
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Coarse-graining Approaches in Univariate Multiscale Sample and
Dispersion Entropy

Citation for published version:
Azami, H & Escudero, J 2018, 'Coarse-graining Approaches in Univariate Multiscale Sample and Dispersion
Entropy' Entropy, vol 20, no. 2, 138. DOI: 10.3390/e20020138

Digital Object Identifier (DOI):
10.3390/e20020138

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Entropy

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 17. May. 2018

http://dx.doi.org/10.3390/e20020138
https://www.research.ed.ac.uk/portal/en/publications/coarsegraining-approaches-in-univariate-multiscale-sample-and-dispersion-entropy(ed263a13-5338-4c9f-8476-f3f4bb34364f).html


Article

Coarse-graining Approaches in Univariate Multiscale
Sample and Dispersion Entropy

Hamed Azami 1,* and Javier Escudero 1

1 School of Engineering, Institute for Digital Communications, The University of Edinburgh, Edinburgh, EH9
3FB, UK; javier.escudero@ed.ac.uk (J.E)

* Correspondence: hamed.azami@ed.ac.uk; Tel.: +44-748-147-8684

Academic Editor: name
Version February 15, 2018 submitted to Entropy

Abstract: The evaluation of complexity in univariate signals has attracted considerable attention in1

recent years. This is often done using the framework of Multiscale Entropy, which entails two basic2

steps: coarse-graining to consider multiple temporal scales, and evaluation of irregularity for each of3

those scales with entropy estimators. Recent developments in the field have proposed modifications4

to this approach to facilitate the analysis of short-time series. However, the role of the downsampling5

in the classical coarse-graining process and its relationships with alternative filtering techniques has6

not been systematically explored yet. Here, we assess the impact of coarse-graining in multiscale7

entropy estimations based on both Sample Entropy and Dispersion Entropy. We compare the classical8

moving average approach with low-pass Butterworth filtering, both with and without downsampling,9

and empirical mode decomposition in Intrinsic Multiscale Entropy, in selected synthetic data and10

two real physiological datasets. The results show that when the sampling frequency is low or high,11

downsampling respectively decreases or increases the entropy values. Our results suggest that when12

dealing with long signals and relatively low levels of noise, the refine composite method makes13

little difference in the quality of the entropy estimation at the expense of considerable additional14

computational cost. It is also found that downsampling within the coarse-graining procedure may15

not be required to quantify the complexity of signals, especially for short ones. Overall, we expect16

these results to contribute to the ongoing discussion about the development of stable, fast and17

robust-to-noise multiscale entropy techniques suited for either short or long recordings.18

Keywords: Complexity; multiscale dispersion and sample entropy; refined composite technique;19

intrinsic mode dispersion and sample entropy; moving average; Butterworth filter; empirical mode20

decomposition; downsampling.21

1. Introduction22

A system is complex when it entails a number of components intricately entwined altogether23

(e.g. the subway network of the New York City) [1]. Following Costa’s framework [2,3], the complexity24

in univariate signals denotes “meaningful structural richness”, which may be in contrast with regularity25

measures defined from entropy metrics such as sample entropy (SampEn), permutation entropy,26

(PerEn), and dispersion entropy (DispEn) [3–6]. In fact, these entropy techniques assess repetitive27

patterns and return maximum values for completely random processes [3,5,7]. However, a completely28

ordered signal with a small entropy value or a completely disordered signal with maximum entropy29

value is the least complex [3,5,8]. For instance, white noise is more irregular than 1/ f noise (pink30

noise) although the latter is more complex because 1/ f noise contains long-range correlations and its31

1/ f decay produces a fractal structure in time [3,5,8].32
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From the perspective of physiology, some diseased individuals’ recordings, when compared with33

those for healthy subjects, are associated with the emergence of more regular behavior, thus leading to34

lower entropy values [3,9]. In contrast, certain pathologies, such as cardiac arrhythmias, are associated35

with highly erratic fluctuations with statistical characteristics resembling uncorrelated noise. The36

entropy values of these noisy signals are higher than those of healthy individuals, even though the37

healthy individuals’ time series show more physiologically complex adaptive behavior [3,10].38

In brief, the concept of complexity for univariate physiological signals builds on the following39

three hypotheses [3,5]:40

• The complexity of a biological or physiological time series indicates its ability to adapt and41

function in an ever-changing environment.42

• A biological time series requires to operate across multiple temporal and spatial scales and so, its43

complexity is similarly multiscaled and hierarchical.44

• A wide class of disease states, in addition to ageing, which decrease the adaptive capacity of the45

individual, appear to degrade the information carried by output variables.46

Therefore, the multiscale-based methods focus on quantifying the information expressed by the47

physiological dynamics over multiple temporal scales.48

To provide a unified framework for the evaluation of impact of diseases in physiological signals,49

multiscale SampEn (MSE) [3] was proposed to quantify the complexity of signals over multiple50

temporal scales. The MSE algorithm includes two main steps: 1) coarse-graining technique – i.e.,51

combination of moving average (MA) filter and downsampling (DS) process –; and 2) calculation of52

SampEn of the coarse-grained signals at each scale factor τ [3]. A low-pass Butterworth (BW) filter53

was used as an alternative to MA to limit aliasing and avoid ripples [11]. To differentiate it from the54

original MSE, we call this method as MSEBW herein.55

Since their introduction, MSE and MSEBW have been widely used to characterize physiological56

and non-physiological signals [12]. However, they have several main shortcomings [12–14]. First,57

the coarse-graining process causes the length of a signal to be shortened by the scale factor τ as a58

consequence of the downsampling in the process. Therefore, when the scale factor increases, the59

number of samples in the coarse-grained sequence decreases considerably [14]. This may yield60

an unstable estimation of entropy. Second, SampEn is either undefined or unreliable for short61

coarse-grained time series [13,14].62

To alleviate the first problem of MSE, intrinsic mode SampEn (InMSE) [15] and refined composite63

MSE (RCMSE) [14] were developed [15]. The coarse-graining technique is substituted by an approach64

based on empirical mode decomposition (EMD) in InMSE. The length of coarse-grained series obtained65

by InMSE is equal to that of the original signal, leading to more stable entropy values. Nevertheless,66

EMD-based approaches have certain limitations such as sensitivity to noise and sampling [16]. At67

the scale factor τ, RCMSE considers τ different coarse-grained signals, corresponding to different68

starting points of the coarse-graining process [14]. Therefore, RCMSE yields more stable results in69

comparison with MSE. Nevertheless, both InMSE and RCMSE may lead to undefined values for short70

signals as a consequence of using SampEn in the second step of their algorithms [13]. Additionally, the71

SampEn-based approaches may not be fast enough for some real-time applications.72

To deal with these deficiencies, multiscale DispEn (MDE) based on our introduced DispEn was73

developed [13]. Refined composite MDE (RCMDE) was then proposed to improve the stability of the74

MDE-based values [13]. It was found that MDE and RCMDE have the following advantages over75

MSE and RCMSE: 1) they are noticeably faster as a consequence of using DispEn with computational76

cost of O(N) – where N is the signal length –, compared with the O(N2) for SampEn; 2) they result in77

more stable profiles for synthetic and real signals; 3) MDE and RCMDE discriminate different kinds of78

physiological time series better than MSE and RCMSE; and 4) they do not yield undefined values [13].79

The aim of this research is to contribute to the understanding of different alternatives to80

coarse-graining in complexity approaches. To this end, we first revise the frequency responses81

for the three main filtering processes (i.e., MA, BW, and EMD) used in such methods. The role82
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Synthetic Signals: Multi-harmonic Signals - Lorenz Series - White Noise - Pink Noise

Real Signals Focal and Non-focal EEG Signals - Young and Old Subjects’ Stride Interval Fluctuations

Butterworth (BW) Filter
Moving Average (MA) 

Filter
Empirical Mode 

Decomposition (EMD)

Complexity Evaluation with: Sample Entropy (SampEn) – Dispersion Entropy (DispEn)  

Downsampling

Figure 1. Flowchart of the alternatives to the coarse-graining method and the datasets used in this
study.

of downsampling in the classical coarse-graining process, which has not been systematically explored83

yet, is then investigated in the article. We assess the impact of coarse-graining in multiscale entropy84

estimations based on both SampEn and DispEn. To compare these methods, several synthetic data and85

two real physiological datasets are employed. For the sake of clarity, a flowchart of the alternatives to86

the coarse-graining method in addition to the datasets used in this article is shown in Figure 1.87

2. Multiscale Entropy-based Approaches88

The MSE- and MDE-based methods include two main steps: 1) coarse-graining process; and 2)89

calculation of SampEn and DispEn at each scale τ. For simplicity, we detail only the DispEn-based90

complexity algorithms. Likewise, the SampEn-based algorithms are defined.91

2.1. MDE based on Moving Average (MA) and Butterworth (BW) Filters with and without Downsampling92

(DS)93

2.1.1. Coarse-graining Approaches94

A coarse-graining technique with DS denotes a decimation by scale factor τ. Decimation is defined95

as two steps [17,18]: 1) reducing high-frequency time series components with a digital low-pass filter;96

and 2) DS the filtered time series by τ; that is, keep only one every τ sample points.97

Assume we have a univariate signal of length L: u = {u1, u2, . . . , ui, . . . , uL}. In the98

coarse-graining process, the original signal u is first filtered by an MA - a low-pass finite-impulse99

response (FIR) filter - as follows:100

v`(τ) =
1
τ

τ−1

∑
k=0

u`+k, 1 ≤ ` ≤ L− τ + 1. (1)

The frequency response of the MA filter is as follows [19]:101
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∣∣∣H (ej2π f
)∣∣∣ = 1

τ

sin(π f τ)

sin(π f )
, (2)

where f denotes the normalized frequency ranging from 0 to 0.5 cycles per sample (normalized Nyquist102

frequency). The frequency response of the MA filter has several shortcomings: 1) a slow roll-off of the103

main lobe; 2) large transition band; 3) and important side lobes in the stop-band. To alleviate these104

problems, a low-pass BW filter was proposed [11]. This filter provides a maximally flat (no ripples)105

response [19]. The squared magnitude of the frequency of BW filter is defined as follows:106 ∣∣∣H (ej2π f
)∣∣∣2 =

1
1 + ( f / fc)2n , (3)

where fc and n denote the normalized cut-off frequency and filter order, respectively [11,19]. Herein,107

n = 6 and fc = 0.5
τ [11]. The original signal u is filtered by BW filter. In fact, the low-pass filters108

eliminate the fast temporal scales (higher frequency components) to take into account progressively109

slower time scales (lower frequency components).110

Next, the time series filtered by either MA or BW is downsampled by the scale factor τ. Assume111

the downsampled signal is x(τ) = {x(τ)j } (1 ≤ j ≤
⌊

L
τ

⌋
= N).112

In this study, we consider the coarse-graining process with and without DS. MSE and MDE with113

MA filter and without DS are respectively named MSEMA and MDEMA. MSEMA and MDEMA with DS114

are termed MSE and MDE herein.115

2.1.2. Calculation of DispEn or SampEn at Every Scale Factor116

The DispEn or SampEn value is calculated for each coarse-grained signal x(τ) = {x(τ)j }. It is worth117

noting that MDE is more than the combination of the coarse-graining [3] with DispEn: The mapping118

based on the normal cumulative distribution function (NCDF) used in the calculation of DispEn [6]119

for the first temporal scale is maintained across all scales. That is, in MDE and RCMDE, µ and σ of120

NCDF are respectively set at the average and standard deviation (SD) of the original signal and they121

remain constant for all scale factors. This approach is similar to keeping the threshold r constant fixed122

(usually 0.15 of the SD of the original signal) in the MSE-based algorithms [3]. In a number of studies123

(e.g., [3,20]), it was found that keeping r constant is preferable to recalculating the threshold r at each124

scale factor separately.125

2.2. Refined Composite Multiscale Dispersion Entropy (RCMDE)126

At scale factor τ, RCMDE considers τ different coarse-grained signals, corresponding to different127

starting points of the coarse-graining process. Then, for each of these shifted series, the relative128

frequency of each dispersion pattern is calculated. Finally, the RCMDE value is defined as the Shannon129

entropy value of the averages of the rates of appearance of dispersion patterns of those shifted130

sequences [13]. The MA filter used in RCMDE and RCMSE may be substituted by the BW filter,131

respectively called RCMDEBW and RCMSEBW here.132

2.3. Intrinsic Mode Dispersion Entropy (InMDE)133

Due to the advantages of DispEn over SampEn for short signals, intrinsic mode DispEn (InMDE)134

based on the algorithm of InMSE is proposed herein. The algorithm of InMDE includes the following135

two key steps:136

1. Calculation of the sum of the intrinsic mode functions (IMFs) obtained by EMD: In this step, the137

original signal u is decomposed to IMFα (1 ≤ α ≤ τmax − 1) and a residual signal IMFτmax =138

u − ∑τmax−1
α=1 IMFα. It is worth noting that the first IMF, IMF1, shows the highest frequency139

component in a signal, while the last IMF, IMFτmax , reflects the trend of the time series. Next, the140

cumulative sums of IMFs (CSI) for each scale factor τ are defined as follows [15]:141
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Table 1. Characteristics of the complexity metrics for univariate signals.

Methods Filtering Downsampling Applicability of

refined composite

MSE [2] and MDE [13] Moving average yes yes

MSEMA and MDEMA Moving average no no

MSEBW [11] and MDEBW Butterworth yes yes

MSEBW [11] and MDEBW without downsampling Butterworth no no

InMSE [15] and InMDE Cumulative sums of IMFs no no

CSI(τ)(x) =
τmax

∑
λ=τ

IMFλ, (4)

where IMFλ denotes the λth IMF obtained by EMD. Thus, CSI(1) is equal to the original signal u.142

2. Calculation of DispEn of CSI(τ)(x) at each scale factor: The DispEn value is calculated at each143

scale factor. Like MDE and RCMDE, µ and σ of NCDF are respectively set at the average and SD144

of the original signal and they remain constant for all scale factors in InMDE.145

It is worth noting that InMSE and InMDE do not downsample the filtered signals. That is, the146

number of samples for each CSI(τ)(x) is equal to that for the original signal, leading to more reliable147

results for higher scale factors. The complexity metrics for univariate signals and their characteristics148

are summarized in Table 1.149

2.4. Parameters of the Multiscale Entropy Approaches150

For all the SampEn-based methods, we set d = 1, m = 2, and r = 0.15 of the SD of the original151

signal [3]. For all the DispEn-based approaches, we set d = 1 and c = 6. For more information about c152

and d, please refer to [6,13].153

For the DispEn-based complexity measures without DS, as the length of coarse-grained signals is154

equal to that of the original signal, it is advisable to follow cm < L. For the SampEn-based complexity155

approaches without DS, it is recommended to have at least 10m (or preferably 20m) sample points for156

the embedding dimension m [21,22].157

For the DispEn-based multiscale approaches with DS, since the decimation process causes the158

length of a signal decreases to
⌊

L
τmax

⌋
, it is recommended cm <

⌊
L

τmax

⌋
. Similarly, for the SampEn-based159

complexity techniques with DS, it is recommended 10m <
⌊

L
τmax

⌋
[3].160

On the other hand, in RCDME, we consider τ coarse-grained time series with length
⌊

L
τmax

⌋
.161

Therefore, the total sample points calculated in RCMDE is τ ×
⌊

L
τmax

⌋
≈ L. Thus, RCMDE follows162

cm < L, leading to more reliable results, especially for short signals. Likewise, it is advisable to have at163

least 10m (or preferably 20m) sample points for RCMSE with embedding dimension m.164

3. Evaluation Signals165

In this section, the synthetic and real signals used in this study to evaluate the behaviour of the166

multiscale entropy approaches are described.167

3.1. Synthetic Signals168

White noise is more irregular than pink noise (1/ f noise), although the latter is more complex169

because pink noise contains long-range correlations and its 1/ f decay produces a fractal structure170
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in time [3,5,8]. Therefore, white and pink noise are two important signals to evaluate the multiscale171

entropy techniques [3,5,8,23–25].172

In order to investigate the change in the behavior of a nonlinear system, the Lorenz attractor is173

used. Further details can be found in [26,27]. To evaluate the effect of filtering and downsampling174

processes on different frequency components of time series, multi-harmonic signals are employed [16].175

Finally, to inspect the effect of noise on multiscale approaches, white noise was added to the Lorenz176

and multi-harmonic time series.177

3.2. Real Biomedical Datasets178

Multiscale entropy techniques are broadly used to characterize physiological recordings [2,3,12,25].179

To this end, electroencephalograms (EEGs) [28] and stride internal fluctuations [29] are used to180

distinguish different kinds of dynamics of time series.181

3.2.1. Dataset of Focal and Non-focal Brain Activity182

The ability of complexity measures to discriminate focal from non-focal signals is evaluated by183

the use of an EEG dataset (publicly-available at http://ntsa.upf.edu/) [28]. The dataset includes 5184

patients and, for each patient, there are 750 focal and 750 non-focal bivariate time series. The length of185

each signal was 20s with sampling frequency of 512Hz (10240 samples). For more information, please,186

refer to [28]. All subjects gave written informed consent that their signals from long-term EEG might187

be used for research purposes [28]. Before computing the entropies, the EEG signals were digitally188

band-pass filtered between 0.5Hz and 150Hz using a fourth-order Butterworth filter.189

3.2.2. Dataset of Stride Internal Fluctuations190

To compare multiscale entropy methods, stride interval recordings are used [29,30]. The time191

series were recorded from five young, healthy men (23 - 29 years old) and five healthy old adults (71 -192

77 years old). All the individuals walked continuously on level ground around an obstacle-free path193

for 15 minutes. The stride interval was measured by the use of ultra-thin, force sensitive resistors194

placed inside the shoe. For more information, please refer to [29].195

4. Results and Discussion196

4.1. Synthetic Signals197

4.1.1. Frequency Responses of Cumulative Sums of IMFs (CSI), and Moving Average (MA) and198

Butterworth (BW) Filters199

To investigate the frequency responses of MA, BW, and CSI, we used 200 realizations of white200

noise with length 512 sample points following [31,32]. The average Fourier spectra obtained by MA,201

BW, and CSI at different scale factors (i.e., 2, 4, 6, 8, and 10) are depicted in Figure 2. The results show202

that BW, MA, and CSI can be considered as low-pass filters with different cut-off frequencies. The203

results for MA and BW filters are in agreement with their theoretical frequency responses shown in204

Equations 2 and 3, respectively. The results for CSI are also in agreement with the fact that IMF1205

corresponds to a half-band high-pass filter and IMFλ (λ ≥ 2) can be considered as a filter bank of206

overlapping bandpass filters [32].207

The magnitude of the frequency response for BW, compared with MA, is flatter in the passband,208

side lobes in its stopband are not present, and the roll-off is faster. Therefore, the filter’s frequency209

response leads to a more accurate elimination of the components with frequency above cut-off210

frequencies. This fact reduces aliasing while the filtered signals are downsampled. The behavior of the211

frequency response for CSI is similar to that for BW. However, the cut-off frequencies obtained by CSI212
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is considerably smaller than those for BW. This fact results in very low entropy values at high scale213

factors.214

4.1.2. Effect of Different Low-pass Filters on Multi-harmonic and Lorenz Series215

To understand the effect of MA, BW, and CSI on multi-harmonic signals, we use bi = cos(2π10i) +216

cos(2π20i) + cos(2π50i) with sampling frequency 200Hz and length 20s. The first one second of the217

signal b is depicted in 3. To show the frequency components of b and their amplitude values, we218

used the combination of Hilbert transform and recently introduced variational mode decomposition219

(VMD). VMD is a generalization of the classic Wiener filter into adaptive, multiple bands [16]. After220

decomposing the original signals into its IMFs using VMD, we employ the Hilbert transform to find221

the instantaneous frequency of each IMF [16,33].222

The frequency components of b and their corresponding amplitudes are depicted in Figure223

3(a). The Hilbert transform of b filtered by 4-sample MA (Figure 3(b)) illustrates that the harmonic224

cos(2π50i) is completely eliminated, in agreement with the fact that MA is a low-pass filter with cut-off225

frequency fs
2τ and completely eliminates the frequency component fz at fs

τ (here at 50 = 200
4 ) based on226

Equation 2 [11].227

The MDE values for b, depicted in Figure 4(a), show that the largest changes in entropy values228

occur at temporal scale 4 and 10 (based on 50 = 200
4 and 20 = 200

10 - please see the red double229

arrows in Figure 4). In fact, the largest changes in entropy values are related to the main frequency230

components of a multi-harmonic time series. To investigate the effect of noise on MDE values, we231

created gi = bi + η, where η denotes a uniform random variable between 0 to 1. The MDE values for232

g, plotted in Figure 4(b), illustrate a decrease at temporal scales from 1 to 19 and then, the entropy233

values become approximately constant. This is in agreement with the fact that the smaller scale factors234

correspond to higher frequency components whereas smaller scales correspond to lower frequencies235

[34]. Comparing Figures 4(a) and 4(b) shows that after filtering the effect of white noise by MA, the236

profiles for b and g are very close (temporal scales 19 to 25). This suggests that white noise affects237

lower temporal scales. It is worth noting that the behavior of MDEBW and that of MDEMA are similar.238

However, the effect of CSI at scale 2 on b is shown in Figure 5. The results, compared with those239

for MA (see Figure 4(b)), illustrate similar behavior of CSI at scale 2 and MA at scale 4 in terms of240

the elimination of the highest frequency component of b. This is in agreement with the fact that at a241

specific scale factor, the cut-off frequency for CSI is considerably lower than that for MA or BW (see242

Figure 2).243

We also generated the Lorenz signal o with length 10,000 sample points and sampling frequency244

( fs) 300Hz. To have a nonlinear behavior, λ = 10, β = 8
3 , and ρ = 99.96 were set [26,27]. The signal o245

and o filtered by MA at scale 10 are shown in Figure 6. The MDE-based values for o are depicted in246

Figure 7(a). The Nyquist frequency of the signal is ( 300
2 = 150)Hz and is close to its highest frequency247

component (around 150Hz). Note that choosing a lower sampling frequency may result in aliasing.248

As the main frequency components of this time series are around 20-30Hz, the MA filter is not able249

to completely eliminate the main frequency components of this signal at scale 10. It leads to that the250

amplitude values of the filtered signal at scale 10 (without downsampling) are very close to those of251

the original time series o.252

To inspect the effect of additive noise on MDE values, we created qi = oi + η, where η is a random253

variable between 0 to 1. The MDE values for q, plotted in Figure 7(b), illustrate a decrease at low254

temporal scale and then an increase at high time scale factors. It is also found that the MDE values of255

o and q are approximately equal at scales between 18 to 25. This is also consistent with the fact that256

lower scale factors correspond to higher frequency components whereas larger scales correspond to257

lower frequencies [34].258
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(a) Moving average (MA) filter
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(b) Butterworth (BW) filter
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(c) Cumulative sums of IMF (CSI)

Figure 2. Magnitude of the frequency response for (a) MA, (b) BW, and (c) CSI at different scale factors
(τ =2, 4, 6, 8, and 10) computed from 200 realizations of white noise with length 512 sample points.
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Figure 3. Hilbert transform of the decomposed VMD-based IMFs obtained from (a) bi = cos(2π10i) +
cos(2π20i) + cos(2π50i) and (b) b filtered by 20-sample MA (scale 20).
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Figure 4. MDE values for (a) bi = cos(2π10i) + cos(2π20i) + cos(2π50i) and (b) gi = bi + η. The
largest changes in entropy values (the red double arrows) occur at temporal scale 4 and 10 (respectively
correspond to 50 = 200

4 and 20 = 200
10 )
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Figure 5. Hilbert transform of the decomposed VMD-based IMFs obtained from the signal b for CSI at
scale 2.

4.1.3. Effect of Downsampling and Sampling Frequency on Multiscale Entropy Methods259

To investigate the effect of downsampling (without low-pass filtering) on multiscale entropy260

approaches, we created the signal si = cos(2πi) with length 300 sample points and sampling frequency261

10 Hz, and (b) wi = cos(2πi) with length 300 sample points and sampling frequency 100Hz. The262

signals and their downsampled series by a factor of 12 are depicted in Figure 8.263

When the sampling frequency of a time series is close to its main frequency components (see s -264

Figure 8(a)), the downsampled signal may have a lower frequency component in comparison with the265

original signal. It shows the effect of aliasing in the time series. Accordingly, the downsampled signals266

are more regular (have smaller entropy values). It is confirmed by the fact that the DispEn of s and its267

corresponding downsampled series are 2.0267 and 1.6058, respectively.268

On the other hand, when the sampling frequency is high (see w - Figure 8(b)), the amplitude values269

of downsampled signal are approximately equal to those of the original signal. However, as the number270

of sample points decreases by 12, the rate of change along sample points is 12 times larger than that271

for the original signal. Thus, the original signal is more regular than its corresponding downsampled272

series. It is confirmed by the fact that the DispEn of w and its corresponding downsampled series are273

respectively 1.9618 and 2.5539.274

4.1.4. Multiscale Entropy Methods vs. Noise275

All the complexity methods are used to distinguish the dynamics of white from pink noise. The276

mean and SD of results for the signals with length 8,000 (long series) and 400 (short series) sample277

points are respectively depicted in Figures 9 and 10. The results obtained by the complexity techniques278

with DS show that the entropy values decrease monotonically with scale factor τ for white noise.279

However, for pink noise, the entropy values become approximately constant over larger-scale factors.280

These are in agreement with the fact that, unlike white noise, 1/ f noise has structure across temporal281

scale factors [3,5]. The profiles for MDEMA and MSEMA without DS, MDEBW and MSEBW without DS,282

InMSE, and InMDE decrease along the temporal scales as there is not a DS process to increases the rate283

of changes to increase entropy values. It should be mentioned that as the crossing point of profiles for284

white and pink noise is at scale 23, τmax for the MA-based coarse graining is equal to 50. Furthermore,285

τmax for InMSE and InMDE is 10, as the entropy values at high scales are close to 0.286
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Figure 6. Hilbert transform of the decomposed VMD-based IMFs obtained from (a) the Lorenz signal o
and (b) o filtered by MA at scale 10.
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Figure 8. Downsampling the signal si = cos(2πi) with length 300 sample points and sampling
frequency 10Hz, and (b) wi = cos(2πi) with length 300 sample points and sampling frequency 100Hz.
The factor of downsampling is 12.

Table 2. CV values obtained by the complexity measures at scale factor 10 for forty realizations of
pink and white noise with length 8,000 sample points. Note that the scales 25 and 5 are considered for
MSEMA and MDEMA, and InMSE and InMDE, respectively.

Noise MDE RCMDE MDEMA (scale 25) MDEBW RCMDEBW MDEBW without DS InMDE (scale 5)
Pink 0.0058 0.0038 0.0069 0.0044 0.0038 0.0031 0.0091

White 0.0174 0.0124 0.0246 0.0166 0.0115 0.0182 0.0394

Noise MSE RCMSE MSEMA (scale 25) MSEBW RCMSEBW MSEBW without DS InMSE (scale 5)
Pink 0.0186 0.0105 0.0131 0.0176 0.0124 0.0130 0.0982

White 0.0201 0.0133 0.0135 0.0219 0.0203 0.0308 0.1330

Entropy values obtained by MSE, RCMSE, MSEBW, and RCMSEBW are undefined at high scale287

factors. Comparing Figures 9 and 10 demonstrates that the longer the signals, the more robust the288

multiscale entropy estimations. The results also show that InMDE, compared with InMSE, better289

discriminates white from pink noise.290

To compare the results obtained by the complexity algorithms, we used the coefficient of variation291

(CV) defined as the SD divided by the mean. We use such a metric as the SDs of signals may increase292

or decrease proportionally to the mean. The CV values at scale 10, as a trade-off between low and high293

scale factors, for noise signals with length 8,000 and 400 sample points are respectively illustrated in294

Tables 2 and 3. Of note is that we consider scale 25 and 5 for the MSEMA and MDEMA, and InMSE and295

InMDE profiles, respectively. The refined composite technique decreases the CVs for all the MSE- and296

MDE-based algorithms, showing its advantage to improve the stability of results for short and long297

noise. The smallest CVs for long pink and white noise are our developed MDEBW without DS and298

RCMDEBW methods, respectively. The smallest CVs for short pink and white noise are achieved by299

RCMDEBW and RCMDE, respectively. Overall, the smallest CVs are obtained by the DispEn-based300

complexity measures.301

Table 3. CV values obtained by the complexity measures at scale factor 10 for forty realizations of pink
and white noise with length 400 sample points. Note that the scales 25 and 5 are considered for MSEMA

and MDEMA, and InMSE and InMDE, respectively.

Noise MDE RCMDE MDEMA (scale 25) MDEBW RCMDEBW MDEBW without DS InMDE (scale 5)
Pink 0.0317 0.0194 0.0473 0.0320 0.0141 0.0204 0.0522

White 0.0726 0.0415 0.1116 0.0929 0.0876 0.0726 0.1435

Noise MSE RCMSE MSEMA (scale 25) MSEBW RCMSEBW MSEBW without DS InMSE (scale 5)
Pink undefined 0.1327 0.0434 undefined 0.2008 0.0822 0.2351

White 0.2385 0.0738 0.0605 0.2024 0.1736 0.1060 0.3779
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Figure 9. Mean value and SD of results obtained by the complexity measures computed from 40
different realizations of pink and white noise with length 8,000 samples. Red and blue demonstrate
white and pink noise, respectively.
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Figure 10. Mean value and SD of results obtained by the complexity measures computed from 40
different realizations of pink and white noise with length 400 samples. Entropy values obtained by
MSE, RCMSE, MSEBW, and RCMSEBW are undefined at several high scale factors. Red and blue
demonstrate white and pink noise, respectively.
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Figure 11. Mean and SD of the results obtained by the MSE, MDE, RCMSE, and RCMDE for the Lorenz
series with lengths 450 and 4,500 sample points.

Table 4. CVs of MSE, RCMSE, MDE, and RCMDE values for the 40 different realizations of the Lorenz
signals with length 450 and 4,500 samples at scale five.

Signal length MSE MDE RCMSE RCMDE
450 sample points 0.1000 0.0898 0.0700 0.0309

4,500 sample points 0.1156 0.0310 0.1134 0.0312

4.1.5. Effect of Refined Composite on Nonlinear Systems Without Noise302

To understand the effect of the refined composite technique on nonlinear signals without noise, we303

created 40 realizations of two Lorenz signals with lengths of 450 and 4,500 sample points and sampling304

frequency ( fs) 150Hz. To have a nonlinear behavior, the values of λ = 10, β = 8
3 , and ρ = 28 were used305

in the Lorenz system [26,27]. The results obtained by MSE, MDE, RCMSE, and RCMDE are depicted306

in Figure 11 and are in agreement with [25,27]. Of note is that the entropy values for RCMSEBW and307

RCMDEBW are similar to those for RCMSE and RCMDE, respectively. Thus, these results are not308

shown herein.309

To investigate the effect of the refined composite technique on the stability of results, the CVs310

for the multiscale approaches at scale 5 are calculated. The smallest CVs are obtained by MDE and311

RCMDE approaches. The results also suggest that the refined composite does not improve the stability312

of profiles for the signal with length 4500 samples (long signals). For the Lorenz series with length 450313

sample points, RCMSE and RCMDE lead to smaller CV values in comparison with MSE and MDE, in314

that order, showing the importance of the refined composite method to characterize small time series.315

4.2. Real Signals316

4.2.1. Dataset of Focal and Non-focal Brain Activity317

For the focal and non-focal EEG dataset, the results obtained by MSE, MDE, RCMSE, RCMDE,318

MSEBW, MDEBW, InMSE, and InMDE, depicted in Figure 12, show that the non-focal signals are more319

complex than the focal ones. This fact is in agreement with previous studies [28,35].320

The results for RCMSEBW and RCMDEBW were respectively similar to those for MSEBW and321

MDEBW. Thus, they are not shown herein. Note that, for MDE and RCMDE, τmax and m respectively322

were 30 and 3. It also should be mentioned that the average entropy values over 2 channels for these323

bivariate EEG signals are reported for the univariate complexity techniques.324
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Figure 12. Mean value and SD of results obtained by the MSE, MDE, RCMSE, RCMDE, MSEBW,
MDEBW, InMSE, and InMDE computed from the focal and non-focal EEGs.
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Table 5. CVs of MSE, RCMSE, MSEBW, MDE, RCMDE, and MDEBW values for the focal and non-focal
EEGs at scale 15.

Signals MSE RCMSE MSEBW MDE RCMDE MDEBW
Focal EEGs 0.0229 0.0229 0.0224 0.0083 0.0089 0.0083

Non-focal EEGs 0.0178 0.0191 0.0172 0.0111 0.0121 0.0109

Table 6. CV values obtained by the complexity measures for the stride interval recordings for young
and old subjects.

Signals RCMDEBW RCMDE MDEBW without DS RCMSEBW
Young subjects 0.0355 0.0410 0.0334 0.0644

Old subjects 0.0517 0.0540 0.0449 0.0723

To compare the results, the CV values obtained by the univariate multiscale approaches, except325

InMSE and InMDE, are calculated at scale factor 15. These are shown in Table 5. The CV values for326

MDE, RCMDE, MSE, and RCMSE illustrate that the refined composite approach does not enhance the327

stability of the MDE and MSE profiles. Overall, the smallest CV values are achieved by DispEn-based328

complexity methods.329

4.2.2. Dataset of Stride Internal Fluctuations330

In Figure 13, the mean and SD of the RCMDEBW, RCMDE, MDEMA, MDEBW without DS, InMDE,331

RCMSEBW, RCMSE, MSEMA, MSEBW without DS, and InMSE values computed from young and old332

subjects’ stride internal fluctuations are illustrated. As the number of samples for these time series are333

between 400 to 800 sample points, we do not use MSE, MDE, MSEBW, and MDEBW.334

For each scale factor, the average of entropy values for elderly subjects is smaller than that for335

young ones, in agreement with those obtained by the other entropy-based methods [36] and the336

fact that recordings from healthy young subjects correspond to more complex states because of their337

ability to adapt to adverse conditions whereas aged individuals’ signals present complexity loss338

[3,5,37]. The results also suggest that when dealing with short signals, the complexity measures339

without downsampling (i.e., MSEMA, MDEMA, and MSEBW and MDEBW without DS) are appropriate340

to distinguish different kinds of dynamics of real signals.341

The CV values at those scales whose profiles do not have an overlap are illustrated in Table 6. It is342

found that MDEBW without DS leads to the smallest CV values.343

5. Time Delay, Downsampling, and Nyquist Frequency344

According the previous complexity-based approaches [2,3,13,15], the time delay was equal to 1 in345

this study. Nevertheless, if the sampling frequency is considerably larger than the highest frequency346

component of a signal, the first minimum or zero crossing of the autocorrelation function or mutual347

information can be used for the selection of an appropriate time delay [38].348

Alternatively, a signal may be downsampled before calculating the complexity-based entropy349

approaches to adjust its highest frequency component to its Nyquist frequency ( fs/2) [39]. Accordingly,350

when the coarse-graining process starts, the low-pass filtering will affect the highest frequency351

component of the signal at low temporal scale factors. It is worth noting that if the main frequency352

components of the signal are considerably lower than its highest frequency component (e.g., the signal353

o - please see Figure 6), the filtering process may make only little change in the amplitude values of354

the signal at even large scales.355

6. Future Work356

Wavelet transform, which is a powerful filter bank broadly used for analysis of non-stationary357

recordings, can be employed to decompose a signal to several series with specific frequency bands358
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Figure 13. Mean value and SD of results obtained by the complexity measures computed from the
young and old subjects’ stride interval recordings.
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[40]. Accordingly, the wavelet-based filter bank could be used as a complexity approach. VMD can359

also be used as an alternative to EMD in InMSE and InMDE. VMD, unlike EMD, provides a solution360

to the decomposition problem that is theoretically well founded and more robust to noise than EMD361

[16]. A recent development in the field has tried to generalize multivariate and univariate multiscale362

algorithms to a family of statistics by using different moments (e.g., variance, skewness, and kurtosis)363

in the univariate and multivariate coarse-graining process [25,41–43]. It is recommended to compare364

these techniques in the context of signal processing and to investigate their interpretations. As the365

existing univariate and even multivariate coarse-graining processes filter only series in each channel366

separately [37,42,44], there is a need to propose new multivariate filters dealing with the spatial and367

time domains at the same time.368

7. Conclusions369

In summary, we have compared existing and newly proposed coarse-graining approaches for370

univariate multiscale entropy estimation. Our results indicate that, as expected due to the filter bank371

properties of the EMD [32] in comparison with moving average and Butterworth filtering, the cut-off372

frequencies at each temporal scale τ of the former are considerably smaller than those for the latter.373

Therefore, InMSE and our developed InMDE have entropy values very close to 0 for relatively low374

values of temporal scales due to the exponential, rather than linear, dependency of the bandwidth at375

each scale. We also inspected the effect of the downsampling in the coarse-graining process in the376

entropy values showing that it may lead to increased or decreased values of entropy depending on the377

sampling frequency of the time series.378

Our results confirmed previous reports indicating that, when dealing with short or noisy signals,379

the refined composite approach [14,25] may improve the stability of entropy results. On the other hand,380

for long signals with relatively low levels of noise, the refine composite method makes little difference381

in the quality of the entropy estimation at the expense of a considerable additional computational cost.382

In any case, the use of dispersion entropy over sample entropy in the estimations led to more stable383

results based on CV values and ensured that the entropy values were defined at all temporal scales.384

Finally, the profiles obtained by the multiscale techniques with and without downsampling led385

to similar findings (e.g., pink noise is more complex than white noise based on all the complexity386

methods) although the specific values of entropy may differ depending on the coarse-graining used.387

This suggests that downsampling within the coarse-graining procedure may not be needed to quantify388

the complexity of signals, especially for short ones. In fact, this kind of techniques still eliminates the389

fast temporal scales to deal with progressively slower time scales as τ increases and takes into account390

multiple time scales inherent in time series.391

On the whole, it is expected that these findings contribute to the ongoing discussion regarding392

the development of stable, fast, and less sensitive-to-noise complexity approaches appropriate for393

either short or long time series. We recommend that future studies explicitly justify their choices394

for coarse-graining procedure in the light of the characteristics of the signals under analysis and the395

hypothesis of the study, and that they discuss their findings on the light of the behaviour of the selected396

entropy metric and coarse-graining procedure.397
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Appendix. Matlab Codes used in this Article402

The Matlab codes of DispEn and MDE are available at https://datashare.is.ed.ac.uk/handle/403

10283/2637. The codes of SampEn and MSE can be found at https://physionet.org/physiotools/404

matlab/wfdb-app-matlab/. The code of EMD is also available at http://perso.ens-lyon.fr/patrick.405

https://datashare.is.ed.ac.uk/handle/10283/2637
https://datashare.is.ed.ac.uk/handle/10283/2637
https://datashare.is.ed.ac.uk/handle/10283/2637
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flandrin/emd.html. For the Butterworth filter, we used the functions “butter” and “filter” in Matlab406
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