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A General Approach Toward Green Resource
Allocation in Relay-Assisted Multiuser

Communication Networks
Keshav Singh, Member, IEEE, Ankit Gupta

Tharmalingam Ratnarajah, Senior Member, IEEE, and Meng-Lin Ku, Member, IEEE

Abstract—The rapid growth of energy consumption due to
the strong demands of wireless multimedia services, becomes
a major concern from the environmental perspective. In this
paper, we investigate a novel energy-efficient resource allocation
scheme for relay-assisted multiuser networks to maximize the
energy efficiency (EE) of the network by jointly optimizing the
subcarrier pairing permutation formed in one-to-many/many-to-
one manner, subcarrier allocation, as well as the power allocation
altogether. By analyzing the properties of the complex mixed-
integer nonlinear programming (MINLP) problem, which is
generally very difficult to solve in its original form, we transform
the problem into an equivalent convex problem by relaxing the
integer variables using the concept of subcarrier time sharing,
and by applying a successive convex approximation (SCA)
approach. Based on the dual decomposition method, we derive an
optimal solution to the joint optimization problem. The impact
of different network parameters, namely number of subcarriers
and number of users, on the attainable EE and spectral efficiency
(SE) performance of the proposed design framework is also
investigated. The numerical results are provided to validate the
theoretical findings and to demonstrate the effectiveness of the
proposed algorithm for achieving higher EE and SE than the
existing schemes.

Index Terms—Green communications, resource allocation, en-
ergy efficiency (EE), multiuser, cooperative relaying.

I. INTRODUCTION

Recently, there has been tremendous growth in the number
of mobile users and applications due to the introduction of An-
droid and iPhone devices. Therefore, installation of new base
stations (BSs) are required to support such high-data-rate and
ubiquitous services which facilitate the people to use social
networks, listen to an audio, read books and watch videos [1].
Consequently, the energy consumption significantly increases,
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particularly at the BSs, which leads to environmental pollution
and hazards [2]. Currently, the information and communication
technology (ICT) sector consumes about 4.7% of the global
energy [3], [4] and it releases approximately 1.7% of the
total CO2 into the atmosphere. Further, the impact of ICT
is predicted to be 4 Gt (gigatonnes) of CO2 by 2030. Hence,
improving the energy efficiency (EE) of the communication
networks becomes of paramount importance in realizing 5G
radio access solutions. Therefore, cellular network demands
more attention towards designing energy-aware architectures
and resource allocation techniques that not only extend the
network’s lifespan but also provide significant energy savings
under the umbrella of green communications [4].

Cooperative relaying has emerged as a revolutionary tech-
nique for greatly improving the EE without deploying new BSs
[5]. The two main relaying techniques are the amplify-and-
forward (AF) and decode-and-forward (DF) [6]. Although the
AF relaying protocol has the advantage of lower implementa-
tion complexity, the DF relaying protocol performs better than
the AF when the channel quality of the source-to-relay link
is good enough. Another advantage of the DF protocol is that
the source and the relay nodes may be operated in different
channel coding schemes. In this paper, we will focus on DF
protocol. In many current systems, a majority of mobile users
may be operated in geographically dispersed areas, leading
to poor non-line-of-sight (NLOS) performance. Hence, the
reliable communication for high data rates between the BS
and the destination nodes close to the cell boundary may be
not guaranteed. In this scenario, the key concept of cooper-
ative transmission can be used to multiuser cellular wireless
networks to assist transmissions between both ends. Relays in
such a situation have emerged as a promising approach toward
the potential enhancements in channel quality by overcoming a
significant loss of signal strength along the propagation path in
NLOS environments. Besides, introducing a relay in existing
networks is considered to be an attractive technology to extend
the network capacity and/or coverage distribution. Thus, the
deployment of relays in multiuser cellular wireless networks
is currently a promising option for emerging standards such
as the IEEE 802.16j mobile multihop relay (MMR) network.

Resource allocation schemes, which play a vital role in
the performance optimization of wireless communication net-
works are usually used for solving either the spectral-efficiency
(SE) maximization problem of the network or the power
consumption minimization problem under a minimum total



2

network throughput/individual user rate constraint [7]–[12].
Vandendorpe et al. [7], [8] optimized the power allocation for
enhancing the sum rate of DF-relaying orthogonal frequency
division multiplexing (OFDM) transmission under sum and
individual power constraints. The utility-based dynamic re-
source allocation algorithm was investigated in [10] for half-
duplex (HD) relay-aided OFDM access system in order to
maximize the average utility of all users with multiservice,
while Sindhu et al. [11] jointly optimized power and subcarrier
for improving the system throughput in multiuser two-way
HD AF relay networks. In [13], the decoding performance of
the relays and the destination was analyzed using a Markov
chain for a two-path channel and closed-form expressions for
outage probability were obtained by a joint consideration of
all possibilities over the two hops. The work [13] has been
extended in [14] for a cooperative multi-path channel (MPC)
and the system outage probability was analyzed and derived
in closed-form expressions. In general, the existing research
works [7]–[12] have focused on throughput maximization and
thus, it cannot deliver the EE maximization solution. However,
due to the enormous growth of energy consumption in next-
generation wireless communications, the global warming and
operation costs are increasing. Therefore, it is required to
balance the tradeoff between the SE and EE by allocating
the available resources in future wireless communications and
to revisit the design of the existing cellular networks from
the green communication perspective. Further, it is of utmost
importance to investigate the resource allocation algorithms
that not only achieve the high system throughput but also
improve the system EE.

Energy-efficient resource allocation schemes have been
extensively studied in [15]–[21]. A pricing-based power al-
location scheme was investigated in [15] for multiuser AF
relay network for improving the EE. The average energy
efficiency (EE) of multiuser multiantenna cellular networks
was investigated in [16] under the hard-core point process
(HCPP)-distributed BSs. The beamforming vectors for the
source and the relay nodes were designed in [17] for max-
imizing the network lifetime. The power allocation policy
was studied in [18] for an EE-SE tradeoff. The authors in
[19] proposed an energy-efficient resource scheduling solution
for downlink transmission in multiuser orthogonal frequency-
division multiple access (OFDMA) networks under imper-
fect channel state information (CSI). With a similar goal,
Zarakovitis [20] extended the work [19] for multicarrier under
perfect CSI knowledge and designed the joint subcarrier and
power allocation problem subject to a total power constraint
for downlink multiuser OFDMA system. Energy-efficient joint
antenna-subcarrier-power allocation scheme was investigated
for downlink multiuser OFDM distributed antenna systems
(OFDM-DASs) while ensuring the minimum sum rate for each
user. However, the previous existing works [15]–[18] only
optimized the transmit power for enhancing the EE of the
network, whereas the resource allocation problem in [19] and
[20] was optimized only in downlink scenario for maximizing
EE. As well, most of the above reported works have not
considered the joint resource allocation optimization in a dual-
hop cooperative network. Besides, all of the existing works

have considered one-to-one subcarrier mapping in uplink and
downlink phase which limits the system throughput. To the
best of the authors’ knowledge, a unified resource allocation
scheme considering subcarrier pairing permutation obtained
in one-to-many/many-to-one way, power optimization and
subcarrier allocation altogether for multiuser DF relay network
has not been explored from green communication perspective
yet.

In light of aforementioned discussions, in this paper, we
consider a multiuser multicarrier DF relay network. The relay
node operates in a half-duplex DF mode with two transmission
phases. In contrast with existing works [7]–[12], wherein
the throughput in OFDM relay networks was maximized by
optimizing either of the following: i) subcarrier allocation, ii)
subcarrier pairing, where the signal received at the relay over
one subcarrier is re-transmitted on a different subcarrier, iii)
power allocation over different subcarriers at each transmitting
node, or iv) power allocation and subcarrier assignment,
and the works on energy-efficient resource allocation [15]–
[21], the uniqueness of this paper is to develop a general
approach for improving the EE, in which subcarrier pairing
permutation is performed in one-to-many/many-to-one manner
before assigning it to a particular user pair. A unified resource
allocation scheme considering subcarrier pairing permutation,
power optimization and subcarrier allocation altogether for
multiuser DF relay networks has not yet been explored from
a green communication perspective. Therefore, this paper
proposes joint optimization of subcarrier pairing permuta-
tion, subcarrier allocation and power allocation altogether for
multiuser multicarrier DF relay networks for improving the
EE. The main contributions of this paper are highlighted as
follows:
• In contrast to [15]–[21], the EE maximization (EEM)

problem in context of a multiuser multicarrier DF relay
network subject to limited transmit power, subcarrier pair-
ing permutation1, and subcarrier allocation constraints,
is formulated as a fractional programming problem with
the goal of finding the optimal subcarrier pairing, power
allocation and subcarrier allocation for improving the
EE. The resultant problem is a non-convex mixed-integer
nonlinear programming (MINLP) problem [22] and there-
fore it is in generally intractable. The objective function
denoting the EE metric is fractional and nonlinear, which
complicates the problem further.

• To make the problem tractable, we apply a successive
convex approximation (SCA) method [23] and introduce
a variable transformation in addition to relaxing the
integer variables using the concept of subcarrier time
sharing. Further, we prove that the relaxed problem is
quasi-concave. By introducing Dinkelbach method [24],
we resolve the fractional objective function and propose
an energy-efficient iterative algorithm for finding the
optimal solution to the joint optimization problem.

1Note: Since a DF protocol is applied at the relay node, the subcarriers can
be paired in a one-to-many/many-to-one fashion, i.e., a single subcarrier of
multiple access (MA)/uplink phase can pair with a single or many subcarrier
of broadcast (BC)/downlink phase and vice-versa. However, each subcarrier
pair assigns to only a single user pair.
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• Additionally, we employ SE maximization (SEM) al-
gorithm and EEM algorithm without (w/o) subcarrier
pairing and subcarrier allocation (SP-SA). Extensive sim-
ulation results are used to demonstrate the merits and
benefits of the proposed algorithms and to show the
effects of many network design choices such as increasing
the number of subcarriers, on the EE and SE.

The organization of this paper is as follows. The network
architecture and signal models are described in Section II,
followed by the problem formulation in Section III. Then,
the EE resource allocation algorithm is presented in Section
IV. Numerical results are depicted in Section V. Finally, we
conclude this study with Section VI.

II. NETWORK ARCHITECTURE AND PRELIMINARIES

In this section, the network architecture and signal models
pertaining to the multiuser multicarrier DF relay network
system are presented.

A. Network Architecture

Consider a multi-pair relay-assisted network consisting of
a single-antenna relay node (R), which works as a BS, and
2M single-antenna users, as depicted in Fig 1. Without loss
of generality, the M groups are formed by pairing the 2M
users, where user in each group intends to share information
with the help of the relay node. The users in the mth group
are represented as (1,m) and (2,m), where m ∈ {1, . . . ,M},
respectively. A total number of NS subcarriers are available
in each hop for signal transmission. It is assumed that there
is no direct channel between the users in each group due
to impairments such as heavy path-loss and shadowing, and
the relay has perfect channel state information (CSI) of each
link. In practice, the CSIs of the links can be estimated at
the relay node by exploiting the channel reciprocity between
forward and backward transmissions through orthogonal pilot
signals, which are simultaneously sent by multiple source
and destination nodes in some dedicated beacon time slots.
In general, the CSI estimation could be very accurate if
the training period is sufficiently long. Further, the channels
are considered as Rayleigh frequency-flat fading in nature.
Moreover, the relay network is operated in a half-duplex mode.
Hence, the relay node does not simultaneously receive and
transmit signals. That is, the relay receives signals from the
source nodes during the MA phase, while it transmits the re-
encoded signals to the destination nodes during the BC phase.
For implementation, there could be two radio-frequency (RF)
chains (one for transmitting and the other for receiving) that
share the same single antenna alternatively in the two different
phases, or each RF chain is associated with a single antenna
exclusively.

B. MA/Uplink Phase

Define the channel coefficient from mth uplink user to the
relay node R on subcarrier j as h(j)

1,m. Then, in the uplink
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Fig. 1. Structure of multiuser relay-assisted network.

phase, the received signal at the relay on the jth subcarrier,
for j ∈ {1, . . . , NS}, can be given by

y
(j)
R =

M∑
m=1

h
(j)
1,m

√
P

(j)
1,ms

(j)
1,m + n

(j)
R = h

(j)
1 P

(j)
1 s

(j)
1 + n

(j)
R ,

(1)

where, h
(j)
1 =

[
h

(j)
1,1, . . . , h

(j)
1,M

]
, P

(j)
1 =diag

(√
P

(j)
1,1 , . . . ,√

P
(j)
1,M

)
and s

(j)
1 =

[
s

(j)
1,1, . . . , s

(j)
1,M

]T
. P (j)

1,m denotes the

transmit power of the mth uplink user on the jth subcarrier,
s

(j)
1,m indicates the data symbol transmitted by the mth uplink

user on the jth subcarrier with unit transmission power, i.e.,

E
[∣∣∣s(j)

1,m

∣∣∣2] = 1, and n(j)
R represents the zero-mean complex

additive white Gaussian noise (AWGN) with variance σ(j)2

R .
Further, the signal-to-interference-plus-noise ratio (SINR)

for the uplink phase at the relay node for the mth uplink user
on the jth subcarrier, can be given from (1), as follows

Γ
(j)
1,m =

P
(j)
1,m

∣∣∣h(j)
1,m

∣∣∣2
M∑

l=1,l 6=m

P
(j)
1,l

∣∣∣h(j)
1,l

∣∣∣2 +
(
σ

(j)
R

)2
, (2)

C. BC/Downlink Phase

In the DL phase, the relay transmits signal to all the
downlink users. Since DF protocol is applied at the relay node,
the sufficiently good enough uplink channel conditions allow
the sophisticated DF relay node to successfully decode the
received signal, i.e., ŝ(k)

1,m = s
(k)
1,m, for k ∈ {1, . . . , NS},∀m.

Therefore, the signal received at the mth downlink user on the
kth subcarrier can be written as follows

y
(k)
2,m = h

(k)
2,m

√
P

(k)
2,mŝ

(k)
1,m + h

(k)
2,m

M∑
l=1,l 6=m

√
P

(k)
2,l ŝ

(k)
1,l + n

(k)
2,m ,

(3)

where, h(k)
2,m can be defined in a similar way as h

(j)
1,m for

downlink channel, P (k)
2,m represents the transmit power at the

relay node for the mth downlink user on the kth subcarrier,
and n(k)

2,m denotes the complex AWGN for the mth downlink

user on the kth subcarrier with CN
(

0, σ
(k)2

2,m

)
.
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From (3), the SINR for the mth downlink user on the kth

subcarrier, can be written as

Γ
(k)
2,m =

P
(k)
2,m

∣∣∣h(k)
2,m

∣∣∣2
M∑

l=1,l 6=m

P
(k)
2,l

∣∣∣h(k)
2,l

∣∣∣2 +
(
σ

(k)
2,m

)2
, (4)

D. Physical Layer Modelling

On account of (1) and (3), we define P1

[
H1NS×M

]
=[

P
(j)
1,m

]
and P2

[
H2M×NS

]
=
[
P

(k)
2,m

]
, and H1NS×M

=[
h

(k)
1,m

]
and H2M×NS

=
[
h

(k)
2,m

]
from the physical layer.

Furthermore, we represent the subcarrier pairing policy by
SP

[
H1NS×M

,H2M×NS

]
= [Λj,k], where Λj,k ∈ {0, 1}

denotes the binary variable for the subcarrier pairing such
that Λj,k = 1 if the subcarrier j in the uplink phase pairs
with k in the downlink phase and Λj,k = 0, otherwise.
In addition, we define the subcarrier allocation policy by
SA

[
H1NS×M

,H2M×NS

]
=

[
Ωm,(j,k)

]
, with Ωm,(j,k) ∈

{0, 1} the binary subcarrier allocation index, i.e., Ωm,(j,k) = 1
when the paired subcarrier (j, k) is allocated to the mth

uplink-downlink user pair and Ωm,(j,k) = 0, otherwise.
Since a DF protocol is applied at the relay node, we need to

ensure that the aggregate communication rates of the two hops
for each user pair are balanced. Due to one-to-many/many-to-
one mapping of subcarriers, it is hard to balance the sum rate
of both hops for each user pair. A time division approach
is adopted for signal transmission over paired subcarriers. If
the jth subcarrier in the uplink phase is paired with a set of
subcarriers Km,j , Km,j ⊆ NS , in the downlink phase and
assigned to the mth user pair, then the mth user transmits
its signals in the first hop using jth subcarrier with time slot
1/ |Km,j |, where |Km,j | denotes the number of subcarriers in a
set Km,j . Similarly, if a set of subcarriers Jm,k, Jm,k ⊆ NS ,
in the uplink phase is paired with the kth subcarrier in the
downlink phase and assigned to mth user pair, then the mth

user pair receives the signals on the kth subcarrier with the
time slot 1/ |Jm,k|, where |Jm,k| is the number of subcarriers
in a set Jm,k. Thus, the average achievable sum-rate for the
mth user pair can be defined using (2) and (4) as follows

Rm (P1,P2,SP ,SA) = (5)

1

2

∑NS

j=1

∑NS

k=1
Λj,kΩm,(j,k) min


1

|Km,j |
log2

(
1+Γ

(j)
1,m

)
,

1

|Jm,k|
log2

(
1+Γ

(k)
2,m

)
 ,

where 1/2 comes from the fact that transmission takes place
in two phases. Moreover, the total achievable throughput is

RT (P1,P2,SP ,SA) =
M∑

m=1
Rm (P1,P2,SP ,SA). Be-

fore optimizing power allocation, subcarrier pairing and sub-
carrier allocation from green communications perspective, we
define the EE as follows:
Definition 1: EE is defined as the ratio of instantaneous max-

imum achievable throughput over the corresponding power
consumption of the network, given by

ηEE (P1,P2,SP ,SA) = (6)
RT (P1,P2,SP ,SA)

M∑
m=1

NS∑
j=1

NS∑
k=1

Λj,kΩm,(j,k)

(
P

(j)
1,m + P

(k)
2,m

)
+ 2MPC + ξRPC

,

where ξR > 1. The power consumption model is formulated in
a linear fashion, where PC denotes the circuit and processing
power of each user. Because of large signaling processing at
the relay node, the static power consumption at the relay node
must be higher than the user terminal, and thus the value of
static power consumption for the relay node is considered to
be ξRPC .

Remark 1: The EE can be reckoned as the number of data
bits successfully delivered to the (2,m)th downlink user by
(1,m)th uplink user via the relay node (in bits per Joule) and
it is equivalent to the throughput weighted by the inverse of
the sum of transmitting and processing powers, respectively.

III. RESOURCE ALLOCATION PROBLEM FORMULATION

In this section, we formulate the optimization problem
that maximizes the network EE; and provide insights on its
convexity, accompanied by transformations to result into its
convex-form.

A. Primal EE Maximization (EEM) Problem
In this subsection, we formulate the primal optimization

problem that intends to maximize the networks EE by op-
timizing the allocation policies for power and subcarrier,
respectively. Further, the problem targets to remain bounded
by the network’s power regulation while simultaneously sat-
isfying the suppression of channel interferences. Unlike the
previous works [15]–[21], the performance of multiuser DF
relay network can be significantly improved by performing the
subcarrier pairing permutation in one-to-many/many-to-one
fashion, and by jointly optimizing the subcarrier and power
allocation. Thus, the optimization problem can be formulated
as

(OP1)
To
obtain:

P?
1

[
H1NS×M

]
,P?

2

[
H2M×NS

]
,

S?P
[
H1NS×M ,H2M×NS

]
,S?A

[
H1NS×M ,H2M×NS

]
such
that:

max
P1,P2,SP ,SA

ηEE (P1,P2,SP ,SA) (bits/Joule/Hz)

subject
to:

(C.1)

M∑
m=1

NS∑
j=1

NS∑
k=1

Λj,kΩm,(j,k)

(
P

(j)
1,m+P

(k)
2,m

)
6Pmax;

(C.2) 1 6
NS∑
j=1

Λj,k 6 NS , ∀ k;

(C.3) 1 6
NS∑
k=1

Λj,k 6 NS , ∀ j;

(C.4)

M∑
m=1

Ωm,(j,k) = 1, ∀ (j, k);

(C.5) Λj,k ∈ {0, 1}, Ωm,(j,k) ∈ {0, 1}, ∀m, j, k ;

(C.6) P
(j)
1,m > 0, P

(k)
2,m > 0, ∀m, j, k ,
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where Pmax is the maximum available transmit power budget
for the network. Further, constraint (C.1) bounds the network’s
transmit power regulation, (C.2) and (C.3) mandates that each
subcarrier in the uplink phase can be paired with any number
of subcarriers in the downlink phase and vice-versa, and (C.4)
ensures each paired subcarrier is allocated to one and only
one user pair. In the proposed framework, each user and the
relay node are equipped with a single antenna. We can easily
extend the design framework to the scenario with multiple
antennas. In this scenario, the channels of the two hops convert
into MIMO channels. Therefore, the SINRs can be computed
similar to (2) and (4) after skillfully designing beamform-
ing weights. Practically, the higher number of antennas can
provide better interference suppression ability to the systems,
however, it also increases the higher computational processing.
In result, it requires more static power consumption, which
leads to an EE performance tradeoff.

Remark 2: The optimization problem (OP1) is an amalga-
mation problem because

{
P

(j)
1,m, P

(k)
2,m

}
are continuous vari-

ables, whereas,
{

Λj,k,Ωm,(j,k)

}
are discrete (binary) vari-

ables. The solution to such a problem is to carry through an
exhaustive search (ES) over all the user pairs and subcarri-
ers, such that while maximizing the EE for each subcarrier
permutation and allocation, power is allocated. Despite the
fact, the optimal solution obtained via ES is the actual optimal
solution to the primal problem (OP1), it is evident that, ES
is inapplicable in real-time scenario due to its exorbitant
complexity of the order O

(
MNS !

)
.

B. Transforming the Problem into Convex Form

The optimization problem (OP1) is a non-convex MINLP
problem in nature, and thus there is no standard technique to
solve such optimization problem. As first step in transforming
the non-convex MINLP problem into convex one, we introduce
the auxiliary variable Υ

(n)
m , n = j = k = 1, . . . , NS , and

reformulate the equivalent optimization problem as follows:

(OP2)
To
obtain:

P?
1

[
H1NS×M

]
,P?

2

[
H2M×NS

]
,

S?P
[
H1NS×M ,H2M×NS

]
,S?A

[
H1NS×M ,H2M×NS

]
such
that:

max
P1,P2

SP ,SA,Υ

η̂EE (P1,P2,SP ,SA) (bits/Joule/Hz)

subject
to:

(C.1) − (C.6) ;

(C.7)
1

|Km,n|
log2

(
1 + Γ

(n)
1,m

)
> Υ(n)

m , ∀m,n;

(C.8)
1

|Jm,n|
log2

(
1 + Γ

(n)
2,m

)
> Υ(n)

m , ∀m,n.

where Υ =
{

Υ
(n)
m

}
, ∀m,n and η̂EE (P1,P2,SP ,SA) is

defined as

η̂EE (P1,P2,SP ,SA) = (7)

1

2

M∑
m=1

NS∑
j=1,n=j

NS∑
k=1

Λj,kΩm,(j,k)Υ
(n)
m

M∑
m=1

NS∑
j=1

NS∑
k=1

Λj,kΩm,(j,k)

(
P

(j)
1,m+P

(k)
2,m

)
+2MPC +ξRPC

,

The problem (OP2) is still non-convex. To make it
more tractable, we introduce the continuous variables{

Λ̃j,k, Ω̃m,(j,k)

}
∈ [0, 1]. Physically, meaning that a subcarrier

can now be shared among multiple users, instead of just one,
however the power allocated to each subcarrier can control the
interference produced by sharing of a subcarrier by multiple
users. Furthermore, we also apply change of variables such
that P̃ (j)

1,m = lnP
(j)
1,m and P̃

(k)
2,m = lnP

(k)
2,m. The optimization

problem (OP2) can be equivalently rewritten as

(OP3)
To
obtain:

P̃?

1

[
H1NS×M

]
, P̃?

2

[
H2M×NS

]
,

S̃?P
[
H1NS×M ,H2M×NS

]
, S̃?A

[
H1NS×M ,H2M×NS

]

such
that:

max
P̃1,P̃2

S̃P ,S̃A,Υ

1

2

M∑
m=1

NS∑
j=1

NS∑
k=1

Λ̃j,kΩ̃m,(j,k)Υ
(j)
m

P̃total
(bits/Joule/Hz)

subject
to:

(C.1)

M∑
m=1

NS∑
j=1

NS∑
k=1

Λj,kΩm,(j,k)

(
eP̃

(j)
1,m + eP̃

(k)
2,m

)
6 PTotal;

(C.2) 1 6
NS∑
j=1

Λ̃j,k 6 NS , ∀ k;

(C.3) 1 6
NS∑
k=1

Λ̃j,k 6 NS , ∀ j;

(C.4)

M∑
m=1

Ω̃m,(j,k) = 1, ∀ (j, k);

(C.5) Λ̃j,k ∈ [0, 1], Ω̃m,(j,k) ∈ [0, 1], ∀m, j, k;

(C.6) eP̃
(j)
1,m > 0, eP̃

(k)
2,m > 0, ∀m, j, k;

(C.7)
1

|Km,n|
log2

(
1 + Γ̃

(n)
1,m

)
> Υ(n)

m , ∀m,n;

(C.8)
1

|Jm,n|
log2

(
1 + Γ̃

(n)
2,m

)
> Υ(n)

m , ∀m,n.

where P̃total =
M∑

m=1

NS∑
j=1

NS∑
k=1

Λ̃j,kΩ̃m,(j,k)

(
eP̃

(j)
1,m + eP̃

(k)
2,m

)
+

2MPC + ξRP
C , Γ̃

(n)
1,m =

eP̃
(n)
1,m

∣∣∣h(n)
1,m

∣∣∣2
M∑

l=1,l 6=m

eP̃
(n)
1,l

∣∣∣h(n)
1,l

∣∣∣2 +
(
σ

(n)
R

)2

and Γ̃
(n)
2,m =

eP̃
(n)
2,m

∣∣∣h(n)
2,m

∣∣∣2
M∑

l=1,l 6=m

eP̃
(n)
2,l

∣∣∣h(n)
2,l

∣∣∣2 +
(
σ

(n)
2,m

)2
. The problem

still remains non-convex due the fractional form of the
objective function and the constraints (C.7) and (C.8) in
(OP3). Therefore, using SCA technique [22], we transform
the constraints (C.7) and (C.8) into convex. Further, we
convert the objective function into a subtractive form using a
standard techniques like Dinkelbach’s method [24]. The two
step approach is mathematically shown as below:

Step 1: Applying SCA technique and imposing a lower
bound as

1

|Km,n|
log2

(
1 + Γ̃

(n)
1,m

)
>

1

|Km,n|

(
α

(n)
1,m

ln(2)
log Γ̃

(n)
1,m + β

(n)
1,m

)
;

(8)
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where α(n)
1,m and β(n)

1,m, ∀m,n, are the coefficients determined
in the following way:

α
(n)
1,m =

ξ
(n)
1,m

1 + ξ
(n)
1,m

; (9)

β
(n)
1,m = log2

(
1 + ξ

(n)
1,m

)
− α(n)

1,m log2

(
ξ

(n)
1,m

)
, (10)

for any ξ
(n)
1,m > 0. Further, equality in (8) is satisfied when

α
(n)
1,m = Γ̃

(n)
1,m/

(
1 + Γ̃

(n)
1,m

)
and β

(n)
1,m = log2

(
1 + Γ̃

(n)
1,m

)
−

α
(n)
1,m log2

(
Γ̃

(n)
1,m

)
; and the equality holds iff

(
α

(n)
1,m, β

(n)
1,m

)
= (1, 0) and Γ̃

(n)
1,m → ∞. In a similar fashion, we can

also find the lower bound on
1

|Jm,n|
log2

(
1 + Γ̃

(n)
2,m

)
>

1

|Jm,n|

(
α

(n)
2,m

ln(2)
log Γ̃

(n)
2,m + β

(n)
2,m

)
and update the coefficients

α
(n)
2,m and β(n)

2,m, ∀m,n.
Step 2: Applying Dinkelbach’s Method [24]

F
(
P̃1, P̃2, S̃P , S̃A,Υ

)
=

1

2

M∑
m=1

NS∑
j=1

NS∑
k=1

Λ̃j,kΩ̃m,(j,k)Υ
(j)
m −

Ψ

(
M∑

m=1

NS∑
j=1

NS∑
k=1

Λ̃j,kΩ̃m,(j,k)

(
eP̃

(j)
1,m + eP̃

(k)
2,m

)
+ 2MPC + ξRP

C

)
, (11)

where Ψ is a non-negative parameter that works as a network
penalty or price paid for the resource allocation policies.

Remark 3: When Ψ → 0, this directly implies the
price/penalty2 paid for the resource allocation is zero, and
the problem degenerates to a sum-rate maximization problem,
whereas when Ψ→∞, no resource allocation policy is good
enough to maximize the networks EE.

Using (8) and (11), we can transform the optimization
problem (OP3) into the following form

(OP4)
To ob-
tain:

P̃?

1

[
H1NS×M

]
, P̃?

2

[
H2M×NS

]
,

S̃?P
[
H1NS×M ,H2M×NS

]
, S̃?A

[
H1NS×M ,H2M×NS

]
such
that:

max
P̃1,P̃2,

S̃P ,S̃A,Υ

F
(
P̃1, P̃2, S̃P , S̃A,Υ

)
(bits/Joule/Hz)

subject
to:

(C.1) − (C.6) ;

(C.7)
1

|Km,n|

(
α
(n)
1,m

ln(2)
log Γ̃

(n)
1,m+β

(n)
1,m

)
>Υ(n)

m , ∀m,n;

(C.8)
1

|Jm,n|

(
α
(n)
2,m

ln(2)
log Γ̃

(n)
2,m+β

(n)
2,m

)
>Υ(n)

m , ∀m,n.

The problem (OP4) is convex if the coefficients
(α,β)=

{(
α

(n)
1,m, β

(n)
1,m

)
,
(
α

(n)
2,m, β

(n)
2,m

)}
and the subcarrier

pairing and allocation variables S̃P and S̃A and the network
price Ψ are given. The concavification of the transformed
problem (OP4) can be ascertained by the following lemma.

2In this paper, the terms “penalty” and “price” are used interchangeably.

Lemma 1: For any fixed subcarrier permutation
and allocation policies

(
S̃?
P

[
H1NS×M

,H2M×NS

]
,

S̃?
A

[
H1NS×M

,H2M×NS

])
, the optimization problem (OP4)

is concavified for given fixed coefficients
(
α

(n)
1,m, β

(n)
1,m

)
,(

α
(n)
2,m, β

(n)
2,m

)
and price Ψ.

Proof: After applying change of variables in the optimiza-
tion problem (OP2), the objective function obtained in (OP4)
can be rewritten as

F
(
P̃1, P̃2, S̃P , S̃A,Υ

)
=

1

2

M∑
m=1

NS∑
j=1

NS∑
k=1

Λ̃j,kΩ̃m,(j,k)Υ
(j)
m −

Ψ

(
M∑

m=1

NS∑
j=1

NS∑
k=1

Λ̃j,kΩ̃m,(j,k)

(
eP̃

(j)
1,m + eP̃

(k)
2,m

)
+ 2MPC + ξRP

C

)
. (12)

Since α(n)
1,m > 0, β(n)

1,m > 0, α(n)
2,m > 0, β(n)

2,m > 0 and Ψ > 0,
the objective function obtained in (12) and the constraints
(C.1), (C.7) and (C.8) are actually an expression derived
by the summation of linear terms and concave terms. Thus,
establishing its concavity.

IV. ENERGY-EFFICIENT RESOURCE ALLOCATION
ALGORITHM

The optimization problem (OP4) remains NP-hard to solve
if the subcarrier pairing and allocation variables S̃P and S̃A
are not given. The NP-hardness of (OP4) can be proven
by performing polynomial reduction from Subset Sum (SS),
that remains a widely celebrated NP-hard problem, defined as
follows:

Definition 1 (Subset Sum (SS)): Given a set of natural num-
bers W = {w1, w2, ...} and a positive integer V <

∑
wj∈W

wj ,

does there exist a subset N ∈ W , where N denotes the set of
NS subcarriers, such that

∑
N = V ?

The answer to the SS is objective either YES (SS instance
satisfiable) or NO (SS instance not satisfiable), respectively.

Decision version3 of EEM problem - For a given set of
a subcarrier combinations and b non-decreasing rate power
functions, and a > b, does there exist a set of subcarrier
and user permutations with total transmit power constraint,
such that every user’s request is satisfied and no subcarrier is
allocated to more than a single user pair?

Theorem 1: The optimization problem (OP4) is NP-hard to
solve.

Proof: See Appendix A.
Due to the well-established fact that when the number of

subcarriers goes to infinity, the duality gap between the primal
and dual problem in a multicarrier system approaches zero
[25]. Therefore, we aim to resolve (OP4) via solving its dual
problem. To elaborate on this, the following definition and
theorem are given.

3Since the hardness in terms of the computational complexity of optimiza-
tion and decision versions are same, although the answers are different, we
refer to the decision version.
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Definition 2 (Duality Gap): The duality gap may be defined
as the difference in the optimal solution obtained via the
optimization problem (OP4) and the dual problem (described
as (DP1) later in this paper).

Theorem 2: The duality gap between the primal and dual
problem tends to be zero, for a sufficiently large number of
subcarriers NS .

Proof: The proof is provided in Appendix B.
Henceforth, we focus on solving the dual problem to jointly

obtain the optimal solution.

A. Dual Problem Formulation

For fixed coefficients α and β, the Lagrangian function
for the transformed optimization problem (OP4) is given
by (13) at the top of the next page, where λ,µ = {µ(n)

m } and
ν = {ν(n)

m }, ∀m,n are the Lagrangian multipliers associated
with the constraints (C.1) , (C.7) and (C.8), respectively.
Therefore, the Lagrangian dual function can be written as

(DP1)
To
obtain:

S̃?A
[
H1NS×M ,H2M×NS

]
, S̃?P

[
H1NS×M ,H2M×NS

]

such
that:

max
P̃1,P̃2,S̃P ,S̃A,Υ

L
(
P̃1, P̃2, S̃P , S̃A,Υ, λ,µ,ν

)
subject
to:

(C.2) − (C.5) .

Hence, the dual optimization problem (DP2) can be formu-
lated as

(DP2)
To
obtain:

S̃?A
[
H1NS×M ,H2M×NS

]
, S̃?P

[
H1NS×M ,H2M×NS

]

such
that:

min
λ,µ,ν

max
P̃1,P̃2,

S̃P ,S̃A,Υ

L
(
P̃1, P̃2, S̃P , S̃A,Υ, λ,µ,ν

)
subject
to:

(C.2) − (C.5) .

The dual problem (DP2) can be resolved in an iterative fashion
by decomposing the problem into two parts, firstly a master
problem that aims to update the Lagrangian multipliers and
secondly, the subproblem that helps in attaining the optimal
resource allocation policy.

B. Subproblem Solution

The subproblem solution can be obtained by resolving two
individual problems, where the first one aims to obtain the
optimal power allocation policy, whereas the second deals with
the subcarrier permutation and allocation policies4.

1) Optimal Power Allocation Policies
(
P̃

?

1, P̃
?

2

)
: For fixed

Lagrangian multipliers, we can obtain the optimal power
allocation policy by using the standard Karush-Kuhn-Tucker
(KKT) conditions, which are first-order indispensable and
competent conditions for optimality, stating that the gradient is

4The subcarrier pairing and assignment policies can also be decoupled on
the similar grounds.

equal to zero at the optimal points, henceforth, for given sub-
carrier pairing and allocation policy, i.e. {Λj,k,Ωm,(j,k)} = 1,
we can write the power update equations for the user and the
relay node at the (t+ 1)th iteration as follows:

P̃
(j)
1,m(t+ 1) =

[
ln

µ
(j)
m α

(j)
1,m

(Ψ + λ) |Km,j | ln(2)

]+

; (14)

P̃
(k)
2,m(t+ 1) =

[
ln

ν
(j)
m α

(j)
2,m

(Ψ + λ) |Jm,k| ln(2)

]+

; (15)

where [x]
+

= max{0, x}. The auxiliary variable Υ̃
(j)
m can be

updated using subgradient method [22] as follows:

Υ̃(j)
m (t+ 1) =

[
Υ̃(j)

m (t)− ω(t)NS

(
1

2
−
(
µ(n)
m + ν(n)

m

))]+

,

(16)

where ω(t) is the diminishing step size at the tth iteration.
Remark 4: It is to be noted that a remodelled water-filling

solutions are obtained for the optimal power allocation policies
in (14) and (15) that not only depends on the Lagrangian
multiplier λ associated with the total transmit power, but
also on the prevailing penalty Ψ paid for the total network’s
resource utilization. The submission of λ and Ψ can be treated
as a water-filling level which has to be adjusted in order to
meet the total transmit power constraint (C.1).

2) Optimal Subcarrier Allocation and Pairing Policies(
{S̃?

P , S̃?
A}
[
H1NS×M

,H2M×NS

])
: For given optimal power

allocation policies
(
P̃

?

1

[
H1NS×M

]
, P̃

?

2

[
H2M×NS

])
, the

dual problem (DP2) can be transformed as follows:

(DP3)
To
obtain:

S̃?A
[
H1NS×M ,H2M×NS

]
, S̃?P

[
H1NS×M ,H2M×NS

]

such
that:

max
S̃P ,S̃A

M∑
m=1

NS∑
j=1

NS∑
k=1

Λ̃j,kΩ̃m,(j,k)Am,(j,k)

+K
(
P̃?

1, P̃
?

2, Υ̃
?, λ,µ,ν

)
subject
to:

(C.2) − (C.5) ,

where Am,(j,k) and K
(
P̃

?

1, P̃
?

2, Υ̃
?, λ,µ,ν

)
are defined

in (17) and (18) shown on the following page, It is evident
that the maximization of EE only depends on (17) for a
given power allocation policy, whereas (18) remains constant.
Furthermore, Am,(j,k) can be summarised as the sum of two
terms, firstly, the sum-rate achieved, and secondly, the penalty
paid for the maximum achievable EE.

Remark 5: The linear program in (DP2) can be categorically
characterized as a modified linear pairing-assignment problem
[26]. This formulation allows us to take non-integer relaxed
values for Λ̃j,k and Ω̃m,(j,k). However, in this paper, we prove
that the optimal subcarrier allocation and pairing policies of
the relaxed problem always procures an integer solution, that
is nothing but, Λj,k and Ωm,(j,k), provided certain conditions
are satisfied, the definition and theorem explain the details
below.
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L
(
P̃1, P̃2, S̃P , S̃A,Υ, λ,µ,ν

)
= F

(
P̃1, P̃2, S̃P , S̃A,Υ

)
− λ

 M∑
m=1

NS∑
j=1

NS∑
k=1

Λj,kΩm,(j,k)

(
eP̃

(j)
1,m + eP̃

(k)
2,m

)
− PTotal


−

N∑
m=1

NS∑
n=1

µ(n)
m

Υ(n)
m − 1

|Km,n|

α
(n)
1,m

ln(2)

P̃ (n)
1,m + log

(∣∣∣h(n)
1,m

∣∣∣2)− log

 M∑
l=1,l 6=m

eP̃
(n)
1,l

∣∣∣h(n)
1,l

∣∣∣2 + σ
(n)2

R

+ β
(n)
1,m


−

N∑
m=1

NS∑
n=1

ν(n)
m

Υ(n)
m − 1

|Jm,n|

α
(n)
2,m

ln(2)

P̃ (n)
2,m + log

(∣∣∣h(n)
2,m

∣∣∣2)− log

 M∑
l=1,l 6=m

eP̃
(n)
2,l

∣∣∣h(n)
2,l

∣∣∣2 + σ
(n)2

2,m

+ β
(n)
2,m

 ,

(13)

Am,(j,k) =
(
ϕΥ̃(j)?

m

)
− (Ψ + λ)

(
eP̃

(j)?

1,m + eP̃
(k)?

2,m

)
; (17)

K
(
P̃

?

1, P̃
?

2,Υ
?, λ,µ,ν

)
= −Ψ(2M + ξR)PC + λPmax (18)

−
N∑

m=1

NS∑
n=1

µ(n)
m

Υ(n)?

m − 1

|Km,n|

α(n)
1,m

ln 2

P̃ (n)?

1,m + log

(∣∣∣h(n)
1,m

∣∣∣2)− log

 M∑
l=1,l 6=m

eP̃
(n)?

1,l

∣∣∣h(n)
1,l

∣∣∣2 + σ
(n)2

R

+ β
(n)
1,m


−

N∑
m=1

NS∑
n=1

ν(n)
m

Υ(n)?

m − 1

|Jm,n|

α(n)
2,m

ln 2

P̃ (n)?

2,m + log

(∣∣∣h(n)
2,m

∣∣∣2)− log

 M∑
l=1,l 6=m

eP̃
(n)?

2,l

∣∣∣h(n)
2,l

∣∣∣2 + σ
(n)2

2,m

+ β
(n)
2,m

 ,

Definition 2 (Total-Unimodularity): A matrix X with full
row rank, is defined as totally unimodular iff (1) one and all
square sub-matrices of X follows |X| = {−1, 0,+1} and (2)
all the entries of X are integers.

Theorem 3: For any linear program having constraints of the
form Ax = v, will always have an integer optimal solution if
the constraint matrix A is totally-unimodular and the vector
represented by v is an integer, respectively.

Proof: The proof is relegated in Appendix C.
With the obtained optimal power allocation policies(
P̃

?

1

[
H1NS×M

]
, P̃

?

2

[
H2M×NS

])
, we can obtain the optimal

subcarrier allocation and pairing policies in two steps as
follows:
Step 1: Optimal Subcarrier Allocation Policy

(
S̃?
A

)
Under a given S̃P , the dual problem (DP3) can be

reformulated as

(DP4)
To obtain: S̃?A

[
H1NS×M ,H2M×NS

]
such that: max

S̃A

M∑
m=1

NS∑
j=1

NS∑
k=1

Λ̃j,kΩ̃m,(j,k)Am,(j,k)

+K
(
P̃?

1, P̃
?

2,Υ
?, λ,µ,ν

)
subject to: (C.4) & (C.5) .

For a given subcarrier pairing policy, the optimal subcarrier
allocation policy can be obtained by maximizing Am,(j,k) as
follows:

Ω?
m,(j,k) =

{
1, for m = arg max

m
Am,(j,k) ;

0, otherwise.
(19)

Step 2: Optimal Subcarrier Pairing Policy
(
S̃?
P

)
For obtained optimal subcarrier and power allocation

policies, the dual problem (DP3) can be transformed as below:

(DP5)
To obtain: S̃?P

[
H1NS×M ,H2M×NS

]
such that: max

S̃P

M∑
m=1

NS∑
j=1

NS∑
k=1

Λ̃j,kΩ̃?m,(j,k)A?m,(j,k)

+K
(
P̃?

1, P̃
?

2,Υ
?, λ,µ,ν

)
subject to: (C.2) , (C.3) & (C.5) .

where A?
m,(j,k) = max

m
Am,(j,k) ∀ (j, k). Further, the optimal

subcarrier pairing policy can be obtained by solving the
problem (DP5). Furthermore, to get a better insight of the
total power dissipation, we study the impact of static power
PC with the following theorem.

Theorem 4: With an increase in static power PC , we observe
(i) For given resource allocation policies

(
P̃

?

1, P̃
?

2, S̃?
P , S̃?

A

)
,

the maximum achievable optimal EE? in (OP4) strictly
decreases.
(ii) The instantaneous optimal transmitting power

(
P̃

?

1, P̃
?

2

)
strictly increases.

Proof: The proof is provided in Appendix D.

C. Master problem Solution

We apply the sub-gradient method in the master problem
of dual decomposition technique to update the Lagrange
multipliers as in (20)-(22) shown on the top of the next page,
where ξ1, ξ2 and ξ3 are positive constant step sizes that are
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λ(t+ 1) =

λ(t) + ξ1(t)

 M∑
m=1

NS∑
j=1

NS∑
k=1

Λ̃?
j,kΩ̃?

m,(j,k)

(
eP̃

(j)?

1,m + eP̃
(k)?

2,m

)
− PTotal

+

; (20)

µ(n)
m (t+ 1) =

[
µ(n)
m (t) + ξ2(t)

(
Υ(n)?

m − 1

|Km,n|

(
α

(n)
1,m

ln 2

(
P̃

(n)?

1,m + log

(∣∣∣h(n)
1,m

∣∣∣2)

− log

 M∑
l=1,l 6=m

eP̃
(n)?

1,l

∣∣∣h(n)
1,l

∣∣∣2 + σ
(n)2

R

+ β
(n)
1,m

+

; (21)

ν(n)
m (t+ 1) =

[
ν(n)
m (t) + ξ3(t)

(
Υ(n)?

m − 1

|Jm,n|

(
α

(n)
2,m

ln 2

(
P̃

(n)?

2,m + log

(∣∣∣h(n)
2,m

∣∣∣2)

− log

 M∑
l=1,l 6=m

eP̃
(n)?

2,l

∣∣∣h(n)
2,l

∣∣∣2 + σ
(n)2

2,m

+ β
(n)
2,m

+

, (22)

being optimized to obtain the accelerated convergence rate.5

D. Update of Fixed Coefficients and Ψ

To ameliorate network’s EE, we need to strictly improve the
lower bound performance of the system that directly depends
on the coefficients

(
α

(n)
1,m, β

(n)
1,m

)
and

(
α

(n)
2,m, β

(n)
2,m

)
, which are

successfully updated using the following theorem.
Theorem 5: If the coefficients α(n)

q,m and β
(n)
q,m, q = {1, 2},

are updates as follows

α(j)
q,m(t+ 1) =

Γ̂
(j)
q,m(t)

1 + Γ̂
(j)
q,m(t)

; (23)

β(j)
q,m(t+ 1) = log2

(
1 + Γ̂(j)

q,m(t+ 1)
)

− α(j)
q,m(t+ 1) log2

(
Γ̂(j)
q,m(t+ 1)

)
, (24)

for the optimal power allocation policy(
P̃ ?

1 , P̃
?
2 , S̃?

P , S̃?
A,Υ

?
)

of the optimization problem
(OP4) at the tth iteration, then the optimal value of
F
(
P̃1, P̃2, S̃P , S̃A,Υ

)
is monotonically increased.

Proof: The proof is similar to [15, Appendix C].
Lastly, we need to update the penalty factor Ψ for the

optimal resource allocation policy. This can be done in two
steps, firstly, we propose a theorem for its update procedure,
and secondly, we provide two theorems that establishes its
convergence.

Theorem 6: If the optimal resource allocation policy(
P̃ ?

1 , P̃
?
2 , S̃?

P , S̃?
A,Υ

?
)

in the optimization problem (OP1)
w.r.t. Ψ? satisfies the following balance equation

RT

(
P̃ ?

1 , P̃
?
2 , S̃?

P , S̃
?
A, Υ̃

?
)
−Ψ?

(
M∑

m=1

NS∑
j=1

NS∑
k=1

Λ̃?
j,kΩ̃?

m,(j,k)

×
(
eP̃

(j)?

1,m + eP̃
(k)?

2,m

)
+ 2MPC + ξRP

C

)
= 0 , (25)

5The proof of convergence for the sub-gradient method for constant step
sizes is provided in [27].

then Ψ? will become the optimal penalty for the resources
being allocated.

Proof: The proof is similar to [15, Appendix D].
Theorem 7: At the (l + 1)th iteration, if the

penalty factor Ψ is updated for the local maximizer(
P̃ ?

1 (l), P̃ ?
2 (l), S̃?

P(l), S̃?
A(l),Υ?(l)

)
of (OP1) for the

penalty Ψ(l) as

Ψ(l + 1) = (26)

RT

(
P̃ ?

1 (l), P̃ ?
2 (l), S̃?

P(l), S̃?
A(l), Υ̃?(l)

)
{

M∑
m=1

NS∑
j=1

NS∑
k=1

Λ̃?
j,k(l)Ω̃?

m,(j,k)(l)

×
(
eP̃

(j)?

1,m (l)+eP̃
(k)?

2,m (l)
)

+2MPC +ξRP
C

}
,

then the penalty factor Ψ(l) monotonically increases with l.
Proof: The proof is similar to [15, Appendix E].

E. Iterative EEM Algorithm

In this subsection, we describe in detail the iterative re-
source allocation algorithm for maximizing the networks
instantaneous achievable EE. For this, we first initialize
the penalty factor Ψ(x) = 0.0001, step sizes ξm =
0.0001, ∀m ∈ {1, 2, . . . , 10}, lower bound coefficients
{α(j)

1,m, β
(j)
1,m} = {1, 0} and {α(j)

2,m, β
(j)
2,m} = {1, 0}. Lastly,

initialize the subcarrier pairing permutation and allocation
matrices Λ̃ and Ω̃ while satisfying the constraints (C.2) −
(C.5). For given subcarrier pairing permutation and allo-
cation, we can find the optimal power allocation policy(
P̃

?

1

[
H1NS×M

]
, P̃

?

2

[
H2M×NS

])
using (14) and (15) and

the auxiliary variable from (16). For optimally allocated
power and given subcarrier pairing, the optimal subcarrier
allocation policy S̃?

A

[
H1NS×M

,H2M×NS

]
is computed using

(DP4), while the optimal subcarrier pairing permutation policy
S̃?
P

[
H1NS×M

,H2M×NS

]
can be found by solving (DP5)

for the obtained power and subcarrier allocation. Lastly we
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update the Lagrange multipliers (λ,µ,ν) using (20)-(22). If
the convergence is reached, we update the penalty factor Ψ
using (26). This procedure is repeated until convergence. The
iterative EEM algorithm for finding the optimal solution is
presented in flowchart as shown in Fig. 2.

Sometimes, it is preferable to consider individual node
power (INP) constraints in wireless networks, particularly
when each node is operated on a different power budget.
The proposed design framework can be easily extended to
accommodate this scenario by replacing the constraint (C.1)
in the optimization problem (OP1) with the following transmit
power constraints:

NS∑
j=1

NS∑
k=1

Λj,kΩm,(j,k)P
(j)
1,m ≤ Pm,max, m = 1, . . . ,M ;

(27)
M∑

m=1

NS∑
j=1

NS∑
k=1

Λj,kΩm,(j,k)P
(k)
2,m ≤ PR,max, (28)

where Pm,max and PR,max are the maximum allowable trans-
mit power values for the mth source node and the relay node,
respectively. This new optimization problem can be solved in
a similar way as in the total transmit power constraint case,
although it now requires the update of M + 1 Lagrangian
multipliers in the master problem due to the M + 1 imposed
INP constraints.

Further, the complexity of the proposed algorithm can
be explained as follows. Since M user pairs are operating
on NS subcarriers in each hop, thus we need to solve
MN2

S subproblems. Further, the optimal power allocation pol-
icy

(
P̃

?

1

[
H1NS×M

]
, P̃

?

2

[
H2M×NS

])
is found under a total

power constraint with a complexity of O
(
K3 + 1

)
, where K

denotes the number of power levels that can be taken by the
user and relay node on each subcarrier, respectively. Moreover,
the subcarriers are allocated for a given Ωj,k, thus each maxi-
mization in (DP4) has a complexity of O (M), hence the total
subcarrier allocation complexity becomes O

(
MN2

S

)
. Further-

more, the optimal subcarrier pairing in (DP5) has a complexity
of O

(
N2

S

)
. The complexity of updating a dual variable is

O ((2N)%) (for example, % = 2 if the ellipsoid method is
used). Thus, the total complexity for updating dual variables
is O (7(2N)%). Let us suppose if the dual objective function
g (λ,µ,ν) converges in Z iterations, then total complexity for
the optimal scheme is O

(
7(2N)%N2

SZ
(
2M +MK3 + 1

))
,

whereas, that of a one-to-one mapping scenario would be
O
(
5(2N)%N2

SZ
(
M(K3 + 2) +NS

))
, respectively.

Remark 6: It is to be noted that the complexity analysis
reveals a very important point. The complexity of the pro-
posed EEM algorithm is much lower than the ES algorithm.
However, the average EE and SE performance of the proposed
algorithm is identical to that of the ES.

V. NUMERICAL RESULTS

In this section, we conduct extensive computer simulations
to verify the benefits of the energy-efficient design and the
performance of the proposed resource allocation algorithms.

Convergence of penalty 

factor reached 

Yes

No

( , , )λ μ ν
Initialize the Langrangian 

multipliers 

Initialize the subcarrier pairing & 

allocation policy according to (C.2)-(C.5) 

ψ 0.001=

Initialize the penalty factor 

Initialize lower bound 

coefficients ( ) ( ), 0,1=α β

Determine optimal power 

allocation policies

Determine optimal subcarrier 

allocation policy

Determine optimal subcarrier 

permutation policy

( , , )λ μ ν
Update the Langrangian 

multipliers 

using (19), (20) & (21)  

Convergence of 

multipliers reached 

Update the penalty factor 
ψ using (25)

Optimal resource 

allocation policy

Update lower bound 

coefficients ( ),α β
using (8) & (9)

Convergence of 

coefficients reached 

Dual Decomposition Technique

Yes

Yes

No

No

Fig. 2. Summary of the proposed energy-efficient iterative resource allocation
algorithm.

A practical path-loss model recommended by the Third-
Generation Partnership Project (3GPP), given by 131.1 +
42.8 × log10(d) dB (d: distance in km), is employed in our
simulations [28]. We consider both the Rayleigh fading and
the log-normal shadowing effects described by ∼ CN (0, 1)
and ∼ lnN (0, 8dB), respectively. The circuit and processing
power dissipation per antenna at each node is assumed to be 14
dBm, respectively [15] along with ξR = 2. The adjacent sub-
carriers frequency spacing is 12 kHz and thermal noise density
is set to be −174 dBm/Hz. In the proposed EEM algorithm,
the maximum number of inner and outer iterations, Iinner
and Iouter, are set as 10, while the value of the convergence
tolerance is 10−5. The initial value of the penalty factor Ψ is
0.001. The distances from all transmit users to the relay node
and from the relay node to all receive users are denoted by dSR

and dRD, respectively. The simulation parameters’ settings
are summarized in Table I. For the performance comparison
analysis, we also simulate the following algorithms:

• Optimal ES: The globally optimal solution can be found
by solving of the problem (OP1) using an ES algorithm
which performs an exhaustive search over all variables
[26].

• SEM: The SEM algorithm is also simulated to evaluate
the performance of the multiuser relay-assisted network.

• EEM without (w/o) SP-SA: Without considering the SP-
SA, the optimal solution of the problem (OP1) can be
obtained for performance comparison.

• EEM with one-to-one subcarrier pairing (EEM-OTO):
To attain the optimal solution of the problem (OP1)
with joint optimization of one-to-one subcarrier pairing,
e.g., a single subcarrier of the MA phase can pair only
with a single subcarrier of the BC phase and vice-versa,
subcarrier allocation, and power allocation.



11

TABLE I
SIMULATION PARAMETERS

Simulation Parameter Values

Number of user pairs, M 2, 5, 10

Number of subcarriers, NS 10, 16, 32

Subcarrier bandwidth 12 kHz

Thermal noise density −174 dBm/Hz

Log-normal shadowing ∼ lnN (0, 8 dB)

Distance from the source to the
relay, dSR

200 m

Distance from the relay to the des-
tination, dRD

200 m

Path-loss model 131.1 + 42.8× log10(d) dB

Maximum number of iterations,
Imax

10

Step size, εi 0.001

Tolerance value 10−5.

ξR 2
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Fig. 3. Convergence behavior of iterative algorithms.

A. Convergence Performance of Algorithms
Fig. 3 illustrates the EE and SE performance of the proposed

EEM algorithms versus the iteration number for a single chan-

0 5 10 15 20 25 30 35

P
max

 [dBm]

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

A
ve

ra
ge

 E
E

 [b
its

/m
Jo

ul
e/

H
er

tz
]

Optimal ES
EEM
EEM-INP
ORA
SEM
EEM-OTO
EEM w/o SP-SA

(a) Average EE versus Pmax
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(b) Average SE versus Pmax

Fig. 4. Performance comparison of our proposed EEM algorithm with other
existing algorithms.

nel realization with M = 2, NS = 32, dSR = dRD = 200 m,
and Pmax = {0, 10} dBm. As shown in this figure, the EE and
the SE performance of the EEM algorithms are monotonically
increased with iteration numbers and the proposed algorithms
converge within a fewer iterations, generally fewer than 5.
The attaining EE and SE performance of the EEM algorithm
outperforms EEM-OTO.

B. Performance Comparison With Other Algorithms

Fig. 4 shows the average EE and SE performance re-
sults of different algorithms for M = 2, NS = 16, and
dSR = dRD = 200 m. As a benchmark, we compare the
performance of our proposed algorithm with that of the ES
algorithm, which may apply to a small-scale problem for
attaining the optimal solution within a reasonable computation
time, and the orthogonal resource allocation (ORA) algorithm.
As seen in Fig. 4, the average EE or SE performance of the
proposed EEM algorithm is identical to that of the optimal
ES algorithm. Moreover, both the EEM and SEM algorithms
exhibit identical average EE performance in limited power
budget, i.e., Pmax ≤ 10 dBm. However, when the power
budget becomes rich, i.e., Pmax > 10 dBm, in Fig. 4(a),
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Fig. 5. Average EE and SE, and the effect of an increasing number of
subcarriers, NS .

the average EE performance of the EEM algorithm increases
rapidly and it becomes steady after Pmax > 20 dBm, whereas
that of the SEM algorithm quickly decreases as Pmax increases
at the cost of SE wherein each user utilizes maximum power
to improve their sum rate without concerning the EE. From the
results depicted in Fig. 4(b), we can observe that the average
SE of the EEM and SEM algorithms increases significantly
for Pmax < 20 dBm and after that the performance of the
EEM algorithm saturates, while the performance of the SEM
algorithm increases with the increase of Pmax because each
user utilizes maximum transmit power in order to enhance
the sum rate at the cost of a degradation in the average EE.
The proposed resource allocation algorithm with the INP con-
straints, named as EEM-INP, is also simulated and compared.
For a fair comparison with the total power constraint scenario,
we set Pi,max = PR,max = Pmax

M+1 . When Pmax ≤ 20 dBm,
both the average EE and SE performances of the EEM-INP
algorithm are slightly worse than those using the total power
constraint. However, the performance gap gradually decreases
to zero as Pmax increases. It can also be seen from Fig. 4 that
the ORA algorithm outperforms all the other algorithms when
the power budget is low, i.e., Pmax ≤ 10 dBm. However, in
the high power regime, the proposed EEM algorithm gives
better SE and EE performance compared to ORA algorithm.
Furthermore, the average EE or SE performance of the EEM-
OTO algorithm improves before Pmax ≤ 10 dBm and after
that it remains constant. However, the EEM-OTO algorithm
performs better than that of the EEM w/o SP-SA due to
unskillful utilization of the available subcarriers.

C. Effect of Different Number of Subcarriers on the attainable
EE and SE

In this example, we study the effect of increasing the
number of subcarriers, NS , on the attainable average EE and
SE. For this purpose, we plot average EE and SE versus Pmax

as shown in Fig. 5, where M = 2 and dSR = dRD = 200 m.
It can be observed that the average EE and SE performance
of the proposed EEM algorithm increases significantly as
Pmax increases and it remains constant after Pmax = 25
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Fig. 6. Average EE and the effect of an increasing number of user pairs, M .

dBm. The effect of increasing NS is very limited in low
transmit power regime, i.e., Pmax ≤ 15 dBm . However,
when Pmax > 15 dBm, where the transmit power budget
becomes rich, the average EE and SE performance of the EEM
algorithm increases swiftly as NS increases, as expected due
to frequency diversity.

D. Effect of Different User Pairs on the attainable EE

The effect of increasing the number of user pairs, M , on
the attainable average EE performance is shown in Fig. 6 for
different Pmax, where NS = 16 and dSR = dRD = 200 m.
It is noticeable that the average EE performance of the EEM
algorithm deteriorates upon increasing M , as expected due to
the increase in the static power consumption.

VI. CONCLUSION AND FUTURE SCOPE

In this paper, we studied how to maximize the EE of
the relay-assisted network by jointly optimizing the subcar-
rier pairing, subcarrier allocation, and the power allocation
altogether. The original problem was a non-convex MINLP
problem and thus, we converted the problem into an equivalent
solvable convex problem by relaxing the integer variables
and by applying a SCA approach. Furthermore, we proposed
a novel iterative resource allocation algorithm to obtain the
optimal subcarrier pairing, subcarrier allocation and power
allocation solution via dual decomposition. In addition, we
compared the performance of the proposed algorithm with
that of the SEM and other algorithms, and analyzed the
impact of various network parameters on the performance
tradeoff between the EE and SE. To recap, an increase of
number of subcarriers, NS , can improve both the average EE
and SE due to higher frequency diversity. Simulation results
validated the theoretical findings and demonstrated that the
proposed algorithm significantly outperforms other existing
schemes in the literature. The inclusion of multiple antennas,
imperfect CSI, and successive interference cancellation will be
considered in our future work.
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APPENDIX A
PROOF OF THEOREM 1

Firstly, we demonstrate that an arbitrary instance of SS
is transformed into a special instance of EEM optimization
problem in polynomial time. Let us consider, an arbitrary
instance of SS with a set of natural numbers W = wj and
a target V . Correspondingly, we formulate a two-user EEM
instance as follows. For every wj , we construct a subcarrier
j with a rate-power function identical for both users. In other

words, the power for rate 0 is 0, the power for rate wj is
P

|W|
,

the power for rate wj +
1

|W|
is P , and is strictly increasing.

Now we claim that, considering two user pairs, if there is a
subcarrier allocation and pairing with rate requests for both the

users as V and
b∑

j=1

wj − V , and the total power consumption

is not exceeded, then SS has a satisfying solution.
Let us consider, SS has a solution such that sum of subset Q

is exactly V . If each subcarrrier in Q is allocated to a single
user pair and rest of the subcarriers to other users. Further,
loading each subcarrier with rate wj , then it would be an
optimally satisfying solution to the proposed EEM algorithm.
However, in case wherein Q doesn’t exist, then no subset can
sum to V exactly. As wj represents a natural number, the
difference of sum between any subset and V must not be less
than 1. Furthermore, |W |−1 remains the maximum number of
subcarriers a user can be allocated. Consequently, one of the
two users has to load at least one of the subcarrier assigned

to it with rate higher than wj +
1

|W|
, which directly implies

that the maximal individual power consumption is higher than
P , thus making the total power consumption higher than P .

APPENDIX B
PROOF OF THEOREM 2

We can reformulate the objective function in (OP4) as
follows:

F
(
P̃1, P̃2, S̃P , S̃A,Υ

)
=

NS∑
j=1

NS∑
k=1

(
1

2

M∑
m=1

Λ̃j,kΩ̃m,(j,k)Υ
(j)
m −

Ψ

M∑
m=1

Λ̃j,kΩ̃m,(j,k)

(
eP̃

(j)
1,m + eP̃

(k)
2,m

)
− 2Ψ(M + 1)PC

N2
S

)
;

,
NS∑
j=1

NS∑
k=1

Πj,k

(
P̃1, P̃2, Υ̃

)
, (B.1)

where
{
P̃1, P̃2, Υ̃

}
∈ WM and Πj,k(·) : WM →

R may not be necessarily convex by nature. Similarly,
we can reformulate the constraints (C.1) − (C.8) as
NS∑
j=1

NS∑
k=1

Θj,k

(
P̃1, P̃2, Υ̃,α,β

)
6 0, where Θj,k(·) : WM →

R7, and we define the following transformation

(TF1) To obtain: P̃?

1

[
H1NS×M

]
, P̃?

2

[
H2M×NS

]
such that: max

P̃1,P̃2Υ̃

NS∑
j=1

NS∑
k=1

Πj,k

(
P̃1, P̃2,Υ

)
subject to:

NS∑
j=1

NS∑
k=1

Θj,k

(
P̃1, P̃2,Υ,α,β

)
6 x.

where x denotes a variable x ∈ R7. Further, the optimization
problem can be reformulated as (OP5) by substituting x = 0 in
TF1 and also, the perturbation function g(Q) can be defined
by substituting x = Q in TF1, where Q is a perturbation
vector. From [25], when time sharing condition is satisfied,
duality gap approaches to zero. Further, it concludes that time
sharing condition is satisfied if the optimal policy of (OP5)
is a concave function of the constraints. Hence, if g(Q) is a
concave function of Q, then duality gap approaches to zero.
Therefore, we apply the following three steps to prove the
theorem.

Step 1: To obtain the time sharing property
If
{
P̃ ?

1 , P̃
?
2 ,Υ

?
}

, m = 1, 2, denotes the optimal
solution of (OP5), given by g(Q1) and g(Q2), then there
always exist a solution

{
P̃

(j)?

1,3 , P̃
(k)?

2,3 ,Υ
(j)?

3

}
such that

NS∑
j=1

NS∑
k=1

Θj,k

(
P̃

(j)?

1,3 , P̃
(k)?

2,3 ,Υ
(j)?

3 ,α,β
)

6 4Q1 + (1−4)Q1 ; (B.2)
NS∑
j=1

NS∑
k=1

Πj,k

(
P̃

(j)?

1,3 , P̃
(k)?

2,3 ,Υ
(j)?

3

)

> 4
NS∑
j=1

NS∑
k=1

Πj,k

(
P̃

(j)?

1,1 , P̃
(k)?

2,1 ,Υ
(j)?

1

)
+

(1−4)

NS∑
j=1

NS∑
k=1

Πj,k

(
P̃

(j)?

1,2 , P̃
(k)?

2,2 ,Υ
(j)?

2

)
, (B.3)

where 0 ≤ 4 ≤ 1.
Step 2: To prove the concavity of g(Q)

For given 4, we can manifest Q3 that satis-
fies Q3 = 4Q1 + (1 − 4)Q2. If

{
P̃

(j)?

1,1 , P̃
(k)?

2,1 , Υ̃
(j)?

1

}
,{

P̃
(j)?

1,2 , P̃
(k)?

2,2 ,Υ
(j)?

2

}
and

{
P̃

(j)?

1,3 , P̃
(k)?

2,3 ,Υ
(j)?

3

}
are the op-

timal solutions controlled by the constraints g(Q1), g(Q2)
and g(Q3), then by applying time sharing property we get{
P̃

(j)?

1,3 , P̃
(k)?

2,3 ,Υ
(j)?

3 ,α.β
}

satisfying (B.2) and (B.3). There-

fore,
{
P̃

(j)?

1,3 , P̃
(k)?

2,3 ,Υ
(j)?

3

}
becomes the optimal solution of

g(Q3), giving

NS∑
j=1

NS∑
k=1

Πj,k

(
P̃

(j)?

1,3 , P̃
(k)?

2,3 ,Υ
(j)?

3

)

>
NS∑
j=1

NS∑
k=1

Πj,k

(
P̃

(j)?

1,3 , P̃
(k)?

2,3 ,Υ
(j)?

3

)
> 4Πj,k

(
P̃

(j)?

1,1 , P̃
(k)?

2,1 ,Υ
(j)?

1

)
+ (1−4)Πj,k

(
P̃

(j)?

1,2 , P̃
(k)?

2,2 ,Υ
(k)?

2

)
. (B.4)
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Step 3: To prove (OP5) satisfies time sharing property
It is evident from [26] that when the number of

subcarriers goes to infinity, the time-sharing property al-
ways holds true for the multicarrier systems. If we consider{
P̃

(j)?

1,1 , P̃
(k)?

2,1 ,Υ
(j)?

1

}
and

{
P̃

(j)?

1,2 , P̃
(k)?

2,2 ,Υ
(j)?

2

}
be two fea-

sible solutions with 4 × NS and (1 − 4) × NS subcarriers

allocated to each one. Also,
NS∑
j=1

NS∑
k=1

Πj,k

(
P̃

(j)?

1,3 , P̃
(k)?

2,3 ,Υ
(j)?

3

)
is a linear combination of 4Πj,k

(
P̃

(j)?

1,1 , P̃
(k)?

2,1 ,Υ
(j)?

1

)
+(1−

4)Πj,k

(
P̃

(j)?

1,2 , P̃
(k)?

2,2 ,Υ
(j)?

2

)
. Therefore, the constraints are

linear combinations itself. Hence, it is proved that (OP5)
satisfies the time sharing property. Henceforth, g(Q) is a
concave function of Q and the duality gap tends to zero,
respectively. Hence, this theorem is proved.

APPENDIX C
PROOF OF THEOREM 3

For the given problem in (DP3), the constraints (C.2) −
(C.4) can be reformulated as AB = 1, where B de-
notes a

[
N2

S(M + 4)× 1
]

vector of all indicators, i.e.,
{Λj,k,Ωm,(j,k)},∀m, j, k, 1 represents a [2M × 1] vector of
all ones, and A is the

[
2M ×

(
N2

SM + 4
)]

constraint matrix
given by

A =

 M times︷ ︸︸ ︷
A1, . . . ,A1,

2M times︷ ︸︸ ︷
I2×2, . . . , I2×2

 , (C.1)

where I2×2 indicates a [2× 2] identity matrix and A1 denotes
a
(
2M ×N2

S

)
matrix written as

A1 = blkdiag

 M times︷ ︸︸ ︷
11 . . . 11︸ ︷︷ ︸

IM×M

, . . . ,

M times︷ ︸︸ ︷
11 . . . 11︸ ︷︷ ︸

IM×M

 ; (C.2)

where the notation blkdiag(·) arranges a number of square
matrices on the main diagonal and the off-diagonal elements
are appended with zeros. It is already evident from [29] that a
matrix C is totally unimodular iff (C, I) is totally unimodular.
Hence, if we prove C = [A1, . . . ,A1]︸ ︷︷ ︸

M times

is totally unimodular

then it directly implies that the constraint matrix A is totally
unimodular. Further, using [29, Theorem 4.14], the necessary
and sufficient condition for unimodularity is given as follows:

Let us assume a matrix Cj×k with entries {−1, 0,+1}
in which any column has at most two non-zero entries,
then if there is possible to make a partition of rows
(N1 ∪N2 = 1, . . . , j) in C, where each column k with two
non-zero entries has the following property:∑

j∈N1

cjk =
∑
j∈N2

cjk , (C.3)

then matrix C is totally unimodular. Now, the given problem
in (DP3), matrix C = [A1, . . . ,A1]︸ ︷︷ ︸

M times

explicitly satisfies the

sufficient condition, while the partition of rows is shown by
dotted line in A1. Hence, we conclude that C and A are totally
unimodular.

APPENDIX D
PROOF OF THEOREM 4

A. Proof of (i)

For any resource allocation policy (P1,P2,SA,SP ), the
optimal EE is a function of the form

EE?(RT ) = (D.1)

RT

(
P̃1, P̃2, S̃P , S̃A,Υ

)
M∑

m=1

NS∑
j=1

NS∑
k=1

Λ̃j,kΩ̃m,(j,k)

(
eP̃

(j)
1,m + eP̃

(k)
2,m

)
+2MPC +ξRPC

.

It is evident that EE?(RT ) monotonically decreases with
PC . It implies that EE?(RT )-v/s-RT curve tends to be-
come strictly lower with increasing PC . If we assume
ÊE

?
(RT ), R̂T and P̂C represent EE?(RT ),RT and PC

with larger static power, then ÊE
?
(RT ) 6 EE?(R̂T ) 6

EE?(RT ). Therefore, the optimal EE?(RT ) monotonically
decreases with increase in PC .

B. Proof of (ii)

Let us define the optimal power allocation policy
(
P̃ ?

1 , P̃
?
2

)
for a set of static power condition {PC

m}, where m denotes
the number of users having the static power consumption
equal to PC

m . Further, EE? symbolizes maximum achievable
instantaneous EE. Let {PC

m} decreases by some amount to
{PC

m}−4PC , then from (i) stated above, EE? will decrease
and from (14) and (15)

(
P̃ ?

1 , P̃
?
2

)
will decrease monotoni-

cally with EE?, directly implying that
(
P̃ ?

1 , P̃
?
2

)
increases

monotonically with the static power PC .
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