos(2πxi)
)

30 [−32, 32]n 0

+20 + e

f11(x) = 1
4000 +

∑n

i=1 x2
i −

∏n

i=1 cos
(

xi√
i

)

30 [−600, 600]n 0

f12(x) = π
n
10sin2(πyi) +

∑n−1
i=1 (yi − 1)2[1 + 10sin2(πyi+1)]+ 30 [−50, 50]n 0

(yn − 1)2 +
∑n

i=1 u(xi, 10, 100, 4),
yi = 1 + 1

4 (xi + 1)

u(xi, a, k, m) =







k(xi − a)m, xi > a

0, −a ≤ xi ≤ a

k(−xi − a)m, xi < −a

f13(x) = 0.1
{

sin2(3πx1) +
∑n−1

i=1 (xi − 1)2[1 + sin2(3πxi+1)] 30 [−50, 50]n 0

+(xn − 1)[1 + sin2 (2πxn)]} +
∑n

i=1 u (xi, 5, 100, 4)

f14(~x) =

[

1
500 +

∑25
j=1

1

j+
∑

2

i=1
(xi−aij)6+

]−1

2 [−65.536, 65.536]n 1

f15(~x) =
∑11

i=1

[

ai
x1(b2i +bix2)
b2

i
+bix3+x4

]2

4 [−5, 5]n 0.0003075

f16(~x) = (4 − 2.1x2
1 +

x4

1

3 )x2
1 + x1x2 + (−4 + 4x2

2)x
2
2 2 [−5, 5]n -1.0316285

f17(~x) = (x2 −
5.1
4π2 x2

1 + 5
π
x1 − 6)2 + 10(1 − 1

8π
) cos(x1) + 10 2 [−5, 10]× [0, 15] 0.398

f18(~x) = [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2
1 − 14x2 2 [−2, 2]n 3.0

+6x1x2 + 3x2
2)] × [30 + (2x1 − 3x2)

2(18 − 32x1 + 12x2
1 + 48x2

−36x1x2 + 27x2
2)]

f19(x) = −
∑4

i=1 ci · exp
(

− 1
π

∑4
j=1(xj − aij)

2
)

· 4 [0, 1]n -3.86

f20(x) = −
∑4

i=1 ci · exp
(

− 1
π

∑6
j=1(xj − aij)

2
)

· 6 [0, 1]n -3.32

f21(x) = −
∑5

i=1[(x − ai)(x − ai)
T + ci]

−1 4 [0, 10]n -10.15
f22(x) = −

∑7
i=1[(x − ai)(x − ai)

T + ci]
−1 4 [0, 10]n -10.39

f23(x) = −
∑1

i=1 0[(x − ai)(x − ai)
T + ci]

−1 4 [0, 10]n -10.53

shows a good performance and for the last group (f14 to f23), our proposed model has an excellent
performance, only in one of the eleven functions CTM does notget the optimum.

Comparing CTM with respect to the two AIS (OPT-IMMALG and OPT-IA) (see Table 4), CTM
and OPT-IMMALG get a similar performace, if we consider the number of test functions in which
the approaches reach the optimum in all runs. OPT-IMMALG is better than CTM under the first and
second groups of test functions and CTM is better under the third group. CTM, in general, overcome
the performance of OPT-IA. Comparing CTM with respect to DE,PSO, SEA (see Table 4 ), DE is the
only approach that shows a performance better than CTM but only for the first and second function



Table 2: Setting Parameters for each Problem

Function Evaluations | V C | | CD4 | | CD8 | | MC | probmut−CD4 repCD4 repCD8 repMC

1 150000 100 20 20 20 0.01 800 10 10
2 200000 10 5 5 5 0.01 800 10 10
3 500000 10 5 5 5 0.01 800 10 10
4 500000 10 5 5 5 0.01 800 10 10
5 150000 100 20 20 20 0.01 800 10 10
6 150000 100 20 20 20 0.01 800 10 10
7 300000 100 20 20 20 0.02 800 10 10

8 900000 10 5 5 5 0.01 800 10 10
9 500000 10 5 5 5 0.02 80 10 10
10 150000 10 5 5 5 0.01 800 10 10
11 200000 100 20 20 20 0.02 800 10 10
12 150000 10 5 5 5 0.01 800 10 10
13 150000 100 20 20 20 0.02 800 10 10
14 10000 100 20 20 20 0.02 800 10 10
15 400000 100 20 20 20 0.02 800 10 10
16 10000 100 20 20 20 0.02 800 10 10
17 10000 100 20 20 20 0.02 800 10 10
18 10000 100 20 20 20 0.02 800 10 10
19 10000 100 20 20 20 0.02 800 10 10
20 20000 100 20 20 20 0.02 800 10 10
21 10000 100 20 20 20 0.02 800 10 10
22 10000 100 20 20 20 0.02 800 10 10
23 10000 100 20 20 20 0.01 100 10 10

groups. Figures 1a) and 1b) show the best mean obtained by CTM, OPT-IMMALG and OPT-IA and
CTM, DE, PSO and SEA, respectively, for all test functions except f8. Figure 1c) shows the mean
obtained by all approaches.

Table 3: Results obtained by CTM

Function Optimum Best Worst Mean Std.Dev.
1 0.0 1.0×10−10 4.1×10−9 7.0×10−10 9.0×10−10

2 0.0 4.45×10−8 1.04486×10−5 1.4591×10−6 1.9639×10−6

3 0.0 0.0 0.0 0.0 0.0
4 0.0 9.70431×10−5 5.21267229×10−2 8.6612784×10−3 9.0135040×10−3

5 0.0 2.1935881×10−3 2.7374691261 3.892737636×10−1 6.100025859×10−1

6 0.0 0.0 1.0 0.02 0.141421
7 0.0 0.0 0.0 0.0 0.0

8 -12569.5 -12569.4866181730 -12450.6911288609 -12540.9514628515 51.05865
9 0.0 2.05132×10−4 21.8890734828 7.8122983770 5.4742058641
10 0.0 1.469×10−7 5.52060×10−5 6.4684×10−6 8.5423×10−6

11 0.0 1.340×10−7 1.32443213×10−2 2.0773141×10−3 3.7243454×10−3

12 0.0 0.0 0.0 0.0 0.0
13 0.0 1.0×10−9 5.214×10−7 2.41×10−8 7.49×10−8

14 1.0 0.998 0.998 0.998 0.0
15 0.000307 4.3612055×10−3 4.3612227×10−3 4.3612060×10−3 2.5×10−9

16 -1.031628 -1.031628 -1.031628 -1.031628 0.0
17 0.398 0.397 0.397 0.397 0.0
18 3.0 3.0 3.0 3.0 0.0
19 -3.86 -3.86 -3.86 -3.86 0.0
20 -3.32 -3.32 -3.32 -3.32 0.0
21 -10.1422 -10.15 -10.15 -10.15 0.0
22 -10.3909 -10.40 -10.40 -10.40 0.0
23 -10.53 -10.53 -5.22 -10.38 0.76919



Table 4: Performance Comparision among CTM, OPT-IMMALG, DE, PSO, SEA and OPT-IA

Function Optimum CTM OPT-IMMALG DE PSO SEA OPT-IA
1 0.0 7.0×10−10 0.0 0.0 0.0 1.789×10−3 9.23×10−12

2 0.0 1.4591×10−6 0.0 0.0 0.0 2.77×10−4 0.0
3 0.0 0.0 0.0 2.02×10−9 0.0 1.589×10−2 0.0
4 0.0 8.6612784×10−3 0.0 3.85×10−8 2.107×10−16 1.982×10−2 1.0×10−2

5 0.0 3.892737636×10−1 12 0.0 4.026 31.3189 3.02
6 0.0 2.0×10−2 0.0 0.0 4×10−2 0.0 0.2
7 0.0 0.0 1.521×10−5 4.939×10−3 1.908×10−3 7.106×10−4 3.0×10−3

8 -12569.5 -12540.95 -12560.41 -12569.48 -7187.0 -11669.0 -12508.38
9 0.0 7.8122983770 0.0 0.0 49.17 0.71789 19.98
10 0.0 6.4684×10−6 0.0 -1.19×10−15 1.4 1.0468×10−2 18.98
11 0.0 2.0773141×10−3 0.0 0.0 2.35×10−2 4.63669×10−3 7.7×10−2

12 0.0 0.0 1.77×10−21 0.0 3.819×10−1 4.56×10−6 0.137
13 0.0 2.41×10−8 1.686×10−21 - - - 1.51

14 1.0 0.998 0.998 - - - 1.02
15 0.000307 4.3612060×10−3 3.2×10−4 - - - 7.1×10−4

16 -1.031628 -1.031628 -1.013 - - - -1.03158
17 0.398 0.397 0.423 - - - 0.398
18 3.0 3.0 5.837 - - - 3.0
19 -3.86 -3.86 -3.72 - - - -3.72
20 -3.32 -3.32 -3.3292 - - - -3.31
21 -10.1422 -10.15 -10.153 - - - -9.11
22 -10.3909 -10.40 -10.402 - - - -9.86
23 -10.53 -10.38 -10.536 - - - -9.96

7 CONCLUSIONS AND FUTURE WORK

This paper presents a novel model AIS for solving global optimization problems. It is called CTM and
it is based on the process that suffers the T-cells. The modeloperates on four populations: Virgins,
Effectors (CD4 and CD8) and Memory. The cells in each population have a different representation
and the processes they are subject do not are the same.

The approach was found to be competitive in a well-known benchmark commonly adopted in the
specialized literature on global optimization problems. The approach was also found to be robust and
able to converge to optimum solutions in most cases and very good solutions in others cases. CTM
was compared with five different bio-inspired approaches (OPT-IMMALG, OPT-IA, DE, PSO and
SEA ) and it was very competitive.

We argue that the mutation operators adopted by our approachis capable of performing an efficient
local search over each clone, which allows the algorithm to improve the found solutions .

Although there is room for improving our proposed, we have empirically shown that this approach
is able of dealing with a variety of global optimization problems (i.e., unimodal functions, multimodal
functions with many and a few local optima).

Future work will be dedicated to improve the quality of some solutions found, so that the approach
can be competitive with respect to the algorithms representative of the state-of-the-art in the area. For
example, we plan to analyze alternative mutation schemes. Besides, we are working on the application
of this model in dynamic global optimization problems and constrained optimization problems .
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Figure 1: a) Best Means obtained by the AIS; b) Best Means obtained by CTM, DE, PSO and SEA;
c) Best Means of f8 obtained obtained for each approach


