
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analytic solution and stationary phase approximation for the
Bayesian lasso and elastic net

Citation for published version:
Michoel, T 2017 'Analytic solution and stationary phase approximation for the Bayesian lasso and elastic
net' ArXiv.

Link:
Link to publication record in Edinburgh Research Explorer

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 14. Jun. 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/157784649?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/analytic-solution-and-stationary-phase-approximation-for-the-bayesian-lasso-and-elastic-net(9924c3ea-3bb1-4cb1-a767-35e27afc7b08).html


ANALYTIC SOLUTION AND STATIONARY PHASE APPROXIMATION FOR THE
BAYESIAN LASSO AND ELASTIC NET

TOM MICHOEL

ABSTRACT. Regression shrinkage and variable selection are important concepts in high-dimensional
statistics that allow the inference of robust models from large data sets. Bayesian methods achieve
this by subjecting the model parameters to a prior distribution whose mass is centred around zero.
In particular, the lasso and elastic net linear regression models employ a double-exponential distri-
bution in their prior, which results in some maximum-likelihood regression coefficients being iden-
tically zero. Because of their ability to simultaneously perform parameter estimation and variable
selection, these models have become enormously popular. However, there has been limited suc-
cess in moving beyond maximum-likelihood estimation and deriving estimates for the posterior
distribution of regression coefficients, due to a need for computationally expensive Gibbs sampling
approaches to evaluate analytically intractable partition function integrals. Here, through the use
of the Fourier transform, these integrals are expressed as complex-valued oscillatory integrals over
“regression frequencies”. This results in an analytic expansion and stationary phase approximation
for the partition functions of the Bayesian lasso and elastic net, where the non-differentiability of the
double-exponential prior distribution has so far eluded such an approach. Use of this approxima-
tion leads to highly accurate numerical estimates for the expectation values and marginal posterior
distributions of the regression coefficients, thus allowing for Bayesian inference of much higher di-
mensional models than previously possible.

1. INTRODUCTION

Modern statistical modelling and inference involves high-dimensional data sets where the
number of variables far exceeds the number of experimental samples. Application of tradi-
tional regression methods typically results in over-fitted models that do not generalize well to
unseen data. Prediction accuracy in these situations can often be improved by shrinking re-
gression coefficients towards zero, or setting some of them equal to zero (Friedman et al., 2001).
Bayesian methods achieve this by performing an ordinary regression subject to a prior distribu-
tion on the regression coefficients whose mass is concentrated around zero. For least squares
regression, the most popular methods are ridge regression (Hoerl and Kennard, 1970), corre-
sponding to a normally distributed prior; lasso regression (Tibshirani, 1996), corresponding to
a double-exponential or Laplace distribution prior; and elastic net regression (Zou and Hastie,
2005), whose prior interpolates between the lasso and ridge priors. Of these, only the lasso and
elastic net result in a selection of variables, i.e. in their maximum-likelihood solutions, a subset
of regression coefficients are exactly zero.

Although the maximum-likelihood lasso and elastic net regression models have proven ex-
tremely powerful across a wide range of application domains, they only provide a point estimate
for the regression coefficients. A fully Bayesian treatment that takes into account uncertainty due
to data noise and limited sample size, and provides posterior distributions and confidence in-
tervals, is therefore of great interest. Unsurprisingly, Bayesian inference for the lasso and elastic
net involves analytically intractable integrals and requires the use of numerical Gibbs sampling
techniques (Park and Casella, 2008; Hans, 2009; Li et al., 2010; Hans, 2011). However, Gibbs sam-
pling is computationally expensive and, particularly in high-dimensional settings, convergence
may be slow and difficult to assess or remedy (Liu, 2004; Mallick and Yi, 2013; Rajaratnam and
Sparks, 2015a,b). An alternative to Gibbs sampling for Bayesian inference is to use asymptotic
approximations to the intractable integrals based on Laplace’s method (Kass and Steffey, 1989;
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2 TOM MICHOEL

Rue et al., 2009). However, the log-likelihoods of the lasso and elastic net models contain a non-
differentiable term proportional to the `1-norm (i.e. sum of absolute values) of the regression
coefficients, and are therefore off-limits to the Laplace approximation which requires twice dif-
ferentiable log-likelihood functions.

The aim of this paper is to show that approximate Bayesian inference is in fact possible using a
Laplace-like approximation, more precisely the stationary phase or saddle point approximation
for complex-valued oscillatory integrals (Wong, 2001). This is achieved by rewriting the integrals
in question as a function of “frequencies” instead of as a function of the regression coefficients,
through the use of the Fourier transform. The appearance of the Fourier transform in this context
should not come as an altogether big surprise. The stationary phase approximation can be used to
obtain or invert characteristic functions, which are of course Fourier transforms (Daniels, 1954).
More to the point of this paper, there is an intimate connection between the Fourier transform of
the exponential of a convex function and the Legendre-Fenchel transform of that convex func-
tion, which plays a fundamental role in physics by linking microscopic statistical mechanics to
macroscopic thermodynamics, or quantum to classical mechanics (Litvinov, 2005). In particular,
convex duality (Boyd and Vandenberghe, 2004; Rockafellar, 1970), which maps the solution of a
convex optimization problem to that of its dual, is essentially equivalent to writing the partition
function of a Gibbs probability distribution in coordinate or frequency space (Appendix A).

Convex duality principles have been essential to characterize analytical properties of the max-
imum-likelihood solutions of the lasso and elastic net regression models (Osborne et al., 2000a,b;
El Ghaoui et al., 2012; Tibshirani et al., 2012; Tibshirani, 2013; Michoel, 2016). This paper shows
that equally powerful duality principles exist to study Bayesian inference problems.

2. ANALYTIC RESULTS

We consider the usual setup for linear regression where there are n observations of p predictor
variables and one response variable, and the effects of the predictors on the response are to be
determined by minimizing the least squares cost function ‖y − Ax‖2 subject to additional con-
straints, where y ∈ Rn are the response data, A ∈ Rn×p are the predictor data, x ∈ Rp are
the regression coefficients which need to be estimated and ‖v‖ = (∑n

i=1 |vi|2)1/2 is the `2-norm.
Without loss of generality, it is assumed that the response and predictors are centred and stan-
dardized,

n

∑
i=1

yi =
n

∑
i=1

Aij = 0 and
n

∑
i=1

y2
i =

n

∑
i=1

A2
ij = n for j ∈ {1, 2, . . . , p}. (1)

In a Bayesian setting, a hierarchical model is assumed where each sample yi is drawn indepen-
dently from a normal distribution with mean Ai•x and variance σ2, where Ai• denotes the ith row
of A, or more succintly,

y | A, x ∼ N (Ax, σ21), (2)

where N denotes a multivariate normal distribution, and the regression coefficients x are as-
sumed to have a prior distribution

x ∼ exp
[
− n

σ2

(
λ‖x‖2 + 2µ‖x‖1

)]
, (3)

where ‖x‖1 = ∑
p
j=1 |xj| is the `1-norm, and the prior distribution is defined upto a normaliza-

tion constant. The apparent dependence of the prior distribution on the data via the dimension
paramater n only serves to simplify notation, allowing the posterior distribution of the regression
coefficients to be written, using Bayes’ theorem, as

p(x | y, A) ∝ p(y | x, A)p(x) ∝ e−
n

σ2 L(x), (4)
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where

L(x) =
1

2n
‖y− Ax‖2 + λ‖x‖2 + 2µ‖x‖1 (5)

= xT(AT A
2n

+ λ1
)
x− 2

(ATy
2n

)Tx + 2µ‖x‖1 +
1

2n
‖y‖2 (6)

is minus the posterior log-likelihood function. The maximum-likelihood solutions of the lasso
(λ = 0) and elastic net (λ > 0) models are obtained by minimizing L, where the relative scal-
ing of the penalty parameters to the sample size n corresponds to the notational conventions of
Friedman et al. (2010)∗. In the current setup, it is assumed that the parameters λ ≥ 0, µ > 0 and
σ2 > 0 are given a priori.

To facilitate notation, a slightly more general class of cost functions is defined as

H(x | C, w, µ) = xTCx− 2wTx + 2µ‖x‖1, (7)

where C ∈ Rp×p is a positive-definite matrix, w ∈ Rp is an arbitrary vector and µ > 0. After
discarding the constant term 1

2n‖y‖2, L(x) is of this form, as is the so-called “non-naive” elastic

net, where C =
1

2n AT A+λ1

λ+1 (Zou and Hastie, 2005). More importantly perhaps, eq. (7) also covers
linear mixed models, where samples need not be independent (Rakitsch et al., 2012). In this case,
eq. (2) is replaced by

y | A, x ∼ N (Ax, σ2K),

for some covariance matrix K ∈ Rn×n, resulting in a posterior minus log-likelihood function with
C = 1

2n ATK−1 A + λ1 and w = 1
2n ATK−1y.

The requirement that C is positive definite, and hence invertible, implies that H is strictly
convex and hence has a unique minimizer. For the lasso (λ = 0) this only holds without further
assumptions if n ≥ p (Tibshirani, 2013); for the elastic net (λ > 0) there is no such constraint.
The Gibbs distribution on Rp for the cost function H(x | C, w, µ) with inverse temperature τ is
defined as

p(x) =
e−τH(x)

Z
,

where for ease of notation we have dropped explicit reference to C, w and µ. The normalization
constant Z =

∫
Rp e−τH(x)dx is called the partition function. There is no known analytic solution

for the partition function integral. However, in the posterior distribution (4), the inverse tem-
perature τ = n

σ2 is large, firstly because we are interested in high-dimensional problems where
n is large (even if it may be small compared to p), and secondly because we assume a priori
that (some of) the predictors are informative for the response variable and that therefore σ2, the
amount of variance of y unexplained by the predictors, must be small.

It therefore makes sense to seek an analytic approximation to the partition function for large
values of τ. However, the usual approach to approximate e−τH(x) by a Gaussian in the vicinity
of the minimizer of H and apply a Laplace approximation (Wong, 2001) is not feasible, because
H is not twice differentiable. Instead we observe that e−τH(x) = e−2τ f (x)e−2τg(x) where

f (x) =
1
2

xTCx− wTx (8)

g(x) = µ
p

∑
j=1
|xj|. (9)

Using Parseval’s identity for Fourier transforms (Appendix A.1), it follows that (Appendix A.3)

Z =
∫

Rp
e−2τ f (x)e−2τg(x)dx =

µp

(πτ)
p
2
√

det(C)

∫
Rp

e−τ(k−iw)TC−1(k−iw)

∏
p
j=1

(
k2

j + µ2
) dk. (10)

∗To be precise, Friedman et al. (2010) write the penalty term as λ̃( 1−α
2 ‖x‖2

2 + α‖x‖1), wich is obtained from (5) by
setting λ̃ = 2(λ + µ) and α = µ

λ+µ .
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FIGURE 1. Illustration of the stationary phase approximation procedure for p =
1. (a) Contour plot of the complex function (z− w)2. If µ = µ2, the integration
contour can be deformed from the imaginary axis to a steepest descent contour
parallel to the imaginary axis and passing through the saddle point z0 = w,
whereas if µ = µ1, this cannot be done without passing through the pole at
z = µ. (b,c) Contour plots of the complex function (z− w)2 − 1

τ ln(µ2 − z2) for
|w| < µ and |w| ≥ µ, respectively. In both cases the function has a unique saddle
point uτ with |uτ | < µ and a steepest descent contour that is locally parallel to
the imaginary axis.

After a change of variables z = −ik, Z can be written as a p-dimensional complex contour integral

Z =
(−iµ)p

(πτ)
p
2
√

det(C)

∫
iRp

eτ(z−w)TC−1(z−w)

∏
p
j=1

(
µ2 − z2

j
) dz. (11)

Cauchy’s theorem (Lang, 2002; Schneidemann, 2005) states that this integral remains invariant if
the integration contours are deformed, as long as we remain in a domain where the integrand
does not diverge (Appendix A.4). The analogue of Laplace’s approximation for complex contour
integrals, known as the stationary phase, steepest descent or saddle point approximation, then
states that an integral of the form (11) can be approximated by a Gaussian integral along a steepest
descent contour passing through the saddle point of the argument of the exponential function
(Wong, 2001). Here, the function (z − w)TC−1(z − w) has a saddle point at z = w. If |wj| <
µ for all j, the standard stationary phase approximation can be applied directly, but this only
covers the uninteresting situation where the maximum-likelihood solution x̂ = argminx H(x) =
0 (Appendix A.5). As soon as |wj| > µ for at least one j, the standard argument breaks down,
since to deform the integration contours from the imaginary axes to parallel contours passing
through the saddle point z0 = w, we would have to pass through a pole (divergence) of the
function ∏j(µ

2− z2
j )
−1 (Figure 1). Motivated by similar, albeit one-dimensional, analyses in non-

equilibrium physics (Lee et al., 2013), we instead consider a temperature-dependent function

H∗τ (z) = (z− w)TC−1(z− w)− 1
τ

p

∑
j=1

ln(µ2 − z2
j ), (12)

which is well-defined on the domain D = {z ∈ Cp : |<zj| < µ, j = 1, . . . , p}, where < denotes
the real part of a complex number. This function has a unique saddle point in D, regardless
whether |wj| < µ or not (Figure 1). Our main result is a steepest descent approximation of the
partition function around this saddle point.

Theorem 1. Let C ∈ Rp×p be a positive definite matrix, w ∈ Rp and µ > 0. Then the complex function
H∗τ defined in eq. (12) has a unique saddle point ûτ that is real, ûτ ∈ D ∩Rp, and is a solution of the set
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of third order equations

(µ2 − u2
j )[C

−1(w− u)]j −
uj

τ
= 0 , u ∈ Rp, j ∈ {1, . . . , p}. (13)

For Q(z) a complex analytic function of z ∈ Cp diverging at most polynomially, i.e. |Q(z)| ≤ |z|q for
some q ≥ 0, the generalized partition function

Z[Q] =
µp

(πτ)
p
2
√

det(C)

∫
Rp

e−τ(k−iw)TC−1(k−iw)Q(−ik)

∏
p
j=1

(
k2

j + µ2
) dk.

can be analytically expressed as

Z[Q] =
( µ√

τ

)p eτ(w−ûτ)TC−1(w−ûτ)√
∏

p
j=1

(
µ2 + û2

τ,j
)

det(C + Dτ)
exp

{ 1
4τ2 ∆τ

}
eRτ(ik)Q(ûτ + ik)

∣∣∣∣
k=0

, (14)

where Dτ is a diagonal matrix with diagonal elements

(Dτ)jj =
τ(µ2 − û2

τ,j)
2

µ2 + û2
τ,j

, (15)

∆τ is the differential operator

∆τ =
p

∑
i,j=1

[
τDτ(C + Dτ)

−1C
]

ij
∂2

∂ki∂k j
(16)

and

Rτ(z) =
p

∑
j=1

∑
m≥3

1
m

[ 1
(µ− ûτ,j)m +

(−1)m

(µ + ûτ,j)m

]
zm

j . (17)

This results in an analytic approximation

Z[Q] ∼
( µ√

τ

)p eτ(w−ûτ)TC−1(w−ûτ)Q(ûτ)√
∏

p
j=1

(
µ2 + û2

τ,j
)

det(C + Dτ)
(18)

The analytic expression in eq. (14) follows by changing the integration contours to pass through
the saddle point ûτ , and using a Taylor expansion of H∗τ (z) around the saddle point along the
steepest descent contour; eq. (18) then results by taking the first-order term in the expansion of
the differential operator exponential. However, because ∆τ and Rτ depend on τ, it is not a priori
evident that the higher-order terms in the exponential can be discarded. A detailed proof is given
in Appendix B. The analytic approximation in eq. (18) can be simplified further by expanding ûτ

around its leading term, resulting in an expression that recognizably converges to the sparse
maximum-likelihood solution (Appendix C). While eq. (18) is computationally more expensive
to calculate than the corresponding expression in terms of the maximum-likelihood solution, it
was found to be numerically more accurate (Section 3).

Various quantities derived from the posterior distribution can be expressed in terms of gener-
alized partition functions. The most important of these are the expectation values of the regres-
sion coefficients, which, using elementary properties of the Fourier transform (Appendix A.6),
can be expressed as

E(x) =
1
Z

∫
Rp

x e−τH(x)dx =
Z
[
C−1(w− z)

]
Z

∼ C−1(w− ûτ).

The leading term,
x̂τ ≡ C−1(w− ûτ), (19)

can be interpreted as an estimator for the regression coefficients in its own right, which inter-
polates smoothly (as a function of τ) between the ridge regression estimator x̂ridge = C−1w at
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τ = 0 and the maximum-likelihood elastic net estimator x̂ = C−1(w − û) at τ = ∞, where
û = limτ→∞ ûτ is the solution of the constrained optimization problem

û = argmin
{u∈Rp : |uj |≤µ,∀j}

(w− u)TC−1(w− u) (20)

(see Michoel (2016) and Appendix C). Because ûτ satisfies the convex optimization problem
ûτ = argminu∈Rp H∗τ (u), with H∗τ defined in eq. (12) (see Appendix B.1), which corresponds
to replacing the hard constraints |uj| ≤ µ in eq. (20) by a log-barrier function, Fenchel’s convex
duality theorem implies that x̂τ satisfies the convex optimization problem

x̂τ = argmin
x∈Rp

xTCx− 2wTx + 2
p

∑
j=1

gτ,µ(xj), (21)

where

gτ,µ(t) =
1
τ

(√
4τ2µ2t2 + 1− 1

)
+

1
τ

ln
(√1 + 4τ2µ2t2

2τ2t2

)
.

is a smooth approximation to the `1-penalty µ|t| for t ∈ R (Appendix D). With hindsight, this
could be used to prove Theorem 1 using Laplace approximation techniques without the use of
the Fourier transform.

Other quantities of interest are the marginal posterior distributions for subsets I ⊂ {1, . . . , p}
of regression coefficients, defined as

p(xI) =
1

Z(C, w, µ)

∫
R|Ic |

e−τH(x|C,w,µ)dxIc

where Ic = {1, . . . , p} \ I is the complement of I, |I| denotes the size of a set I, and we have
reintroduced temporarily the dependency on C, w and µ as in eq. (7). A simple calculation shows
that the remaining integral is again a partition function of the same form, more precisely:

p(xI) = e−τ(xT
I CI xI−2wT

I xI+2µ‖xI‖1)
Z(CIc , wIc − xT

I CI,Ic , µ)

Z(C, w, µ)
, (22)

where the subscripts I and Ic indicate sub-vectors and sub-matrices on their respective coordi-
nate sets. Hence the analytic approximation in eq. (14) can be used to approximate numerically
each term in the partition function ratio and obtain an approximation to the marginal posterior
distributions.

3. NUMERICAL EXPERIMENTS

To test the accuracy of the stationary phase approximation, algorithms to solve the saddle
point equations and compute the partition function and marginal posterior distribution, as well
as an existing Gibbs sampler algorithm (Hans, 2011), were implemented in Matlab (see Appendix
F for algorithm details; source code available from https://github.com/tmichoel/bayonet/).
Results were evaluated for independent predictors (or equivalently, one predictor) and two com-
monly used data sets for testing lasso and elastic net algorithms: the “diabetes data”, consisting
of p = 10 baseline predictor variables for n = 442 diabetes patients, and a quantitative response
measure of disease progression one year after baseline (Efron et al., 2004); and the “leukemia
data”, consisting of p = 3571 gene expression predictor variables for n = 72 leukemia samples,
and a binary response variable indicating whether the sample is type 1 (ALL) or type 2 (AML)
leukemia (Zou and Hastie, 2005) (see Appendix G for experimental details and data sources).

First the fundamental relation (cf. Appendix C)

lim
τ→∞

− 1
τ

log Z = Hmin = min
x∈Rp

H(x)

was tested. For independent predictors (p = 1), the partition function can be calculated analyti-
cally using the error function (Appendix E), and rapid convergence to Hmin is observed (Figure
2a). After scaling by the number of predictors p, a similar rate of convergence is observed for the
stationary phase approximation to the partition function for both the diabetes and leukemia data

https://github.com/tmichoel/bayonet/
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FIGURE 2. Convergence to the maximum-likelihood/minimum-energy solu-
tion. Top row: (− 1

τ log Z− Hmin)/p vs. τ and µ for the exact partition function
for independent predictors (p = 1, a), and for the stationary phase approxima-
tion to the partition function for the diabetes (b) and leukemia (c) data. Bottom
row: ‖x̂τ − x̂‖∞ for the exact expectation value for independent predictors (d),
and using the stationary phase approximation for the diabetes (e) and leukemia
(f) data. See Appendix G.2 and G.3 for experimental details.

(Figure 2b,c). However, convergence of the posterior expectation values x̂τ to the maximum-
likelihood coefficients x̂, as measured by the `∞-norm difference ‖x̂τ − x̂‖∞ = maxj |x̂τ,j − x̂j| is
noticeably slower, particularly in the p� n setting of the leukemia data (Figure 2d–f).

Next, the accuracy of the stationary phase approximation at finite τ was determined by com-
paring the marginal distributions for single predictors [i.e. where I is a singleton in eq. (22)] to
results obtained from Gibbs sampling. For simplicity, representative results are shown for spe-
cific hyper-parameter values (Appendix G.3). Application of the stationary phase approximation
resulted in marginal posterior distributions which were indistinguishable from those obtained
by Gibbs sampling (Figure 3). An approximation to eq. (22) of the form

p(xI) ≈ e−τ(xT
I CI xI−2wT

I xI+2µ‖xI‖1)e−τ[Hmin(CIc ,wIc−xT
I CI,Ic ,µ)−Hmin(C,w,µ)] (23)

was also tested. However, while eq. (23) is indistinguishable from eq. (22) for predictors with zero
effect size in the maximum-likelihood solution, it resulted in distributions that were squeezed
towards zero for transition predictors, and often wildly inaccurate for non-zero predictors (Fig-
ure 3). This is because eq. (23) is easily seen to be maximized at xI = x̂I , the global maximum-
likelihood value, whereas the true marginal distributions need not be maximized at this value.
Hence, accurate estimations of the marginal posterior distributions requires using the full station-
ary phase approximations [eq. (18)] to the partition functions in eq. (22). This does not contradict
the rapid the convergence of the log-parition function to the minimum-energy value (Figure 2),
because the latter is on a logarithmic scale, whereas the marginal distributions involve ratios of
partition functions on an absolute scale.

The stationary phase approximation is particularly advantageous in prediction problems, where
the response value ỹ ∈ R for a newly measured predictor sample Ã ∈ R1×p is obtained using re-
gression coefficients learned from training data (y, A). In Bayesian inference, ỹ is set to the expec-
tation value of the posterior predictive distribution (Friedman et al., 2001), ỹ = E(y) = ÃE(x).
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FIGURE 3. Marginal posterior distributions for the diabetes (a–c), and leukemia
data (d–f). In red, stationary phase approximation for the marginal posterior
distribution of selected predictors. In blue, Gibbs sampling histogram (104 sam-
ples). In yellow, maximum-likelihood-based approximation. Shown are the
distributions for a zero, transition and non-zero maximum-likelihood predictor
(from left to right). The stars on the x-axes indicate the location of the maximum-
likelihood and posterior expectation value. See Appendix G.3 for experimental
details.

Computation of the posterior expectation values E(x) = x̂τ [eq. (19)] using the stationary phase
approximation requires solving only one set of saddle point equations, and hence can be per-
formed efficiently across a range of hyper-parameter values, in contrast to Gibbs sampling, where
the full posterior needs to be sampled even if only expectation values are needed. To illustrate
how this benefits large-scale applications of the Bayesian elastic net, the prediction performance
of the Bayesian elastic net was compared to maximum-likelihood elastic net and ridge regression
using gene expression and drug sensitivity data for 17 anticancer drugs in 474 human cancer cell
lines from the Cancer Cell Line Encyclopedia (Barretina et al., 2012) (see Appendix G.4 for exper-
imental details and data sources). Using 10-fold cross-validation across both µ and τ, the median
correlation between predicted and true drug sensitivities was consistenly higher for the Bayesian
elastic net than the maximum-likelihood elastic net and ridge regression (µ = 0) (Figure 4a).
While the difference in optimal performance between Bayesian and maximum-likelihood elastic
net was not always large, Bayesian elastic net tended to be optimized at larger values of µ (i.e. at
sparser maximum-likelihood solutions), and at these values the performance improvement over
maximum-likelihood elastic net was particularly pronounced (Figure 4b and Supplementary Fig-
ures S1 and S2). As expected, τ acts as a tuning parameter that allows to smoothly vary from the
maximum-likelihood solution at large τ (here, τ ∼ 106) to the solution with best cross-validation
performance (here, τ ∼ 103 − 104) (Figure 4c and Supplementary Figures S1 and S2). The im-
proved performance at sparsety-inducing values of µ suggests that the Bayesian elastic net is
uniquely able to identify the dominant predictors for a given response (the non-zero maximum-
likelihood coefficients), while still accounting for the cumulative contribution of predictors with
small effects. Comparison with the unpenalized (µ = 0) ridge regression coefficients shows
that the Bayesian expectation values are strongly shrunk towards zero, except for the non-zero
maximum-likelihood coefficients, which remain relatively unchanged (Figure 4d), resulting in a
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FIGURE 4. Predictive accuracy on the Cancer Cell Line Encyclopedia. a. Me-
dian correlation coefficient between predicted and true drug sensitivities over
10-fold cross-validation, using Bayesian posterior expectation values (red) and
maximum-likelihood elastic net (blue) and ridge (yellow) regression values for
the regression coefficients; λ = 0.1 was fixed, while µ and τ were optimized over
20, resp. 13 geometric values. b. Median 10-fold cross-validation value for the
correlation coefficient between predicted and true sensitivities for the compound
PD-0325901 vs. µ, for the Bayesian elastic net at optimal τ (red), maximum-
likelihood elastic net (blue) and ridge regression (dashed). c. Median 10-fold
cross-validation value for the correlation coefficient between predicted and true
sensitivities for PD-0325901 for the Bayeslan elastic net vs. τ and µ. d. Scatter
plot of expected regression coefficients in the Bayesian elastic net for PD-0325901
at µ = 0.068 and optimal τ = 103 vs. ridge regression coefficient estimates; co-
efficients with non-zero maximum-likelihood elastic net value at the same µ are
indicated in red. See Appendix G.4 for experimental details.

double-exponential distribution for the regression coefficients. This contrasts with ridge regres-
sion, where regression coefficients are normally distributed leading to over-estimation of small
effects, and maximum-likelihood elastic net, where small effects become identically zero and
don’t contribute to the predicted value.

4. CONCLUSIONS

The application of Bayesian methods to infer expected effect sizes and marginal posterior dis-
tributions in `1-penalized models has so far required the use of computationally expensive Gibbs
sampling methods. Here it was shown that highly accurate inference in these models is actu-
ally possible using an analytic stationary phase approximation to the partition function integrals.
This approximation exploits the fact that the Fourier transform of the non-differentiable double-
exponential prior distribution is a well-behaved exponential of a log-barrier function, which is
intimately related to the Legendre-Fenchel transform of the `1-penalty term. Thus, the Fourier
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transform is seen to play the same role for Bayesian inference problems as convex duality plays
for maximum-likelihood approaches. For simplicity, we have focused on the linear regression
model, where the invariance of multivariate normal distributions under the Fourier transform
greatly facilitates the analytic derivations. However, it is clear that similar results are expected to
hold for generalized linear and non-linear models (cf. Appendix A.2).

A limitation of the current approach may be that values of the hyper-parameters need to be
specified in advance, whereas in complete hierarchical models, these would be subject to their
own prior distributions. Incorporation of such priors will require careful attention to the inter-
change between taking the limit of and integrating over the inverse temperature parameter. In
many practical situations though, researchers will perform maximum-likelihood inference and
determine `1 and `2-penalty parameters by cross-validation or by specifying the level of sparsity.
Setting the residual variance parameter to its maximum a-posteriori value then allows to eval-
uate the maximum-likelihood solution in the context of the posterior distribution of which it is
the mode, while taking into account the amount of unexplained variance in the response, as has
been suggested previously (Hans, 2011). Alternatively, in applications where the posterior expec-
tation values of the regression coefficients are used instead of their maximum-likelihood values
to predict unmeasured responses, the optimal inverse-temperature parameter can be determined
by standard cross-validation on the training data.

No attempt was made to optimize the speed of the coordinate descent algorithm to solve
the saddle point equations (Appendix F.1). However, comparison to the Gibbs sampling algo-
rithm (Appendix F.5) shows that one cycle through all coordinates in the coordinate descent
algorithm is approximately equivalent to one cycle in the Gibbs sampler, i.e. to adding one more
sample. Empirically, it was found that the coordinate descent algorithm typically converges in
5-10 cycles starting from the maximum-likelihood solution, and 1-2 cycles when starting from
a neighbouring solution in the estimation of marginal distributions (Appendix F.3). In contrast,
Gibbs sampling typically requires 103-105 coordinate cycles to obtain stable distributions. Hence,
in applications where only the posterior expectation values or the posterior distributions for a
limited number of coordinates are sought, the computational advantage of the stationary phase
approximation is vast. On the other hand, each evaluation of the marginal distribution functions
requires the solution of a separate set of saddle point equations. Hence, computing these distri-
butions for all predictors at a large number of points with the current algorithm could become
equally expensive as Gibbs sampling. In practice, the need to evaluate all posterior distributions
should occur rarely, because a more efficient maximum-likelihood-based approximation to the
marginal posterior distributions was found to be accurate for the majority of predictors with zero
maximum-likelihood effect sizes.

In summary, expressing intractable partition function integrals as complex-valued oscillatory
integrals through the Fourier transform is a powerful approach for performing Bayesian infer-
ence in the lasso and elastic net regression models, and `1-penalized models more generally. Use
of the stationary phase approximation to these integrals results in highly accurate estimates for
the posterior expectation values and marginal distributions at a much reduced computational
cost compared to Gibbs sampling.

APPENDIX A. BASIC RESULTS IN FOURIER SPACE

A.1. Fourier transform conventions. Fourier transforms are defined with different scaling con-
ventions in different branches of science. Here, the symmetric version of the Fourier transform
written in terms of angular frequencies is used: for f a function on Rp, we define

F [ f ](k) = f̂ (k) =
1

(2π)
p
2

∫
Rp

f (x)e−ikT xdx

and

f (x) = F−1[F [ f ]
]
(x) =

1

(2π)
p
2

∫
Rp

f̂ (k)eikT xdk.
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Parseval’s identity states that for two functions f and g,∫
Rp

f (x)g(x)dx =
∫

Rp
f̂ (k)ĝ(k)dk,

where ·̄ denotes complex conjugation. For more details, see (Hunter and Nachtergaele, 2001,
Chapter 11).

A.2. Relation between convex duality and the Fourier transform. The motivation for using the
Fourier transform to study Bayesian inference problems stems from the correspondence between
the Fourier and Legendre-Fenchel transforms of convex functions. This correspondence is an
example of so-called idempotent mathematics, and a survey of its history and applications can
be found in Litvinov (2005), while a formal treatment along the lines below can be found in
Fedoryuk (1971); a summary of analogous properties between the Legendre-Fenchel and Fourier
transforms can also be found in Alonso and Forbes (1995). The basic argument is presented here,
without any attempt at being complete or rigorous.

Let h be a convex function on Rp and assume it is sufficiently smooth for the statements below
to hold without needing too much attention to detail. The Gibbs probability distribution for h
at inverse temperature τ is defined as p(x) = 1

Z e−τh(x), with Z =
∫

Rp e−τh(x)dx the partition
function. Define for z ∈ Cp

h∗τ(z) =
1
τ

ln
∫

Rp
e−τ[h(x)−zT x]dx.

By the Laplace approximation, it follows that for τ large and u ∈ Rp, to leading order in τ,

h∗τ(u) ≈ h∗(u) = max
x∈Rp

[uTx− h(x)], (24)

the Legendre-Fenchel transform of h. The Fourier transform of e−τh is

F
[
e−τh](τk) =

1

(2π)
p
2

∫
Rp

e−τh(x)e−iτkT xdx =
eτh∗τ(−ik)

(2π)
p
2

. (25)

Now assume that h = f + g can be written as the sum of two convex functions f and g. It is
instructive to think of h(x) as minus a posterior log-likelihood function of regression coefficients
x, with a natural decomposition in a part f (x) coming from the data likelihood and a part g(x)
representing the prior distribution on x. We again assume that f and g are smooth.

The Parseval identity for Fourier transforms yields∫
Rp

e−τ[ f (x)+g(x)]dx =
∫

Rp
F
[
e−τ f

]
(k)F

[
e−τg](k)dk =

( τ

2π

)p ∫
Rp

eτ[ f ∗τ (ik)+g∗τ(−ik)]dk,

where a change of variables k → τk was made. When τ is large, the Laplace approximation of
the l.h.s. states that, to leading order in τ

1
τ

ln
∫

Rp
e−τ[ f (x)+g(x)]dx ≈ − min

x∈Rp

[
f (x) + g(x)

]
= max

x∈Rp

[
− f (x)− g(x)

]
. (26)

The integral on the r.h.s. can be written as a complex contour integral∫
Rp

eτ[ f ∗τ (ik)+g∗τ(−ik)]dk =
1
ip

∫
iRp

eτ[ f ∗τ (z)+g∗τ(−z)]dz,

where iRp denotes a p-dimensional contour consisting of vertical contours running along the
imaginary axis in each dimension. The steepest descent or saddle point approximation (Wong,
2001) requires that we deform the contour to run through the saddle point, i.e. a zero of the
gradient function ∇[ f ∗τ (z) + g∗τ(−z)]. Under fairly general conditions (see for instance Daniels
(1954)), f ∗τ (z) + g∗τ(−z) will attain its maximum modulus at a real vector, and hence the new
integration contour will take the form z = ûτ + ik where ûτ = argminu∈Rp [ f ∗τ (u) + g∗τ(−u)] and
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k ∈ Rp. Note that in the limit τ → ∞, ûτ → û = argminu∈Rp [ f ∗(u) + g∗(−u)]. The stationary
phase approximation yields, again to leading order in τ

1
τ

ln
∫

Rp
eτ[ f ∗τ (ik)+g∗τ(−ik)]dk =

1
τ

ln
∫

Rp
eτ[ f ∗τ (ûτ+ik)+g∗τ(−ûτ−ik)]dk

≈ min
u∈Rp

[
f ∗τ (u) + g∗τ(−u)

]
≈ min

u∈Rp

[
f ∗(u) + g∗(−u)

]
(27)

Combining eqs. (26) and (27), we recover Fenchel’s well-known duality theorem

max
x∈Rp

[
− f (x)− g(x)

]
= min

u∈Rp

[
f ∗(u) + g∗(−u)

]
.

In summary, there is an equivalence between convex duality for log-likelihood functions and
switching from coordinate to frequency space using the Fourier transform for Gibbs probability
distributions, which becomes an exact mapping in the limit of large inverse temperature. As
shown in this paper, this remains true even when f or g are not necessarily smooth (e.g. if g(x) =
‖x‖1 is the `1-norm).

A.3. The Fourier transform of the multivariate normal and Laplace distributions. To derive
eq. (10), observe that f (x) is a Gaussian and its Fourier transform is again a Gaussian:

F (e−2τ f ) =
1

(2π)
p
2

∫
Rp

e−2τ f (x)eikT xdx =
1√

(2τ)p det(C)
exp

{
− 1

4τ
(k− 2iτw)TC−1(k− 2iτw)

}
.

(28)
To calculate the Fourier transform of e−τg, note that in one dimension∫

R
e−γ|x|e−ikxdx =

2γ

k2 + γ2 ,

and hence

F (e−2τg)(k) =
1

(2π)
p
2

p

∏
j=1

4µτ

k2
j + 4τ2µ2

.

After making the change of variables k′j =
1

2τ k j, eq. (10) is obtained.

A.4. Cauchy’s theorem in coordinate space. Cauchy’s theorem (Lang, 2002; Schneidemann, 2005)
states that we can freely deform the integration contours in the integral in eq. (11) as long as
we remain within a holomorphic domain of the integrand, or simply put, a domain where the
integrand does not diverge. Consider as a simple example the deformation of the integration
contours from zj ∈ iR in eq. (11) to zj ∈ w′j + iR, where |w′j| < µ for all j. We obtain

Z =
(−iµ)p

(πτ)
p
2
√

det(C)

∫ w′1+i∞

w′1−i∞
· · ·

∫ w′p+i∞

w′p−i∞
eτ(z−w)TC−1(z−w)

p

∏
j=1

1
µ2 − z2

j
dz1 . . . dzp

=
µp

(πτ)
p
2
√

det(C)

∫
Rp

e−τ(w′−w+ik)TC−1(w′−w+ik)
p

∏
j=1

1
µ2 − (w′j + ik j)2 dk,

where we parameterized zj = w′j + ik j. Using the inverse Fourier transform, and reversing the
results from Section 2 and Appendix A.3, we can write this expression as

Z =
∫

Rp
e−2τ f̃ (x)e−2τg̃(x),

where

f̃ (x) =
1
2

xTCx− (w− w′)Tx (29)

g̃(x) =
p

∑
j=1

(µ|xj| − w′jxj). (30)
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Comparison with eqs. (8)–(9) shows that the freedom to deform the integration contour in Fourier
space corresponds to an equivalent freedom to split e−τH(x) into a product of two functions.
Clearly eq. (30) only defines an integrable function e−2τg̃ if |w′j| < µ for all j, which of course cor-
responds to the limitation imposed by Cauchy’s theorem that the deformation of the integration
contours cannot extend beyond the domain where the function ∏j(µ

2 − z2
j )
−1 remains finite.

A.5. Stationary phase approximation in the zero-effect case. Assume that |wj| < µ for all j.
It then follows immediately that the maximum-likelihood or minimum-energy solution x̂ =
argminx H(x) = 0. As above, we can deform the integration contours in (11) into steepest descent
contours passing through the saddle point z0 = w of the function h(z) = (z−w)TC−1(z−w) (cf.
Figure 1a). We obtain

Z =
(−iµ)p

(πτ)
p
2
√

det(C)

∫ w1+i∞

w1−i∞
· · ·

∫ wp+i∞

wp−i∞
eτ(z−w)TC−1(z−w)

p

∏
j=1

1
µ2 − z2

j
dz1 . . . dzp

=
µp

(πτ)
p
2
√

det(C)

∫
Rp

e−τkTC−1k
p

∏
j=1

1
µ2 − (wj + ik j)2 dk, (31)

where we parameterized zj = wj + ik j. This integral can be written as a series expansion using
the following standard result, included here for completeness.

Lemma 1. Let C ∈ Rp ×Rp be a positive definite matrix and let ∆C be the differential operator

∆C =
p

∑
i,j=1

Cij
∂2

∂ki∂k j
.

Then
1

π
p
2
√

det(C)

∫
Rp

e−kTC−1k f̂ (k)dk =
(

e
1
4 ∆C f̂

)
(0).

Proof. First note that

∆Ce−ikT x = −∑
ij

Cijxixje−ikT x = −(xTCx) e−ikT x, (32)

i.e. eikT x is an ‘eigenfunction’ of ∆C with eigenvalue −(xTCx), and hence

e
1
4 ∆C e−ikT x = e−

1
4 xTCxe−ikT x.

Using the (inverse) Fourier transform, we can define

f (x) =
1

(2π)
p
2

∫
Rp

f̂ (k)eikT xdk,

and write

f̂ (k) =
1

(2π)
p
2

∫
Rp

f (x)e−ikT xdx.

Hence (
e

1
4 ∆C f̂

)
(k) =

1

(2π)
p
2

∫
Rp

f (x)e
1
4 ∆C eikT xdx =

1

(2π)
p
2

∫
Rp

f (x)e−
1
4 xTCxe−ikT xdx.

Using Parseval’s identity and the formula for the Fourier transform of a Gaussian [eq. (28)], we
obtain (

e
1
4 ∆C f̂

)
(0) =

1

(2π)
p
2

∫
Rp

f (x)e−
1
4 xTCxdx =

1

π
p
2
√

det(C)

∫
Rp

f̂ (k)e−kTC−1kdk

�
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In the derivation above, we have tacitly assumed that the inverse Fourier transform f of f̂ ex-
ists. However, the result remains true even if f is only a distribution, i.e. f̂ need not be integrable.
For a more detailed discussion, see (Hunter and Nachtergaele, 2001, Chapter 11, Section 11.9).

Applying Lemma 1 to eq. (31), it follows that

Z =
(µ

τ

)p
e

1
4τ ∆C

p

∏
j=1

1
µ2 − (wj + ik j)2

∣∣∣∣
k=0

=
(µ

τ

)p[ p

∏
j=1

1
µ2 − w2

j
+O

( 1
τ

)]
,

with ∆C as defined in eq. (32). It follows that the effect size expectation values are, to first order
in τ−1,

E(xj) =
1

2τ

∂ log Z
∂wj

∼ 1
τ

wj

µ2 − w2
j

,

which indeed converge to the minimum-energy solution x̂ = 0.

A.6. Generalized partition functions for the expected effects. Using elementary properties of
the Fourier transform, it follows that

F
[
xje−2τ f (x)](k) = i

∂F
[
e−2τ f (x)](k)

∂k j
, (33)

with f defined in eq. (8), and hence, repeating the calculations leading up to eq. (10), we find

E(xj) =

∫
Rp xje−τH(x)dx∫

Rp e−τH(x)dx
=

Z
[(

C−1(w− z)
)

j

]
Z

∼
[
C−1(w− ûτ)

]
j. (34)

Note that eq. (33) can also be applied to the Laplacian part e−2τg(x), with g defined in eq. (9). This
results in

E(xj) =

Z
[ zj

τ(µ2−z2
j )

]
Z

∼
ûτ,j

τ(µ2 − û2
τ,j)

. (35)

By the saddle point equations, eq. (13), eqs. (34) and (35) are identical. As a rule of thumb,
‘tricks’ such as eq. (33) to express properties of the posterior distribution as generalized partition
functions lead to accurate approximations if the final result does not depend on whether the trick
was applied to the Gaussian or Laplacian part of the Gibbs factor. For higher-order moments of
the posterior distribution, this means that the leading term of the stationary phase approximation
alone is not sufficient.

APPENDIX B. PROOF OF THEOREM 1

B.1. Saddle-point equations. Consider the function H∗τ defined in eq. (12),

H∗τ (z) = (z− w)TC−1(z− w)− 1
τ

p

∑
j=1

ln(µ2 − z2
j ),

with z restricted to the domain D = {z ∈ Cp : |<zj| < µ, j = 1, . . . , p}. Writing z = u + iv, where
u and v are the real and imaginary parts of z, respectively, we obtain

<H∗τ (z) = (u− w)TC−1(u− w)− vTC−1v− 1
2τ

p

∑
j=1

{
ln
[
(µ + uj)

2 + v2
j )
]
+ ln

[
(µ− uj)

2 + v2
j )
]}

=H∗τ (z) = 2(u− w)TC−1v− 1
τ

p

∑
j=1

{
arctan

( vj

µ + uj

)
+ arctan

( vj

µ− uj

)}
,

where <c and =c denote the real and imaginary parts of a complex number c, respectively.
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By the Cauchy-Riemann equations z = u + iv is a saddle point of H∗τ if and only if it satisfies
the equations

∂<H∗τ
∂uj

= 2[C−1(u− w)]j −
1
τ

{ µ + uj

(µ + uj)2 + v2
j
−

µ− uj

(µ− uj)2 + v2
j

}
= 0

∂<H∗τ
∂vj

= −2[C−1v]j −
1
τ

{ vj

(µ + uj)2 + v2
j
+

vj

(µ− uj)2 + v2
j

}
= 0

The second set of equations is solved by v = 0, and because <H∗τ (u + iv) < <H∗τ (u) for all u
and v 6= 0, it follows that v = 0 is the saddle point solution. Plugging this into the first set of
equations gives

[C−1(u− w)]j +
uj

τ(µ2 − u2
j )

= 0, (36)

which is equivalent to eq. (13).

B.2. Analytic expression for the partition function. Next, consider the complex integral

I = (−i)p
∫ i∞

−i∞
· · ·

∫ i∞

−i∞
eτH∗τ (z)Q(z)dz1 . . . dzp,

i.e. I is the generalized partition function upto a constant multiplicative factor. By Cauchy’s the-
orem we can freely deform the integration contours to a set of vertical contours running parallel
to the imaginary axis and passing through the saddle point, i.e. integrate over z = ûτ + ik, where
ûτ is the saddle point solution and k ∈ Rp. Changing the integration variable back from complex
z to real k, we find

I = eτ(w−ûτ)C−1(w−ûτ)
∫

Rp
e−τF(k)Q(ûτ + ik)dk

where

F(k) = kTC−1k− 2ikTC−1(ûτ − w) +
1
τ

p

∑
j=1

ln(µ− ûτ,j − ik j) +
1
τ

p

∑
j=1

ln(µ + ûτ,j + ik j).

First we show that the main contribution to the integral in I comes from a small region around
k = 0. This is true in fact for any set of vertical contours, not only those passing through the
saddle point, and follows from standard arguments for the Laplace approximation (Wong, 2001).

Lemma 2. Let u ∈ Rp with |uj| < µ for all j, Q̃ a complex analytic function on Rp with |Q̃(z)| ≤ |z|q
from some q ≥ 0, D0 a compact subdomain of Rp containing k = 0, and τ0 > 0. Then for τ > τ0,∣∣∣∣∫

Rp\D0

e−τ(kTC−1k−2ikTC−1(u−w)) Q̃(ik)

∏
p
j=1(µ

2 − (uj + ik j)2)
dk
∣∣∣∣ ≤ Ke−(τ−τ0)c,

where

c = min
k∈Rp\D0

kTC−1k > 0

K =
∫

Rp

e−τ0kTC−1k
∣∣Q(ik)

∣∣
∏

p
j=1

[
(µ2 − u2

j + ik2
j )

2 + 4u2
j k2

j
] 1

2
dk < ∞
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Proof.

∣∣∣∣∫
Rp\D0

e−τ(kTC−1k−2ikTC−1(u−w)) Q̃(ik)

∏
p
j=1(µ

2 − (uj + ik j)2)
dk
∣∣∣∣

≤
∫

Rp\D0

e−τkTC−1k
∣∣Q(ik)

∣∣
∏

p
j=1

[
(µ2 − u2

j + k2
j )

2 + 4u2
j k2

j
] 1

2
dk

≤ e−(τ−τ0)c
∫

Rp\D0

e−τ0kTC−1k
∣∣Q(ik)

∣∣
∏

p
j=1

[
(µ2 − u2

j + k2
j )

2 + 4u2
j k2

j
] 1

2
dk

≤ e−(τ−τ0)c
∫

Rp

e−τ0kTC−1k
∣∣Q(ik)

∣∣
∏

p
j=1

[
(µ2 − u2

j + k2
j )

2 + 4u2
j k2

j
] 1

2
dk = Ke−(τ−τ0)c.

That c > 0 and K < ∞ follows immediately from the assumptions of the Lemma. �

Lemma 2 implies that we can restrict the integral in I to a small domain around k = 0, or
equivalently, that we may henceforth assume that Q(ûτ + ik) has compact support.

Next we compute the Taylor series for F around k = 0. First note that the nth derivative of
f±j (k j) = ln(µ± ûτ,j ± ik j) evaluated at k j = 0 is given by

( f±j )(n)(0) = − (∓i)n(n− 1)!
(µ± ûτ,j)n .

By the saddle point equations (36)

1
τ

p

∑
j=1

f+
′

j (0)k j +
1
τ

p

∑
j=1

f−
′

j (0)k j =
i
τ

p

∑
j=1

k j

µ + ûτ,j
− i

τ

p

∑
j=1

k j

µ− ûτ,j
= 2ikTC−1(ûτ,j − w).

Hence the linear terms cancel and we obtain

F(k) =
1
τ

p

∑
j=1

[
ln(µ + ûτ,j) + ln(µ− ûτ,j)

]
+ kTC−1k +

1
τ

p

∑
j=1

µ2 + û2
τ,j

(µ2 − û2
τ,j)

2
k2

j

− 1
τ

p

∑
j=1

∑
n≥3

1
n

[ 1
(µ− ûτ,j)n +

(−1)n

(µ + ûτ,j)n

]
(ik j)

n

=
1
τ

p

∑
j=1

ln(µ2 − û2
τ,j) + kT(C−1 + D−1

τ )k− 1
τ

Rτ(ik),

with Dτ the diagonal matrix defined in eq. (15) and Rτ the function defined in eq. (17). Hence

I = eτ(w−ûτ)C−1(w−ûτ)
p

∏
j=1

1
µ2 − û2

τ,j

∫
Rp

e−τkT(C−1+D−1
τ )keRτ(ik)Q(ûτ + ik)dk.
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Application of Lemma 1 results in∫
Rp

e−τkT(C−1+D−1
τ )keRτ(ik)Q(ûτ + ik)dk

=
(2π)

p
2

(2τ)
p
2

√
det(C−1 + D−1

τ )
exp

{ 1
4τ2 ∆τ

}
eRτ(ik)Q(ûτ + ik)

∣∣∣∣
k=0

=
(π

τ

) p
2
(det(Dτ)det(C)

det(C + Dτ)

) 1
2

exp
{ 1

4τ2 ∆τ

}
eRτ(ik)Q(ûτ + ik)

∣∣∣∣
k=0

= π
p
2

∏j(µ
2 − û2

τ,j)

∏j(µ
2 + û2

τ,j)
1
2

( det(C)
det(C + Dτ)

) 1
2

exp
{ 1

4τ2 ∆τ

}
eRτ(ik)Q(ûτ + ik)

∣∣∣∣
k=0

,

where we used the equality

C−1 + D−1
τ = C−1(C + Dτ)D−1

τ ,

and ∆τ is the differential operator defined in eq. (16). Hence

Z[Q] =
µp

(πτ)
p
2
√

det(C)
I

=
( µ√

τ

)p 1

∏j(µ
2 + û2

τ,j)
1
2

eτ(w−ûτ)C−1(w−ûτ)√
det(C + Dτ)

exp
{ 1

4τ2 ∆τ

}
eRτ(ik)Q(ûτ + ik)

∣∣∣∣
k=0

.

Note that application of Lemma 1 requires the existence of the inverse Fourier transform of
eRτ(ik)Q(ûτ + ik), at least a a tempered distribution. This is the case because by Lemma 2, we
may assume that Q has compact support.

B.3. Asymptotic properties of the saddle point. Let û = limτ→∞ ûτ . By continuity, û is a solu-
tion to the set of equations

(uj − µ)(uj + µ)
[
C−1(u− w)

]
j = 0 (37)

subject to the constraints |uj| ≤ µ. Denote by I ⊆ {1, . . . , p} the subset of indices j for which[
C−1(û− w)

]
j 6= 0. To facilitate notation, for v ∈ Rp a vector, denote by vI ∈ R|I| the sub-vector

corresponding to the indices in I. Likewise denote by CI ∈ R|I|×|I| the corresponding sub-matrix
and by C−1

I the inverse of CI , i.e. C−1
I = (CI)

−1 6= (C−1)I . Temporarily denoting B = C−1, we
can then rewrite the equations for û as

ûI = ±µ[
C−1(û− w)

]
Ic = [B(û− w)]Ic = BIc(ûIc − wIc) + BIc I(ûI − wI) = 0,

or, using standard results for the inverse of a partitioned matrix (Horn and Johnson, 1985),

ûIc = wIc + B−1
Ic BIc I(wI − ûI) = wIc − CIc IC−1

I (wI − ûI).

Finally, define x̂ = C−1(w− û), and note that

x̂I = [B(w− û)]I = BI(wI − ûI) + BI Ic(wIc − ûIc) = (BI − BI Ic B−1
Ic BIc ,I)(wI − ûI)

= C−1
I (wI − ûI) 6= 0 (38)

x̂Ic = 0. (39)

As we will see below, x̂ = argminx∈Rp H(x) is the maximum-likelihood lasso or elastic net solu-
tion (cf. Appendix C), and hence the set I corresponds to the set of non-zero coordinates in this
solution. Note that it is possible to have ûj = ±µ for j ∈ Ic (i.e. x̂j = 0). This happens when µ is
exactly at the transition value where j goes from not being included to being included in the ML
solution. We will denote the subsets of Ic of transition and non-transition coordinates as Ic

t and
Ic
nt, respectively. We then have the following lemma:
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Lemma 3. In the limit τ → ∞, we have

τ(µ2 − û2
τ,j)

2 =


O(τ−1) j ∈ I
O
[
(τx̂2

τ,j)
−1] j ∈ Ic

t

O(τ) j ∈ Ic
nt

(40)

Proof. From the saddle point equations, we have

τ(µ2 − û2
τ,j)

2 =
1
τ

( ûτ,j

x̂τ,j

)2
.

If j ∈ I, x̂τ,j → x̂j 6= 0 and ûτ,j → ûj = ±µ, and hence τ(µ2 − û2
τ,j)

2 = O(τ−1). If j ∈ Ic
nt,

µ2 − û2
τ,j → µ2 − û2

j > 0, and hence τ(µ2 − û2
τ,j)

2 = O(τ). If j ∈ Ic
t , x̂τ,j → 0 and ûτ,j → ûj = ±µ,

and hence τ(µ2 − û2
τ,j)

2 = O
[
(τx̂2

τ,j)
−1]. �

B.4. Asymptotic properties of the differential operator matrix. Let

Eτ = τDτ(C + Dτ)
−1C =

τ

2
[
Dτ(C + Dτ)

−1C + C(C + Dτ)
−1Dτ ], (41)

where the second equality is simply to make the symmetry of Eτ explicit. We have the following
result:

Proposition 1. Using the block matrix notation introduced above, and assuming Ic
t = ∅, the leading

term of Eτ in the limit τ → ∞ can be written as

Eτ ∼ τ

(
Dτ,I

1
2 Dτ,IC−1

I CI Ic

1
2 Dτ,IC−1

I CI Ic (C−1)Ic

)
, (42)

where I is again the set of non-zero coordinates in the maximum-likelihood solution.

Proof. Again using standard properties for the inverse of a partitioned matrix (Horn and Johnson,
1985), and the fact that Dτ is a diagonal matrix, we have for any index subset J[

(C + Dτ)
−1]

J =
[
CJ + Dτ,J − CJ,Jc(CJc + Dτ,Jc)−1CJc ,J

]−1 (43)[
(C + Dτ)

−1]
J,Jc = −(CJ + Dτ,J)

−1CJc ,J
[
(C + Dτ)

−1]
Jc (44)

By Lemma 3, in the limit τ → ∞, Dτ vanishes on I and diverges on Ic. Hence

(CI + Dτ,I)
−1 ∼ C−1

I (45)

(CIc + Dτ,Ic)−1 ∼ D−1
τ,Ic (46)

Plugging these in eqs. (43) and (44), and using the fact that CI,Ic D−1
τ,Ic CIc ,I is vanishingly small

compared to CI , yields

(C + Dτ)
−1 ∼

(
C−1

I −C−1
I CI,Ic D−1

τ,Ic

−D−1
τ,Ic CIc ,IC−1

I D−1
τ,Ic

)
Plugging this in eq. (41), and again using that D−1

τ,Ic is vanishingly small compared to constant
matrices yields eq. (42). �

From the fact that by Lemma 3, τDτ,I ∼ const, it follows immediately that, if Ic
t = ∅,

(Eτ)ij =

{
O(τ) i, j ∈ Ic

const otherwise
(47)

For transition coordinates, eq. (40) may diverge or not, depending on the rate of x̂τ,j → 0.
Define

J = I ∪
{

j ∈ Ic
t : lim

τ→∞
τ

1
2 x̂τ,j 6= 0

}
. (48)

Then Dτ diverges on Jc and converges (but not necessarily vanishes) on J, and eqs. (45) and (46)
remain valid if we use the set J rather than I to partition the matrix (with a small modification in
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eq. (45) to keep an extra possible constant term). Hence, we obtain the following modification of
eq. (47):

(Eτ)ij =

{
O(τ) i, j ∈ Jc

const otherwise
(49)

B.5. Asymptotic properties of the differential operator argument. Next we consider the func-
tion Rτ(z) appearing in the argument of the differential operator in eq. (14) and defined in
eq. (17),

Rτ(z) =
p

∑
j=1

Rτ,j(zj)

Rτ,j(zj) = ∑
m≥3

1
m

[ 1
(µ− ûτ,j)m +

(−1)m

(µ + ûτ,j)m

]
(zj)

m.

We have the following result:

Lemma 4. Rτ,j(zj) is of the form

Rτ,j(zj) = z3
j qτ,j(zj)

with qτ,j an analytic function in a region around zj = 0 and

qτ,j(zj) ≤


O(τ2) j ∈ J
O(τ) j ∈ Jc ∩ Ic

t
const j ∈ Ic

nt

with J defined in eq. (48).

Proof. The first statement follows from the fact that the series expansion of Rτ,j(zj) contains only
powers of zj greater than 3. The asymptotics as a function of τ for j ∈ I and j ∈ Ic

nt follow
immediately from Lemma 3 and the definition of Rτ,j (Appendix B.2),

Rτ,j(zj) = − ln
[
µ2 − (ûτ,j + zj)

2]+ ln(µ2 − û2
τ,j)−

2ûτ,j

µ2 − û2
τ,j

zj −
µ2 + û2

τ,j

(µ2 − û2
τ,j)

2
z2

j .

For j ∈ J ∩ Ic
t , we have from Lemma 3 at worst (µ2 − û2

τ,j)
−2 = O

[
(τx̂τ,j)

2] ≤ O(τ2), whereas

for j ∈ Jc ∩ Ic
t , we have at worst (τx̂τ,j)

2 = τ(τ
1
2 x̂τ,j)

2 ≤ O(τ). �

B.6. Asymptotic approximation for the partition function. To prove the analytic approximation

eq. (18), we will show that successive terms in the series expansion of e
1

4τ2 ∆τ result in terms
of decreasing power in τ. The argument presented below is identical to existing proofs of the
stationary phase approximation for multi-dimensional integrals (Wong, 2001), except that we
need to track and estimate the dependence on τ in both ∆τ and Rτ .

The series expansion of the differential operator exponential can be written as:

exp
{ 1

4τ2 ∆τ

}
= ∑

m≥0

1
m!(2τ)2m ∆m

τ

= ∑
m≥0

1
m!(2τ)2m

p

∑
j1,...,j2m=1

Ej1 j2 . . . Ej2m−1 j2m

∂2m

∂k j1 . . . ∂k j2m

= ∑
m≥0

1
m!(2τ)2m ∑

α : |α|=2m
Sτ,α

∂2m

∂kα1
1 . . . ∂k

αp
p

,

where E is the matrix defined in eq. (41) (its dependence on τ is omitted for notational simplicity),
α = (α1, . . . , αp) is a multi-index, |α| = ∑j αj, and Sτ,α is the sum of all terms Ej1 j2 . . . Ej2m−1 j2m that
give rise to the same multi-index α. From eq. (49), it follows that only coordinates in Jc give rise
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to diverging terms in Sτ,α, and only if they are coupled to other coordinates in Jc. Hence the total
number ∑j∈Jc αj of Jc coordinates can be divided over at most 1

2 ∑j∈Jc αj E-factors, and we have

Sτ,α ≤ O
(
τ

1
2 ∑j∈Jc αj

)
.

Turning our attention to the partial derivatives, we may assume without loss of generality
that the argument function Q is a finite sum of products of monomials and hence it is sufficient
to prove eq. (18) with Q of the form Q(z) = ∏

p
j=1 Qj(zj). By Cauchy’s theorem and Lemma 4, we

have for ε > 0 small enough,

∂αj

∂k
αj
j

eRτ,j(ikj)Qj(ik j)
∣∣∣
kj=0

=
αj!
2πi

∮
|z|=ε

1

zαj+1 eRτ,j(zj)Qj(zj)dzj

=
αj!
2πi ∑

n≥0

1
n!

∮
|z|=ε

z
3n−αj−1
j qj(zj)

nQj(zj)dzj

=
αj!
2πi ∑

0≤n< 1
3 (αj+1)

1
n!

∮
|z|=ε

z
3n−αj−1
j qj(zj)

nQj(zj)dz

≤


O
(
τ

2
3 αj
)

j ∈ J

O
(
τ

1
3 αj
)

j ∈ Jc ∩ Ic
t

const j ∈ Ic
nt

The last result follows, because for j ∈ J or j ∈ Jc ∩ Ic
t , qj scales at worst as τ2 or τ, respectively,

and hence, since only powers of qj strictly less than 1
3 (αj + 1) contribute to the sum, the sum must

be a polynomial in τ of degree less than 2
3 αj or 1

3 αj, respectively (αj can be written as either 3t,
3t + 1 or 3t + 2 for some integer t; in all three cases, the largest integer strictly below 1

3 (αj + 1)
equals t, and t ≤ 1

3 αj).
Hence

∑
α : |α|=2m

Sτ,α
∂2m

∂kα1
1 . . . ∂k

αp
p

eRτ(ik)Q(ik)
∣∣∣∣
k=0

= ∑
α : |α|=2m

Sτ,α ∏
j

∂αj

∂k
αj
j

eRτ,j(ikj)Qj(ik j)
∣∣∣
kj=0

≤ O
(
τ

1
2 ∑j∈Jc αj τ

2
3 ∑j∈J αj+

1
3 ∑j∈Jc∩Ic

t
αj) = O(τ 2

3 ∑j∈J αj+
1
2 ∑j∈Ic

nt
αj+

5
6 ∑j∈Jc∩Ic

t
αj)

≤ O
(
τ

5
6 ∑

p
j=1 αj

)
= O

(
τ

5
3 m)

This in turn implies that the mth term in the expansion,

exp
{ 1

4τ2 ∆τ

}
eRτ(ik)Q(ik)

∣∣∣∣
k=0

= ∑
m≥0

1
m!(2τ)2m ∑

α : |α|=2m
Sτ,α ∏

j

∂αj

∂k
αj
j

eRτ,j(ikj)Qj(ik j)
∣∣∣
kj=0

(50)

is bounded by a factor of τ−
1
3 m. Hence eq. (50) is an asymptotic expansion, with leading term

exp
{ 1

4τ2 ∆τ

}
eRτ(ik)Q(ik)

∣∣∣∣
k=0
∼

p

∏
j=1

Qj(0) = Q(0).

�

APPENDIX C. ZERO-TEMPERATURE LIMIT OF THE PARTITION FUNCTION

The connection between the analytic approximation (18) and the minimum-energy (or maximum-
likelihood) solution is established by first recalling that Fenchel’s convex duality theorem implies
that (Michoel, 2016)

x̂ = argmin
x∈Rp

H(x) = argmin
x∈Rp

[
f (x) + g(x)

]
= ∇ f ∗(−û) = C−1(w− û),
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where f and g are defined in eqs. (8)–(9),

f ∗(u) = max
x∈Rp

[
xTu− f (x)

]
=

1
2
(w + u)TC−1(w + u)

is the Legendre-Fenchel transform of f , and

û = argmin
{u∈Rp : |uj |≤µ,∀j}

f ∗(−u) = argmin
{u∈Rp : |uj |≤µ,∀j}

(w− u)TC−1(w− u). (51)

One way of solving an optimization problem with constraints of the form |uj| ≤ µ is to ap-
proximate the hard constraints by a smooth, so-called ‘logarithmic barrier function’ (Boyd and
Vandenberghe, 2004), i.e. solve the unconstrained problem

ûτ = argmin
u∈Rp

[
(w− u)TC−1(w− u)− 1

τ

p

∑
j=1

ln(µ2 − u2
j )
]

(52)

such that in the limit τ → ∞, ûτ → û. Comparison with eqs. (12)–(13), shows that (52) is precisely
the saddle point of the partition function, whereas the constrained optimization in eq. (51) was
already encountered in eq. (37). Hence, let I again denote the set of non-zero coordinates in
the maximum-likelihood solution x̂. The following result characterizes completely the partition
function in the limit τ → ∞, provided there are no transition coordinates.

Proposition 2. Assume that µ is not a transition value, i.e. j ∈ I ⇔ x̂j 6= 0 ⇔ |ûj| = µ. Let
σ = sgn(û) be the vector of signs of û. Then sgn(x̂I) = σI , and

Z ∼ eτ(wI−µσI)
TC−1

I (wI−µσI)

2
|I|
2 τ

|I|
2 +|Ic |√det(CI)

∏
j∈Ic

µ

µ2 − û2
j

. (53)

In particular,

lim
τ→∞

1
τ

ln Z = (wI − µσI)
TC−1

I (wI − µσI) = H(x̂) = min
x∈Rp

H(x).

Proof. First note that from the saddle point equations

(µ2 − û2
τ,j)x̂τ,j =

ûτ,j

τ
,

where as before x̂τ = C−1(w − ûτ), and the fact that |ûτ,j| < µ, it follows that sgn(x̂τ,j) =
sgn(ûτ,j) for all j and all τ. Let j ∈ I. Because x̂τ,j → x̂j 6= 0, it follows that there exists τ0 large
enough such that sgn(x̂τ,j) = sgn(x̂j) for all τ > τ0. Hence also sgn(ûτ,j) = sgn(x̂j) for all τ > τ0,
and since ûτ,j → ûj 6= 0, we must have sgn(ûj) = sgn(x̂j).

To prove eq. (53), we will calculate the leading term of det(C+Dτ) in eq. (18). For this purpose,
recall that for a square matrix M and any index subset I, we have (Horn and Johnson, 1985)

det(M) = det(MI)det(MIc −MIc I M−1
I MI Ic) =

det(MI)

det
[
(M−1)Ic

] (54)

Taking M = C+Dτ , it follows from eqs. (43)–(46) that det(CI +Dτ,I) ∼ det(CI), and det
[
(M−1)Ic

]
∼

det(D−1
τ,Ic), and hence

det(C + Dτ) ∼ det(CI)det(Dτ,Ic) = τ|I
c | det(CI) ∏

j∈Ic

(µ2 − û2
τ,j)

2

µ2 + û2
τ,j

.

Hence

τ
p
2

p

∏
j=1

√
µ2 + û2

τ,j

√
det(C + Dτ) ∼ τ

p+|Ic |
2

√
det(CI)∏

j∈I

√
µ2 + û2

τ,j ∏
j∈Ic

(µ2 − û2
τ,j)

∼ τ
p+|Ic |

2 2
|I|
2 µ|I|

√
det(CI) ∏

j∈Ic
(µ2 − û2

j ),
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where the last line follows by replacing ûτ,j by its leading term ûj, and using û2
j = µ2 for j ∈ I.

Plugging this in eq. (18) and using eqs. (38)–(39) to get the leading term of the exponential factor
results in eq. (53). �

The leading term in eq. (53) has a pleasing interpretation as a ‘two-phase’ system,

Z =
1

(2π)
|I|
2

ZI ZIc

where ZI and ZIc are the partition functions (normalization constants) of a multivariate Gaussian
distribution and a product of independent shifted Laplace distributions, respectively:

ZI =
(π

τ

) |I|
2 eτ(wI−µσI)

TC−1
I (wI−µσI)√

det(CI)
=
∫

R|I|
e−τ[xT

I CI xI−2(wI−µσI)
T xI ]dxI

ZIc =
1

τ|Ic | ∏
j∈Ic

µ

µ2 − û2
j
=
∫

R|Ic |
e−2τ[µ ∑j∈Ic |xj |−ûT

Ic xIc ]dxIc .

This suggests that in the limit τ → ∞, the non-zero maximum-likelihood coordinates are ap-
proximately normally distributed and decoupled from the zero coordinates, which each follow a
shifted Laplace distribution. At finite values of τ however, this approximation is too crude, and
more accurate results are obtained using the leading term of eq. (18). This is immediately clear
from the fact that the partition function is a continous function of w ∈ Rp, which remains true
for the leading term of eq. (18), but not for eq. (53), which exhibits discontinuities whenever a
coordinate enters or leaves the set I as w is smoothly varied.

APPENDIX D. TEMPERATURE-DEPENDENT OPTIMIZATION PROBLEM IN COORDINATE SPACE

The saddle point equations imply that ûτ satisfies the convex optimization problem

ûτ = argmin
x∈Rp

1
2
(w− u)TC−1(w− u)− 1

2τ

p

∑
j=1

ln(µ2 − u2
j ) = argmin

x∈Rp
f ∗(−u) + g∗τ(u).

where f ∗(u) = 1
2 (w+ u)TC−1(w+ u) is the Legendre-Fenchel transform of f (x) = 1

2 xTCx−wTx.
The Legendre-Fenchel transform of g∗τ is gτ(x) = ∑j gτ,j(xj) with

gτ,j(xj) = max
uj∈R

(
ujxj +

1
2τ

ln(µ2 − u2
j )
)

.

Setting the derivative w.r.t. uj to zero results in

xj =
uj

τ(µ2 − u2
j )

, (55)

or

τxju2
j + uj − τµ2xj = 0

with the solution that results in |uj| < µ being

uj =
−1 +

√
1 + 4τ2µ2x2

j

2τxj
.

Hence

gτ,j(xj) =

√
1 + 4τ2µ2x2

j − 1

2τ
+

1
2τ

ln
(√1 + 4τ2µ2x2

j

2τ2x2
j

)
.
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By the saddle point equations, x̂τ = C−1(w − ûτ) satisfies eq. (55) for u = ûτ , and hence
gτ,j(x̂τ,j) = ûτ,j x̂τ,j +

1
2τ ln(µ2 − û2

τ,j), or

f (x̂τ) + gτ(x̂τ) =
1
2
(w− ûτ)

T x̂τ − wT x̂τ + ûT
τ x̂τ +

1
2τ

p

∑
j=1

ln(µ2 − û2
τ,j)

= −1
2
(w− ûτ)

T x̂τ +
1

2τ

p

∑
j=1

ln(µ2 − û2
τ,j)

= −
[

f ∗(−ûτ) + g∗(ûτ)
]

= − min
u∈Rp

[
f ∗(−u) + g∗(u)

]
= min

x∈Rp

[
f (x) + g(x)

]
,

where the last step uses Fenchel’s convex duality theorem. This concludes the proof of eq. (21).

APPENDIX E. ANALYTIC RESULTS FOR INDEPENDENT PREDICTORS

When predictors are independent, the matrix C is diagonal, and the partition function can be
written as a product of one-dimensional integrals

Z =
∫

R
e−τ(cx2−2wx+2µ|x|)dx,

where c, µ > 0 and w ∈ R. This integral can be solved by writing Z = Z+ + Z−, where

Z± =
∫ ∞

0
e−τ[cx2±2(w±µ)x]dx = eτ

(w±µ)2
c

∫ ∞

0
e−τc(x± w±µ

c )2
dx =

eτ
(w±µ)2

c
√

τc

∫ ∞

±
√

τ
c (w±µ)

e−y2
dy

=
1
2

√
π

τc
eτ

(w±µ)2
c erfc

(
±
√

τ

c
(w± µ)

)
=

1
2

√
π

τc
erfcx

(
±
√

τ

c
(w± µ)

)
, (56)

where erfc(x) = 2√
π

∫ ∞
x e−y2

dy and erfcx(x) = ex2
erfc(x) are the complementary and scaled

complementary error functions, respectively. Hence,

log Z = log
[
erfcx

(√τ

c
(µ + w)

)
+ erfcx

(√τ

c
(µ− w)

)]
+

1
2
(
log π − log(τc)

)
− log 2,

and

x̂τ = E(x) =
1

2τ

∂ log Z
∂w

=
1
c

(µ + w) erfcx
(√

τ
c (µ + w)

)
− (µ− w) erfcx

(√
τ
c (µ− w)

)
erfcx

(√
τ
c (µ + w)

)
+ erfcx

(√
τ
c (µ− w)

)
=

w
c
+

µ

c

erfcx
(√

τ
c (µ + w)

)
− erfcx

(√
τ
c (µ− w)

)
erfcx

(√
τ
c (µ + w)

)
+ erfcx

(√
τ
c (µ− w)

)
=

w
c
+ (1− 2α)

µ

c
,

where

α =
1

1 +
erfcx

(√
τ
c (µ−w)

)
erfcx

(√
τ
c (µ+w)

) .
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APPENDIX F. NUMERICAL RECIPES

F.1. Solving the saddle point equations. To calculate the partition function and posterior dis-
tribution at any value of τ, we need to solve the set of equations in eq. (13). To avoid having to
calculate the inverse matrix C−1, we make a change of variables x = C−1(w− u), or u = w− Cx,
such that eq. (13) becomes

xj
[
wj − (Cx)j − µ

][
wj − (Cx)j + µ

]
+

1
τ

[
wj − (Cx)j

]
= 0. (57)

We will use a coordinate descent algorithm where one coordinate of x is updated at a time, using
the current estimates x̂ for the other coordinates. Defining

aj = wj −∑
k 6=j

Ckj x̂k,

we can write eq. (57) as

C2
jjx

3
j − 2ajCjjx2

j +
(
a2

j − µ2 −
Cjj

τ

)
xj +

aj

τ
= 0

The roots of this 3rd order polynomial are easily obtained numerically, and by construction there
will be a unique root for which uj = wj − (Cx)j = aj − Cjjxj is located in the interval (−µ, µ).

This root will be the new estimate x̂j. Given a new x̂(new)
j , we can update the vector a as

a(new)
k =

{
a(old)

j k = j

a(old)
k − Ckj

(
x̂(new)

j − x̂(old)
j

)
k 6= j

and proceed to update the next coordinate.
After all coordinates of x̂ have converged, we obtain ûτ by performing the matrix-vector op-

eration

ûτ = w− Cx̂,

or, if we only need the expectation values,

Eτ(x) = x̂.

For τ = ∞, the solution to eq. (57) is given by the maximum-likelihood effect size vector (cf.
Appendix C), for which ultra-fast algorithms exploiting the sparsity of the solution are available
(Friedman et al., 2010). Hence we use this vector as the initial vector for the coordinate descent
algorithm for τ < ∞ and expect fast convergence if τ is large. Solutions for multiple values of τ
can be obtained along a descending path of τ-values, each time taking the previous solution as
the initial vector for finding the next solution.

F.2. High-dimensional determinants in the partition function. Calculating the stationary phase
approximation to the partition function involves the computation of the p-dimensional determi-
nant det(C+Dτ) [cf. eq. (18)], which can become computationally expensive in high-dimensional
settings. However, when C is of the form C = ATK−1 A

2n + λ1 [cf. eq. (6)] with A ∈ Rn×p, K ∈ Rn×n

invertible, and p > n, these determinants can be written as n-dimensional determinants, using
the matrix determinant lemma:

det(C + Dτ) = det
(ATK−1 A

2n
+ D′τ

)
=

det(D′τ)
det(K)

det
(

K +
A(D′τ)−1 AT

2n

)
, (58)

where D′τ = Dτ + λ1 is a diagonal matrix whose determinant and inverse are trivial to obtain.
To avoid numerical overflow or underflow, all calculations are performed using logarithms of

partition functions. For n large, a numerically stable computation of eq. (58) uses the equality
log det B = tr log B = ∑n

i=1 log εi, where B = K + 1
2n A(D′τ)−1 AT and εi are the eigenvalues of B.
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F.3. Marginal posterior distributions. Calculating the marginal posterior distributions p(xj)
[eq. 22] requires applying the analytic approximation eq. (14) using a different ûτ for every dif-
ferent value of xj. To make this process more efficient, two simple properties are exploited:

(1) For xj = x̂τ,j, the saddle point for the (p− 1)-dimensional partition function Z(CIj , wIj −
xjCj,Ij , µ) is given by the original saddle point vector x̂τ,k, k 6= j. This follows easily from
the saddle point equations.

(2) If xj changes by a small amount, the new saddle point also changes by a small amount.
Hence, taking the current saddle point vector for xj as the starting vector for solving the
set of saddle point equations for the next value xj + δ results in rapid convergence (often
in a single loop over all coordinates).

Hence we always start by computing p(xj = x̂τ,j) and then compute p(xj) separately for a series
of ascending values xj > x̂τ,j and a series of descending values xj < x̂τ,j

F.4. Sampling from the one-dimensional distribution. Consider again the case of one predictor,
with posterior distribution

p(x) =
e−τ(cx2−2wx+2µ|x|)

Z
. (59)

To sample from this distribution, note that

p(x) = (1− α) p(x | x < 0) + α p(x | x ≥ 0),

where

p(x | x ∈ R±) =
e−τ(cx2−2(w∓µ)x)

Z∓
, (60)

Z± were defined in eq. (56), and

α = P(x ≥ 0) =
∫ ∞

0
p(x)dx =

1
Z

∫ ∞

0
e−τ[cx2−2(w−µ)x]dx =

Z−

Z
=

1

1 +
erfcx

(√
τ
c (µ−w)

)
erfcx

(√
τ
c (µ+w)

) .

Eq. (60) defines two truncated normal distributions with means (w∓ µ)/c and standard devia-
tion 1/

√
2τc, for which sampling functions are available. Hence, to sample from the distribution

(59), we first sample a Bernoulli random variable with probability α, and then sample from the
appropriate truncated normal distribution.

F.5. Gibbs sampler. To sample from the Gibbs distribution in the general case, we use the ‘basic
Gibbs sampler’ of Hans (2011). Let x̂ be the current vector of sampled regression coefficients.
Then a new coefficient xj is sampled from the conditional distribution

p
(

xj | {x̂k, k 6= j}
)
=

e−τ[Cjjx2
j−2ajxj+2µ|xj |]

Zj
, (61)

where aj = wj − ∑k 6=j Ckj x̂k and Zj is a normalization constant. This distribution is of the same
form as eq. (59) and hence can be sampled from in the same way. Notice that, as in section F.1,
after sampling a new x̂j, we can update the vector a as

a(new)
k =

{
a(old)

j k = j

a(old)
k − Ckj

(
x̂(new)

j − x̂(old)
j

)
k 6= j

.

F.6. Maximum a-posteriori estimation of the inverse temperature. This paper is concerned
with the problem of obtaining the posterior regression coefficient distribution for the Bayesian
lasso and elastic net when values for the hyperparameters (λ, µ, τ) are given. There is abun-
dant literature on how to select values for λ and µ for maximum-likelihood estimation, mainly
through cross validation or by predetermining a specific level of sparsity (i.e. number of non-zero
predictors). Hence we assume an appropriate choice for λ and µ has been made, and propose to
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then set τ equal to a first-order approximation of its maximum a posteriori (MAP) value, i.e. find-
ing the value which maximizes the log-likelihood of observing data y ∈ Rn and A ∈ Rp, similar
to what was suggested by Hans (2011). To do so we must include the normalization constants in
the prior distributions (2)–(3):

p(y | A, x, τ) =
( τ

2πn

) n
2

e−
τ

2n ‖y−Ax‖2
=
( τ

2πn

) n
2

e−
τ

2n ‖y‖
2
e−

τ
2n [x

T AT Ax−2(ATy)T x]

p(x | λ, µ, τ) =
e−τ(λ‖x‖2+2µ ∑j |xj |)

Z0

where for λ > 0,

Z0 =
∫

Rp
dx e−τ(λ‖x‖2+2µ ∑j |xj |) =

(∫
R

dx e−τ(λx2+2µ|x|)
)p

=
(

2
∫ ∞

0
dx e−τ(λx2+2µx)

)p

=
(2e

µ2τ
λ

√
λτ

∫ ∞√
µ2τ

λ

e−t2
dt
)p

=

(√
π

λτ
e

µ2τ
λ erfc

(√µ2τ

λ

))p

∼
( 1

µτ

)p
, (62)

and the last relation follows from the first-order term in the asymptotic expansion of the comple-
mentary error function for large values of its argument,

erfc(x) ∼ e−x2

x
√

π
.

For pure lasso regression (λ = 0), this relation is exact:

Z0 =
( 1

µτ

)p
.

Hence, the log-likelihood of observing data y ∈ Rn and A ∈ Rp given values for λ, µ, τ is

L = log
∫

Rp
dx p(y | A, x, τ)p(x | λ, µ, τ)

=
n
2

log τ − ‖y‖
2

2n
τ − log Z0 + log

∫
Rp

dx e−τH(x) + const,

where ‘const’ are constant terms not involving the hyperparameters. Taking the first order ap-
proximation

log Z = log
∫

Rp
dx e−τH(x) ∼ −τHmin = −τH(x̂),

where x̂ are the maximum-likelihood regression coefficients, we obtain

L ∼
(

p +
n
2
)

log τ −
[‖y‖2

2n
+ H(x̂)

]
τ + p log µ

=
(

p +
n
2
)

log τ −
[ 1

2n
‖y− Ax̂‖2 + λ‖x̂‖2 + 2µ‖x̂‖1

]
τ + p log µ

which is maximized at

τ =
p + n

2
1

2n‖y− Ax̂‖2 + λ‖x̂‖2 + 2µ‖x̂‖1
.

Note that a similar approach to determine the MAP value for λ would require keeping an ad-
ditional second order term in eq. (62), and that for p > n it is not possible to simultaneously
determine MAP values for all three hyperparameters, because it leads to a set of equations that
are solved by the combination λ = µ = 0 and τ = ∞.
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APPENDIX G. EXPERIMENTAL DETAILS

G.1. Hardware and software. All numerical experiments were performed on a standard Mac-
book Pro with 1.8 GHz processor and 16 GB RAM running macOS version 10.12.6 and Matlab
version R2017a. Maximum-likelihood elastic net models were fitted using Glmnet for Matlab
(https://web.stanford.edu/~hastie/glmnet_matlab/). Matlab software to solve the saddle
point equations, compute the partition function and marginal posterior distributions, and run a
Gibbs sampler, are available at https://github.com/tmichoel/bayonet/. This site also contains
copies of the test data sets and scripts to reproduce the figures from this paper.

G.2. Independent predictors. For the analysis in Figure 2, parameter values were set to p = 1,
C = 1.0, w = 0.5, µ ranging from 0.05 to 5 in 20 geometric steps, and τ ranging from 10 to 109 in
33 geometric steps.

G.3. Diabetes and leukemia data. The diabetes data were obtained from https://web.stanford.

edu/~hastie/CASI_files/DATA/diabetes.html. The leukemia data were obtained from https:

//web.stanford.edu/~hastie/CASI_files/DATA/leukemia.html. Data were standardized ac-
cording to eq. (1), and no further processing was performed. For the analysis in Figure 2, parame-
ter values were set to λ = 0.1, µ ranging from 0.01µmax upto, but not including, µmax = maxj |wj|
in 20 geometric steps, and τ ranging from 10 to 109 in 33 geometric steps. For the analysis in Fig-
ure 3, λ was set to 0.1, µ was selected as the smallest value with a maximum-likelihood solution
with 5 (diabetes data) or 10 (leukemia data) non-zero predictors, and τ was set to its maximum
a-posteriori value given λ and µ [τ = 682.3 (diabetes data) and 9.9439 · 103 (leukemia data].

G.4. Cancer Cell Line Encyclopedia data. Normalized expression data for 18,926 genes in 917
cancer cell lines were obtained from the Gene Expression Omnibus accession number GSE36139
using the Series Matrix File GSE36139-GPL15308 series matrix.txt. Drug sensitivity data for
24 compounds in 504 cell lines were obtained from the supplementary material of Barretina et al.
(2012) (tab 11 from supplementary file nature11003-s3.xls); 474 cell lines were common be-
tween gene expression and drug response data and used for our analyses. Of the available drug
response data, only the activity area (‘actarea’) variable was used; 7 compounds had more than 40
zero activity area values (meaning inactive compounds) in the 474 cell lines and were discarded.
For the remaining 17 compounds, the following procedure was performed:

(1) Hyper-parameters were set to λ = 0.1; µn = µmax × r
N+1−n

N , where N = 20, n =
1, 2, . . . , 20, r = 0.01 and µmax = maxj=1,...,p |wj|, with w as defined in eq. (6)–(7) and
p = 18, 926; τm = 100.25(m+M−1), where M = 12, m = 1, 2, . . . , 13.

(2) 470 randomly selected cell lines were randomly divided in 10 sets of 47 samples. Each set
was used to validate predictions of models trained on the remaning 423 samples.

(3) For each training data set, and for each drug, the following procedure was performed:
(a) The 1,000 genes most strongly correlated with the response were selected as candi-

date predictors.
(b) Response and predictor data were standardized.
(c) Maximum-likelihood coefficients for ridge regression (µ = 0) and elastic net regres-

sion for each µn were calculated.
(d) Bayesian posterior expectation values for each µn and each τm were calculated.
(e) Drug responses were predicted on the original data scale in the 47 held-out valida-

tion samples using all sets of regression coefficients, and the Pearson correlation with
the true drug response was calculated.

(f) For each drug, each value of µ and each value of τ, the median correlation value over
the 10 predictions was taken, resulting in a single value for ridge regression, 20 val-
ues for maximum-likelihood elastic net regression, and 13× 20 values for Bayesian
elastic net regression.

The top 1,000 most correlated genes were pre-filtered in each training data set, partly
because in trial runs this resulted in better predictive performance than pre-selecting 5,000
or 10,000 genes, and partly to speed up calculations.

https://web.stanford.edu/~hastie/glmnet_matlab/
https://github.com/tmichoel/bayonet/
https://web.stanford.edu/~hastie/CASI_files/DATA/diabetes.html
https://web.stanford.edu/~hastie/CASI_files/DATA/diabetes.html
https://web.stanford.edu/~hastie/CASI_files/DATA/leukemia.html
https://web.stanford.edu/~hastie/CASI_files/DATA/leukemia.html
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APPENDIX H. SUPPLEMENTARY FIGURES
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FIGURE S1. Same as Figure 4b and c, for drugs 2–9 from Figure 4a.
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FIGURE S2. Same as Figure 4b and c, for drugs 10–17 from Figure 4a.
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