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Mesoscopic modelling of pedestrian movement using Carma and

its tools
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In this paper we assess the suitability of the Carma (Collective Adaptive Resource-sharing Markovian
Agents) modelling language for mesoscopic modelling of spatially-distributed systems where the desired
model lies between an individual-based (microscopic) spatial model and a population-based (macroscopic)
spatial model. Our modelling approach is mesoscopic in nature because it does not model the movement
of individuals as an agent-based simulation in two-dimensional space, nor does it make a continuous-space
approximation of the density of a population of individuals using partial di�erential equations. �e application
which we consider is pedestrian movement along paths which are expressed as a directed graph. In the models
presented, pedestrians move along path segments at rates which are determined by the presence of other
pedestrians, and make their choice of the path segment to cross next at the intersections of paths. Information
about the topology of the path network and the topography of the landscape can be expressed as separate
functional and spatial aspects of the model by making use of Carma language constructs for representing
space. We use simulation to study the impact on the system dynamics of changes to the topology of paths and
show how Carma provides suitable modelling language constructs which make it straightforward to change
the topology of the paths and other spatial aspects of the model without completely restructuring the Carma
model. Our results indicate that it is di�cult to predict the e�ect of changes to the network structure and that
even small changes can have signi�cant e�ects.

CCS Concepts: •Computing methodologies →Model development and analysis; Simulation support
systems; •�eory of computation →Process calculi; •Applied computing →Law, social and behavioral
sciences;
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1 INTRODUCTION

�e modelling of pedestrian and crowd movement has been an area of research interest for many
years in domains as diverse as town planning, parade routing, and emergency egress placement for
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1:2 V. Galpin, N. Zoń, P. Wilsdorf and S. Gilmore

auditoriums and stadia [? ? ? ]. �is paper investigates how the formal language Carma can be
used to express models of pedestrian movement over networks of paths, and takes a mesoscopic
approach to this spatial modelling rather than microscopic or macroscopic. �e mesoscopic approach
is a middle ground between considering a discrete (microscopic) model of individual movement in
two-dimensional space or a continuous (macroscopic) model based on partial di�erential equations
(PDEs) where both change over time and change over space are described by continuous quantities.
Another approach to modelling the dynamic interaction of populations, such as species of molecules
in biology, is the mean �eld/�uid approximation technique that assumes that populations are well-
mixed and makes no spatial distinctions. �is would not be useful for the type of pedestrian
modelling considered here which is inherently spatial.

In the mesoscopic approach, the model components which represent pedestrians act as individual
decision-making entities when they make probabilistic choices about their future movement and
function as a collective population mass when we consider how they impede the movement of other
pedestrians. Neither of these views of model components (as individual entities or as population
mass) is dominant and the model needs to make use of both views to represent how congestion
arises along paths and how it impedes the progress of individuals. Together the two views allow
us to represent intelligent density-dependent movement which captures the behaviour of decision-
making individuals adapting to continuously-changing information about the collective to which
they belong.

�e modelling language which we use, Carma [? ? ], has been designed for representing and
analysing Collective Adaptive Systems (CAS) which consist of multiple components (or agents)
interacting collaboratively on common goals, and competing on individual goals. CAS are charac-
terised by the fact that each component does not have global knowledge of the whole system but
rather has only local information on which to base their decisions and act. CAS are called collective
because of the interaction of many components, and adaptive because they respond to changes in
the environment in which they operate. �ey are o�en characterised as having emergent behaviour
which cannot be predicted in advance by considering the individual components in isolation from
each other. �e focus on local information as opposed to global knowledge suggests that space o�en
plays an important role in CAS. While this is not necessarily true of all CAS since the distinction
between local and global may be logical or virtual rather than physical, it is true for many CAS,
and hence this is an important part of understanding their behaviour.

Modelling of CAS is crucial because it is infeasible to understand the behaviour of the overall
system solely by inspecting the behaviour of the components. Modelling allows us to experiment
with alternative designs of a system at the planning stage before it is realised in a concrete
implementation and opened for use. Carma has been used for modelling particular instances
of CAS such as smart transport systems, smart energy grids, and other resource-sharing systems.
Not only does Carma provide a language designed for the styles of interaction required by collective
adaptive systems – including a�ribute-based communication – it also allows for the separation of
concerns in models. Components describe the behaviour of agents in the system together with
their a�ributes in a generic manner, so that they are able to move over any spatial structure (as we
will show) rather than being �xed to a speci�c topology. A�ributes then allow the modelling of
well-structured movement; for example in enforcing constraints which keep the pedestrians on the
footpaths, and keep the cyclists on the cycle paths.

In our focus on pedestrian movement along a network of paths, we consider that each pedestrian
has only local information about the number of pedestrians on path segments, and they wish to get
to their destination as e�ciently as possible. An obvious approach to take when presented with the
choice of two paths (that both lead to the destination) is to take the one with the least oncoming
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Mesoscopic modelling of pedestrian movement 1:3

pedestrian tra�c, although in very crowded situations, considering the pedestrian tra�c �ow in
their current direction of travel may be important as well. �e network of paths could be a speci�c
part of a city, a pedestrianised network of lanes, or paths through a large park.

We consider two models in this paper. �e �rst of these is a basic model where there are two
groups of pedestrians starting on opposite sides of the network who wish to traverse the paths
to get to the other side (opposite to where they started). �is scenario could arise in a city where
there are two train stations on opposite sides of the central business district serving the eastern
and the western suburbs of the city, and a number of people who commute from the west work
close to the east station and vice versa. During rush hour in the morning or evening, people want
to traverse the park or lanes as e�ciently as possible, and we wish to investigate what features of
the network of paths help towards this goal. If there are multiple paths, it would seem in advance
that it makes sense to use some paths for one direction and other paths for the other direction. �is
raises the question of what routing information – such as signage – is su�cient for the two groups
of pedestrians to separate out onto di�erent paths. Even for this �rst basic model our experiments
demonstrate that this is not as straightforward as one may at �rst think.

Our second and more realistic pedestrian movement model focusses on an actual park in Ed-
inburgh called the Meadows, and takes into account di�erent directions of pedestrian �ows at
di�erent times of the day using information inferred from real measurement data collected by the
City of Edinburgh Council. In this model we consider the e�ect of the closure of selected paths
(because of maintenance, events, or other reasons) on the pedestrian �ow across the Meadows. We
present the results of our analysis as two-dimensional density graphs showing the force of �ow in
situ in the spatial network context.

�is paper shows how these two models can be expressed in Carma and speci�ed in CaSL, the
language of the Carma Eclipse Plug-In, a fully-featured modelling and analysis environment for
Carma. We �rst present a brief discussion of the Carma language before describing the modelling of
the scenario in more detail and presentation of our experiments and results from various networks,
followed by conclusions and discussion of future work.

�e paper makes the following original contributions.
• We present the �rst example of mesoscopic modelling in Carma, showing how the language

can represent individual probabilistic decisions in a density-dependent context.
• We provide a structured spatial analysis of a real-world scenario in a mesoscopic model

which has been parameterised with measurement data from an open data source.
�is work extends that published as [? ]. Our earlier paper presented a basic model similar in style
to the one presented here, however, the rate functions that a�ected choice of path and movement
speed which were used there were based on the number of pedestrians at the nodes of the networks
rather than the number of pedestrians on the edges of the network. As we will discuss later, this
leads to di�erent outcomes. �e present paper adds the entirely new Meadows model and shows
how empirical measurement data can be used to parameterise a realistic model of a real-world
scenario in Carma.

2 CARMA

Carma is an expressive process calculus which has been developed speci�cally for the modelling
of collective adaptive systems. A full description of the language can be found in [? ? ]. Here, we
give a brief outline.

A Carma model consists of a collective N and the environment E in which it operates, using
the syntax N in E. A collective is either a component C or collectives in parallel N ‖ N . Each
component is either null, 0, or a combination of behaviour described by a process P and a store of
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1:4 V. Galpin, N. Zoń, P. Wilsdorf and S. Gilmore

a�ributes γ , denoted by (P ,γ ). We use function notation to denote store access, thus if γ = {x 7→ v}
then γ (x) = v . As an example, a (small) collective of two components representing pedestrians
travelling in opposite directions could be represented thus in Carma:

(Pedestrian, { direction 7→ west }) ‖ (Pedestrian, { direction 7→ east })

Pre�x (.), constant de�nitions (def
=), choice (+) and parallel composition (|) can be expressed in the

standard manner by de�ning P appropriately. Additionally, there is the nil process which does
nothing, the kill process which results in the component being removed from the collective, and the
option of pre�xing a process with a predicate [π ]P , in which case the process P can only proceed
if the predicate π evaluates to true using the values of the a�ributes in the component’s store γ .
To improve readability we sometimes parenthesise the process expression P , writing this term
as [π ](P). �e meaning is unchanged. A typical use of these constructs would be the de�nition of a
Pedestrian component who might decide to have a picnic in the park if the weather is sunny or go
home for lunch if the weather is rainy. �is is expressed in Carma thus:

Pedestrian def
= [weather = sunny] (goToPark〈〉.HavePicnic)
+ [weather = raining] (goHome〈〉.MakeLunch)

Process pre�xes provide value-passing unicast and broadcast communication using predicates over
the a�ributes in the stores of both the component which is sending the value and the component
which is receiving the value. Communication between components will only take place if the
predicates over both stores evaluate to true. �e value false indicates that no communication partner
is needed (when broadcasting). Furthermore, a�ribute values can be updated (probabilistically) on
completion of an action.

Unicast communication is blocking; the sender cannot output values unless there is a matching
input action which can be performed by another component. In contrast, broadcast is not blocking,
and we can use a speci�c form with a constant false predicate to allow components to act without
interaction with other components, as seen in the example to follow. �e constants true and false
in Carma models are wri�en as > and ⊥ here.

�e syntax of a non-blocking broadcast on name α is α?[π ]〈®v〉σ where π is a predicate which
must be satis�ed by all processes wishing to receive this broadcast. �e vector ®v is a vector of
values to be communicated; this vector may be empty. �e su�x σ is an update of variables in the
local store of a component. A component refers to an a�ribute in its own local store by pre�xing
the name of the a�ribute with the word ‘my’ (similar to the use of the keyword ‘this’ in Java)
so an update to store the value of x as the new value of my.x is wri�en as {my.x ← x}. As an
example, the pre�x process term move

?
k [⊥]〈〉{my.` ← k}.M broadcasts that it is performing a

movek activity, updates its local ` values, and continues as the process M .
�e environment contains both the global store and an evolution rule which returns a tuple of

four functions (µp , µw , µr , µu ) known as the evaluation context. Communication between sender s
and receiver r on activity α has both an associated probability (determined by µp ) and a weight
(determined by µw ). �ese functions depend on activity α and both the a�ribute values of the
sender (in the store γs ) and the a�ribute values of the receiver (in the store γr ). �e activity rate
however depends on only the a�ribute values in the store of the sender (γs ); the a�ribute values of
the receiver do not a�ect the rate at which a communication activity is performed. An example
rate function in the evaluation context would be the following activity-dependent movement rate:

µr (γs ,α) =


1.0 if α = strolling

2.0 if α = walking

5.0 if α = running
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Mesoscopic modelling of pedestrian movement 1:5

�us the �rst three functions in the evaluation context determine probabilities, weights and rates
that supply quantitative information about the behaviour of actions. �e fourth function µu
performs global updates, either of the a�ributes in the global store or of the collective by adding
new components. �ese updates include the usual initialisation of variables, incrementing counters,
or accumulating totals.

2.1 CaSL

As is standard for process calculi and algebra, Carma is the formal and mathematical language
developed for collective adaptive system modelling. However, when it comes to implementing
models and simulating and analysing them, a text-based language suitable for input is required. �e
language accepted by the Carma Eclipse Plug-in is called CaSL (Carma Speci�cation Language). It
allows for the declaration of components and the environment as in the de�nition of Carma but it
also gives additional features that are necessary when making a model concrete for simulation. In
particular, it allows for constants and functions to be de�ned to support the de�nition of models.
In addition to this, it adds a layer of typed data structures including enumerations, record types,
and heterogeneous collections such as sets and lists. �is provides a level of type security which is
not o�ered by process calculi with untyped value-passing. Furthermore, the CaSL language has an
explicit spatial syntax to describe space, an important feature determining the behaviour of many
CAS. �is allows the de�nition of nodes (either as coordinates or names) and links between these
nodes. �ere is also syntax to support the use of this space, in particular, a way to refer to both
the pre-set and post-set of a node, which then permits a generic de�nition of moving components
that can traverse over any spatial structure speci�ed. Taken together, these additional language
features in CaSL provide a basis for strong static analysis of models, catching modelling errors at
compile-time which would not be detected in modelling languages without this kind of support for
representation of typed data and spatial structure.

CaSL provides a wrapper around the Carma process calculus adding non-essential (but useful)
features such as data types and data structures, functions, and the ability to specify real-valued
measures of interest over the model. In some modelling languages measures of interest or Markov
reward structures are de�ned externally to the model but in Carma and languages such as CASPA [?
], PRISM [? ] and ProPPA [? ], the speci�cation of measures of interest and reward structures is
included in the modelling language itself.

2.2 The Carma Eclipse Plugin

�e Carma Eclipse Plugin is an integrated development environment for Carma models. It provides
a helpful syntax-aware editor for CaSL, implemented in the XText editor framework [? ]. Given
a Carma model, the Carma Eclipse Plug-in compiles the model into a set of Java classes which
are linked with the Carma simulator classes to provide a custom simulator for this speci�c model.
�e compiled Java code is executed to compute the measures of interest from an ensemble of
simulation runs. �e operational semantics of Carma are de�ned in FuTS style [? ] and de�ne
the semantics of each model as a time-inhomogeneous continuous-time Markov chain (ICTMC).
�e behaviour of these ICTMCs is simulated using the Carma Eclipse Plug-in. �e simulator uses
a kinetic Monte-Carlo algorithm to select the next simulation event to �re and draws from the
appropriate weighted random number distribution to determine the duration of the event. �e
simulation state is updated as speci�ed by the event which was �red and the simulation proceeds
forward until a pre-speci�ed simulation stop time is reached. �is is a standard approach and
research is being made on how to improve these methods in order to speed up the simulation of
complex models.
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1:6 V. Galpin, N. Zoń, P. Wilsdorf and S. Gilmore

Fig. 1. A screen shot of the interface of the Carma Eclipse Plug-in.

�e measure functions de�ned by the modeller are passed into the simulation environment and
provide a view onto the raw simulation results at intervals which are speci�ed by the modeller.
�e Apache Commons Math Library is used within the Plug-in to perform statistical analysis
of the data. �e Simulation Laboratory View provided by the Carma Eclipse Plug-in acts as
an electronic laboratory notebook, recording details of the simulation studies which have been
performed. Simulation experiments are composed and launched from the user interface via the
Carma Simulation View. Results are plo�ed directly into the Experiments Results View or saved to
a �le for post-processing.

A screen shot of the graphical user interface of the Carma Eclipse Plug-in is presented in Fig. �.
�e Carma Eclipse Plug-in is available from the QUANTICOL SourceForge repository1. A�er

installation it can be kept up-to-date using the standard mechanism in Eclipse to check for updates.
As an alternative to the Carma Eclipse Plug-in, the Carma command-line simulator can be used
to schedule a series of experiments which will then run without user interaction (for example,
on a compute server). Source code for the Carma command-line simulator is available from the
QUANTICOL GitHub repository2. More information about the QUANTICOL project which created
these tools is available from the project web site3. �e CARMA models presented in this paper are
available for download4.

3 FORMAL LANGUAGES FOR COLLECTIVE ADAPTIVE SYSTEMS

�e Carma language provides high-level language constructs for describing communicating pro-
cesses. �e language has a stochastic semantics expressed in terms of continuous-time Markov
chains. Carma contains some features which are familiar from languages such as Bio-PEPA [?
1h�p://quanticol.sourceforge.net
2h�ps://github.com/�anticol/CARMA
3h�p://www.quanticol.eu
4h�p://blog.inf.ed.ac.uk/quanticol/pedestrian-movement/
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Mesoscopic modelling of pedestrian movement 1:7

], PRISM [? ] and the A�ributed π -calculus [? ]. In this section we compare Carma to these
established modelling languages and highlight di�erences in approach between them through
discussion of the language features which they o�er. In addition, we consider the types of model
analysis which each language supports.

Each of the languages considered here has the potential to be used to model stochastic systems
with mobile populations of individuals but language design decisions, the choice of language
features, and underlying analysis mechanisms can make one of the languages be�er-suited for a
particular modelling problem than the others. As examples of modelled systems, Bio-PEPA has
been used to model scenarios where safe movement of people is an important factor in systems
including emergency egress [? ] and crowd formation and movement [? ]. PRISM has been used to
model dynamic power management controllers [? ] and human-in-the-loop UAV mission planning [?
]. A�ributed π -calculus has been used to model spatial movement in phototaxis [? ], and cooperative
protein binding in gene regulation [? ]. Carma has been used to model a number of spatial CAS
including carpooling [? ], taxi movement [? ] and ambulance deployment [? ].

Inter-process communication in Carma is a�ribute-based; communication partners are deter-
mined dynamically as the model evolves through state-to-state transitions. Communication in the
A�ributed π -calculus is similarly dynamic. In contrast, the communication partners of Bio-PEPA
and PRISM components are determined statically, and do not change as state-to-state transitions
occur. Additionally, Carma and the A�ributed π -calculus support value-passing communication
whereas the Bio-PEPA and PRISM languages do not.

�e Carma language and the PRISM language are explicitly-typed. Types such as boolean,
integer and real are ascribed to variables in the language by the modeller, or inferred by the
language type-checker. In contrast, types in Bio-PEPA and the A�ributed π calculus are implicit.
Explicitly-typed languages can make the modeller’s intentions more obvious, when, for example,
expecting to receive an initial integer value instead of a real value.
Carma provides guarded process de�nitions which are used in a similar way to the guarded

commands found in the PRISM language. �e A�ributed π -calculus does not support these directly.
Bio-PEPA has no boolean expressions at all and hence no guarded expressions of any kind. Guarded
process de�nitions allow declarative descriptions of the relationships between locations in a network
and we have used this description mechanism comprehensively here.

In common with PRISM, Carma provides strong support for encapsulation, with variable decla-
rations being local to an enclosing structure. In PRISM this structure is a module, whereas in Carma
it is a component. A structuring mechanism for de�nitions such as this is not found in Bio-PEPA or
the A�ributed π -calculus where declarations of rate functions, channel names, process de�nitions
or species de�nitions have global scope.

Di�erently from the other languages considered here, Carma treats location and space as an
aspect of a model which can be described separately from the detailed model dynamics. �rough
the provision of a graphical editor for Carma [? ], space, location, and connectivity can be treated
separately from logic, communication, and synchronisation. �is separation of concerns may make
it easier to maintain a model of a system when the spatial structure of the system changes.

�e primary analysis method for Carma models is simulation. �is is also the case for Bio-PEPA
and the A�ributed π -calculus whereas analysis of PRISM models is typically through probabilistic
model-checking. Model-checking su�ers from the disadvantage that it requires a representation of
the model state-space which limits the applicability of the method to small-scale systems because of
the well-known state-space explosion problem which occurs when trying to represent all reachable
states of a system of concurrent processes in an action-interleaving representation of concurrency.
Analysis via simulation (as in Carma, Bio-PEPA and the A�ributed π -calculus) avoids the need
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1:8 V. Galpin, N. Zoń, P. Wilsdorf and S. Gilmore

to represent the full state-space explicitly but at the cost of long simulation run-times. Bio-PEPA
restricts the types of simulation events and kinetic functions which are available to the modeller in
order to be able to use accelerated stochastic simulation algorithms from the Gillespie family of
Monte Carlo methods. Carma and the A�ributed π -calculus allow general simulation events and
kinetic functions but provide distributed execution of independent simulations in order to be able
to reduce the time to evaluate an ensemble of simulation runs.

CAS, and in particular crowd movement, has been considered in the aggregate programming
approach of Beal and Viroli [? ]. �is is a layered approach to developing distributed applications
over a cooperating collection of devices. �e underlying theory of this approach is de�ned by
the �eld calculus which captures a notion of distribution in space and formalises which devices
can communicate. At the top level, aggregate APIs enable the actual communication between real
devices. �is approach has been used to provide crowd safety services whereby dangerous levels
of crowding can be identi�ed, and appropriate messages can be sent to mobile phones to give
individual instructions of what to do, leading to successful dispersion [? ]. Aggregate programming
has a di�erent aim to that of Carma, namely developing distributed applications rather than
modelling CAS scenarios.

4 MODELLING OF PEDESTRIAN MOVEMENT

How pedestrians move through space and along walkways has been an area of research interest for
many years, and di�erent approaches to modelling these phenomena have been taken, o�en based
on concepts developed in physics [? ? ? ]. �ere are two main areas of interest overall: normal
conditions and emergency or panic conditions. �e current paper focusses on normal conditions
rather than the more extreme and unusual case.

Modelling approaches can be classi�ed as microscopic, mesoscopic and macroscopic. �e two
extremes are moderately straightforward to de�ne, but the middle one is more complex. In the
case of microscopic models, each pedestrian is modelled individually, and is typically located in
two-dimensional space. �is can be done through agent-based models, cellular automata, magnetic
force models or social force models [? ? ? ]. For cellular automata, discrete two-dimensional space
(a grid or la�ice) is used, whereas the other approaches consider continuous space.

In contrast, macroscopic models consider densities of pedestrians rather than individuals at
speci�c locations in space. �ey are typically de�ned by partial di�erential equations, allowing for
the continuous variation of time as well as location in space.

�e third category, mesoscopic is used in a number of di�erent ways. For example, Bellomo and
Bellouquid de�ne a multi-scale model, where micro-scale interactions are described [? ]. �ese lead
to a mesoscopic kinetic model from which macroscopic equations can be obtained by considering
asymptotic limits. �is means that the macroscopic description emerges from the microscopic
interactions rather than being de�ned a priori. An alternative use is where physical and logical
groups of pedestrians are used within the simulation [? ].

Our use of the term mesoscopic is in�uenced by modelling of molecular phenomena, in particular,
di�usion of molecules in three-dimensional space. In this domain, microscopic and macroscopic
are used as above. In the former, individual molecules are modelled in three-dimensional space,
including their collisions; and in the la�er, PDEs are used to describe changes in density of the
molecular species involved. An alternative approach is to assume well-mixedness and use stochastic
simulation or ODEs based on the Chemical Master Equation (CME) to describe the changes in
quantities of chemical species but this does not take space into account. �e mesoscopic approach
involves dividing three-dimensional space into areas of volume known as voxels, and the CME
(or suitable approximations) assume that within each voxel, species are well-mixed and then can

ACM Transactions on Modeling and Computer Simulation, Vol. 1, No. 1, Article 1. Publication date: January 2017.



Mesoscopic modelling of pedestrian movement 1:9

be used to express this interaction. However, this approach takes into account the fact that some
molecules will move between voxels, and determines this based on a Reaction-Di�usion Master
Equation (RDME) [? ? ].

We take a similar approach, although without de�ning a master equation. We consider pedestri-
ans moving along paths but we do not model the individual movement of each pedestrian as they
are moving along the path, only as they move from one path segment to another. �eir movement
within a path segment is determined by an exponentially-distributed duration and this duration
is state-dependent, is the sense that it is dependent on the number of pedestrians on that path
segment.

5 BASIC PEDESTRIAN MODEL

Our Carma model of basic pedestrian movement is presented in Figures � and �. It assumes that
there are two types of pedestrian, A and B, and that P and Q are variables of type pedestrian. �e
two Generator components generate pedestrians at two di�erent locations (on opposite sides of
the graph), and the pedestrians move from their origin side to the opposite side. �e pedestrians’
behaviour is split into two alternating processes. When at a node pedestrians are in the state
Choose. A�er the next edge has been chosen, pedestrians go to the state Move. Once a pedestrian
has reached its goal, the count for that type of pedestrian is incremented (countP in Figure �) and
the time taken for traversal is added to the total time so that the average traversal time can be
calculated for each pedestrian type. �ese variables are global and form part of the environment.

• ExistsPath(P , `,k) is a Boolean function that determines if an edge exists between a pedes-
trian’s current position ` and another node k , hence a move

?
k action can only occur when

such an edge exists.
• AtGoal(P , `) is a Boolean function that checks if the pedestrian has reached its goal, hence

fin
? can only occur once the destination has been reached. A�er this the pedestrian does

not move any more.
• ArrivalRate(P) is a function that returns λP , the arrival rate for pedestrians of type P .

�ese rates are de�ned as constants in Figure �.
• Start(P) de�nes the initial location of a new pedestrian depending on its type.

A function that is not directly related to the graph structure is MoveRate(P , `,k,A`,k ,B`,k ) which
determines the rate of movement along a particular edge (`,k), and can take additional parameters
that can a�ect this rate such as the current count of other pedestrians of the same or di�erent
type. We use the following de�nition that uses the numbers of pedestrians of the other type on the
current edge to reduce the movement rate.

MoveRate(P , `,k,A`,k ,B`,k ) =
{
moveA/(B`,k + 1) if P = A

moveB/(A`,k + 1) if P = B

where A`,k is the number of A pedestrians on the edge and B`,k is the number of B pedestrians on
the edge, and moveP is a basic movement rate for each pedestrian type.

Another function is ChooseRate(P , `,k,A`,k ,B`,k ) which determines the rate (in e�ect, the proba-
bility) of choosing a particular edge (`,k) for the next move. Similar to the de�nition of MoveRate,
our de�nition takes into account the number of pedestrians of the other type on that edge, such
that pedestrians will favour edges with lower tra�c.

ChooseRate(P , `,k,A`,k ,B`,k ) =
{
fast/(B`,k + 1) if P = A

fast/(A`,k + 1) if P = B
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Store of Pedestrian component:

P pedestrian type
` current location

n` next location
stime time of arrival

Behaviour of Pedestrian component:

Choose def
=

∑
k ∈V

[
ExistsPath(P , `,k)

] (
choosePath

?
k [⊥]〈〉{my.n` ← k}.Move

)
+

[
AtGoal(P , `)

] (
fin

?[⊥]〈〉.nil
)

Move def
=

(
move

?[⊥]〈〉{my.` ← my.n`}.Choose
)

Initial state of Pedestrian component: Choose

Store of Generator component:

P pedestrian type

Behaviour of Generator component:

Arr
def
= arrive

?[⊥]〈〉.Arr

Initial state of Generator component: Arr

Fig. 2. The Pedestrian and Generator components of the basic model

where A`,k is the number of A pedestrians on the edge and B`,k is the number of B pedestrians on
the edge. It is assumed that decisions are made relatively quickly, thus we use a constant factor
fast ≥ 100 to make choosePath

?
k

a fast action. We have chosen to work with these functions as
they meet our expectations of the behaviour of pedestrians in these circumstances. We do not have
to access data to take a di�erent approach.

Figure � speci�es the four functions (µp , µw , µr , µu ) known as the evaluation context. Probabili-
ties and weights on activities are not used in this model so the µp and µw functions are trivially
constant functions.

As mentioned above, the model is mesoscopic. Each edge in the graph represents a path segment,
and the path segment that each pedestrian is on is determined by their current and next position
�e model only records that they are on a speci�c path segment and there is no explicit knowledge
about where on the path segment a pedestrian is, only a time duration for traversing the segment.
�is is an abstraction that allows for e�cient modelling as it is not necessary to know the speci�c
location when traversing a path segment.

5.1 Model instances

Four instances of this Carma model are shown in Figure �. �ese show instantiations of the
general Carma model from the previous section with increasing size and shape complexity and
the same rates for traversing an edge. �e central repeating features of the path network are the
cross-bars in the centre of the network. In the simplest instance we have only one cross-bar and
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Constants:
V set of coordinate pairs representing nodes in the graph
λP arrival rate for pedestrians of type P
moveP movement rate for pedestrians of type P

Measures:
averageP average time for traversal by pedestrians of type P

Global store:
countP number of P pedestrians that have completed the traversal
totalP total time for all completed P pedestrian traversals

Evaluation context:
µp (γs ,γr ,α) = 1
µw (γs ,γr ,α) = 1

µr (γs ,α) =


ArrivalRate

(
γs (P)

)
if α = arrive

?

MoveRate
(
γs (P),γs (`),k,A`,k ,B`,k

)
if α = move

?
k

ChooseRate
(
γs (P),γs (`),k,A`,k ,B`,k

)
if α = choosePath

?
k

λfast otherwise

µu (γs ,α) =



{}
,
(
Pedestrian, {P ← γs (P), ` ← Start(γs (P)), stime← now}

)
if α = arrive

?{
countγs (P ) ← countγs (P ) + 1, totalγs (P ) ← totalγs (P ) + (now − γs (stime))

}
, 0

if α = fin
?{}

, 0 otherwise

Collective:
PedAB def

=
(
Generator, {P 7→ A}

)
‖

(
Generator, {P 7→ B}

)
Fig. 3. Environment and collective of the basic model

we describe this instance as having height 1 and width 1, representing it as instance 1 × 1. �e
height of an instance is the number of cross-bar elements from top to bo�om, and the width is the
number of cross-bar elements from le� to right. As the cross-bar structure is repeated we have
instances 1 × 2 (which has height 1 and width 2), 2 × 1 (which has height 2 and width 1), and 2 × 2,
depending where the additional structure is added into the network.

An increase in the width of the network has the obvious consequence that journeys across the
network take longer. An increase in the height of the network has the consequence that pedestrians
are o�ered an increased choice of routes, with the implicit consequence that individual paths are
less congested (because there are more of them on o�er). �e edges are assumed to be equally long
and thus the time to traverse them is the same under comparable conditions.
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1:12 V. Galpin, N. Zoń, P. Wilsdorf and S. Gilmore

height 1, width 1: 1 × 1 height 1, width 2: 1 × 2

height 2, width 1: 2 × 1 height 2, width 2: 2 × 2

Fig. 4. Four model instances of increasing size and complexity: height indicates the number of crossbar

elements from top to bo�om and width the number of crossbar elements from le� to right.

In each instance of the network of paths there are two sub-networks which constrain the
movement of the pedestrians of type A and type B. Pedestrians of type A are restricted to the red
sub-network and must cross the network from le� to right. Pedestrians of type B are restricted to
the blue sub-network and must cross the network from right to le�. �e networks illustrated in
Figure � are symmetric but this is of no particular signi�cance and it would pose no di�culty to
work with networks which were not symmetric, which we will show with the Meadows example
later in this paper.

5.2 Design of experiments

We designed a suite of experiments to explore the behaviour of the model. To provide a baseline for
average travel time we investigated the travel time in the presence of only one type of pedestrian
(thereby giving a model which has no congestion). �erea�er we investigated the models with
congestion in the presence or absence of pedestrian routing. When routing is present, only one
starting route has a non-zero rate and the non-zero rate is assigned in order to direct pedestrians
away from each other.

�e two main parameters which in�uence the behaviour of the model are the movement rates
and arrival rates. Since the movement rates depend on congestion, it was important to set plausible
base rates for the non-congested case. �erefore, parameters were calibrated under the assumption
that all links are equidistant (approximately 100m long) and using the results of a study conducted
by [? ], which suggests an expected pedestrian speed of 1.34m/s under normal conditions.

Having set base rates for pedestrian movement, then the focus of the experiments was to
investigate tra�c under di�erent arrival rates, i.e. di�erent numbers of pedestrians in the network.
In a �rst experiment arrival rates are low, which should lead pedestrians to pass through the
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(a) Low tra�ic (b) Higher tra�ic

Fig. 5. Average travel time results from the experiments on structure and network usage

network smoothly. In a second experiment arrival rates are doubled, which we expect to cause
more congestion in the network and thus longer average travel times.

So far, arrival rates of both pedestrian groups had been equal. �erefore, we conducted a third
experiment, in which we explored how the arrival rate of pedestrian type A a�ects the average
travel time of B. In order to do that, the arrival rate of A was set to s ∗ arrivalRateB , s ∈ {1, 2, 3, 4, 5}.

5.3 Analysis

We are able to obtain values for the length of time it takes each pedestrian to traverse the whole
system, even though our mesoscopic approach abstracts away from the details of where each
pedestrian is on a path segment. We can then compare on average how long it takes di�erent types
of pedestrian to move from their entrance point to their exit point for di�erent scenarios.

�e results from our �rst two experiments are presented in Figure �. For each experiment we
have three results (no congestion, routing, and no routing) for each of the four model instances
considered (1 × 1, 1 × 2, 2 × 1, and 2 × 2). Figure � shows the results for low overall tra�c. An
inspection of the results shows that, unsurprisingly, for any structure the best average travel times
are obtained when there is no congestion in the network. As anticipated, networks with greater
height have shorter average travel times because they have greater capacity, due to the inclusion of
additional routes (thus 2×1 results are be�er than 1×1 results, and 2×2 results are be�er than 1×2
results). In these networks routing is advantageous, whereas when applying routing to narrow (low
height) networks, the opposite behaviour is observed, in fact routing leads to an increase in the
average travel time. Similar results were obtained for the case of high tra�c, which are displayed in
Figure �. Here, where average travel times in narrow networks are already extremely high in the
absence of routing, they increase even more when routing is present. �e observation that routing
increases travel time is contradictory to our expectations and this is discussed further below.

Congestion in the 2 × 2 network is illustrated in Figures � and �. Red and blue arrows indicate
direction of movement of the two pedestrian types. �e overall number of pedestrians on a particular
edge is represented by line width, while the proportion of A and B on an edge is represented by
arrow length. When there is no routing present, congestion especially occurs near start and end
nodes where all paths connect. All other edges (the ones closer to the center of the network) are
less congested, since tra�c is equally split over all possible paths. In comparison to that, when
routing is enabled, pedestrian groups are guided away from each other, such that most edges are
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t=1000

(a) Without routing

t=1000

(b) With routing

Fig. 6. Congestion on network edges at time t = 1000 for the 2 × 2 topology

Fig. 7. Average travel time of B against arrival rate of A

only used by one pedestrian group. Congestion occurs only near start and end points and on the
main diagonal, as not all individuals choose the path with lowest tra�c.

�e results of our third experiment on the 2 × 2 network are shown in Figure �. It can be seen
that an increase in the amount of pedestrian type A leads to a signi�cant slowdown of pedestrian
type B, whereas the average travel time of type A rises only slightly. Using pedestrian routing helps
to reduce average travel time in all cases.

5.4 Discussion

As mentioned above, some of the results we obtained were counter-intuitive, and di�ered from
our expectations. In fact, it turns out that our expectations were incorrect as we had not fully
comprehended a particular aspect of our model. �e functions that determine which path to choose
and how fast movement is possible along a path are dependent on local information. In the case of
movement speed, it is reasonable just to use the quantity of other pedestrians to determine this.
However, for the choice of path, using only the local information of the paths that can be chosen
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2 3

4 5

1 6

t=1000

Fig. 8. Congestion of edges for 1 × 1 network (le�) and illustration of path visibility and how it may a�ect

choice (right)

imposes a notion of visibility onto the model, which can also be used to infer the topography of the
landscape over which the paths are de�ned.

Consider the 1 × 1 model as given in Figure �, a pedestrian entering from the right (node 6) in
the routing case, will be directed along the upper branch (to node 3) and one entering from the
le� (node 1) will be directed along the upper branch (to node 4). �is pedestrian at node 4 will
then have a choice between the upper (to node 3) or lower branch (to node 5), both of which will
appear reasonable because there will be li�le oncoming tra�c on either. In fact, on the lower path
there will be none, because of the routing applied to pedestrians to the right, but other will also
be low, so some proportion will take the upper path to node 3 and then take a very long time to
reach node 6 as they will be facing the full �ow of all pedestrians coming in other direction, and
their average time to traverse the last link increases, as does the average time for the pedestrians
that are traversing their �rst link. Hence routing causes some pedestrians to take a path that looks
good but is not (node 4 to 3). �is does not occur to the same extent in the 2×n cases because even
though a similar poor choice can be made, it will have a less pronounced e�ect.

�e reason why this occurs is that looking at only the next paths ahead does not give complete
information. �is arises in practice when pedestrians have limited visibility on the paths ahead.
To obtain be�er �ow, there are a number of solutions including signposting at the point where
the poor choice is made, and allowing path look-ahead of more than one path segment so that
congestion further ahead can be seen. Another way to consider this is to view the paths as being
laid over a landscape that is hilly – the poor choice is made because the hilly landscape prevents a
pedestrian from seeing further ahead as illustrated in Figure �.

�ese results di�er from those in our previous paper [? ] where we did not observe this counter-
intuitive behaviour. �e explanation for this is the fact that our model now uses path congestion
to determine behaviour rather than node congestion as in the prior work. �e change was made
to re�ect human behaviour be�er; however, it also gave us an improved understanding of model
behaviour, and a more general model could then be developed which captures explicit notions of
visibility.

�e model and our results demonstrate that mesoscopic modelling is possible for this pedestrian
movement scenario. Moreover, by abstracting from the speci�c location a pedestrian is on a path
segment, we ensure that the simulation of the model is feasible, both in terms of model size and
time required for simulation. It is beyond the scope of this paper to compare our results with those
of a microscopic or macroscopic model.

In our second model which considers the Meadows in Edinburgh, an additional piece of informa-
tion is used to determine which path to choose and that is the distance to the goal node (which
varies between pedestrians unlike in the basic model).
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Fig. 9. The Meadows public park in Edinburgh, Scotland. The locations of the intersections used in the

system are marked in red.

6 CASE STUDY: THE MEADOWS

�e second model we present provides a more sophisticated model of an existing network of
pedestrian paths and cyclepaths in the Meadows public park in Edinburgh, Scotland.

�e aim of modelling this scenario was to explore the extent of expressiveness of the Carma
language, rather than to compare the model’s predictions to data. �is is because data suitable for
such a comparison are not available.

Unlike the basic model, we based this case study on real-world geographic data. We used the
Google Maps API to obtain the location of 20 path lane intersections in �e Meadows area (see

Fig. 10. The data available from the City of Edinburgh council’s website (h�p://www.edinburghopendata.
info/vi/dataset/bike-counter-data-set-cluster/resource/�beb785-a19f-4788-bc27-892b024a6750) shows which

times of the day have greater tra�ic of bikes. The bike counter, located near the north segment of the

Middle Meadow Walk (see Fig. �) is able to detect and count bikes moving in opposite directions separately

(Channel 1 and Channel 2). The data shows increasing tra�ic of bikes in the morning and a�ernoon.
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Fig. �) and used these to generate the structure of connections and nodes in the model. �e Google
Maps API provides the latitude and longitude for each selected point in accordance with the World
Geodic System 1984 (WGS 84). �ese values were then converted using the Universal Transverse
Mercator (UTM) projection in order to obtain the x and y cartesian coordinates on the plane, in the
unit of metres.

6.1 The Carmamodel

In the basic model presented in Section � the start and �nish (goal) location of each pedestrian is
predetermined by the graph representing the network of the paths. In the more complex example
of the Meadows, multiple start and �nish locations are allowed and all connections are bidirectional.
For this reason, in order to mimic the behaviour of the real system, in which commuters cross the
park with the intention to get from one place to another, each Pedestrian is assigned a start and
�nish location when they �rst appear in the system. �e probability of choosing a given location as
a start or a �nish (goal) location for a given component depends on the time of the day to re�ect the
data published by the City of Edinburgh, obtained from the bike counter (Fig. �). We used a sum
of Gaussian functions to represent these tra�c changes throughout the day, which is a reasonable
�t to the available data.

�e de�nitions of the components are shown in Fig. � and �. �e de�nition of the environment,
evaluation context, and the collective of the Carma model are shown in Fig. �. In particular, the
evolution rule involves a number of functions that are described in the next subsections and shown
in Fig. �, �, �, �.

6.1.1 Spawning new Pedestrians.

Spawn rate. �e rate at which new Pedestrians arrive into the system depends on the current
time of the day, to re�ect the changing intensity of tra�c. �e data from the city bike counter
shows a trend of increasing bike tra�c in the rush hours (Fig. �). �e average bike tra�c increases
in one direction in the morning hours, and in the opposite direction in the late a�ernoon, this
presumably being the result of people travelling to and from the city centre for work. It also shows
a small increase around midday (lunchtime). In our model we used a tra�c intensity pa�ern loosely
based on these observations. �e function we used is a sum of three Gaussian functions having
the standard deviation of 1 hour and the means at 9:00 am, 12:30 pm, and 5:00 pm, respectively.
�e reason for using this simpli�ed function of tra�c intensity for the �rst version of the model,
over one that �t more accurately to the data, is that it made the in�uence of the tra�c intensity on
the results of the simulation more visible and easy to control. �e spawn rate formula is shown in
Fig. �.

Ratespawn(t) = (N(t , µ1, σ
2) +N(t , µ2, σ

2) +N(t , µ3, σ
2) + 0.1) ·C ,

where: N(t , µ, σ 2) = 1
σ
√

2πσ 2 e
(t−µ )
2σ 2 ,

σ = 60min, µ1 = 540min, µ2 = 750min, µ3 = 1020min, C = 400.0.

Fig. 11. The rate at which new components arrive in the system depends on the hour of the day. The three

values of the mean of the gaussian function µ1,µ2, µ3, represent three time points of the day: 9 am, 12.30

am and 5 pm, respectively, in the unit of minutes. σ is the standard deviation of the Gaussian function with

mean µi . C is a dimensionless scaling factor, introduced in order to obtain a realistic spawn rate value.
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Spawn locations. Examination of the data from the city bike counter suggests that new bikes
arriving into the system should not be uniformly distributed at all possible entry points, at all
times of the day. In the morning rush hours, cyclists are much more likely to be travelling in
one direction and in the a�ernoon rush hour, the opposite. �e bike counter, from which this
data has been obtained, is located in the north part of �e Middle Meadow Walk, the widest path
through the Meadows, connecting the south-most and the north-most parts of the park (see Fig. �).
�ere is no available data about the tra�c changes on all of the other paths in the park, however
based on everyday observations, we have assumed the two extreme points of �e Middle Meadow
Walk to be the most likely entry points to the system during the rush hours. In our model, every
time a new Pedestrian component is introduced to the system, it is assigned a start and a goal
location. New Pedestrian components are instantiated as a result of the Generator component
performing the spawn

? action, which uses the start and goal location values saved in the store of
the Generator component. At each location there is a PathNode component, which a�empts to
perform two actions assignGoal

? and assignStart
?, in order to communicate with the Generator

component and update the values of the start and goal location in its store with the PathNode’s
location. �e probability of receiving this message (µp , see section �) can vary for each location,
and the resulting value of start or goal location is determined by the the PathNode component that
manages to communicate with the Generator component �rst. As a result, multiple PathNodes
compete with one another in order to decide which one will become the start or the goal location
of the new Pedestrian instance. �e probability of performing a particular broadcast output action
in Carma is computed using a propensity function associated with each communication candidate.
�e propensity function can be parametrized using values from the store of the sender and the
receiver as well as on the global store of the system. In the presented model we used the propensity
functions shown in Fig. �. All of the possible entry locations nloc ∈ [0, 2, 3, 5, 6, 7, 8, 20] (see Fig. �)
have the propensity value ≥ 1.0. Other locations have the propensity value of 0.0, which means
that they are never chosen as the start or goal location. Two particular locations, loc0 and loc20,
situated at the extreme points of �e Middle Meadow Walk have a propensity that varies over the
time of the day, as shown in Fig. �. In this way, when spawning a Pedestrian, the propensity of

Prдoal (nloc , t) =


N(t , µ1, σ

2) ·C + 1.0 if nloc = 0,
N(t , µ3, σ

2) ·C + 1.0 if nloc = 20,
1.0 if nloc ∈ [2, 3, 5, 6, 7, 8],
0.0 otherwise.

Prstar t (nloc , t) =


N(t , µ1, σ

2) ·C + 1.0 if nloc = 20,
N(t , µ3, σ

2) ·C + 1.0 if nloc = 0,
1.0 if nloc ∈ [2, 3, 5, 6, 7, 8],
0.0 otherwise.

where: N(t , µ, σ 2) = 1
σ
√

2πσ 2 e
(t−µ )
2σ 2 ,

σ = 60min, µ1 = 540min, µ3 = 1020min, C = 10.0.

Fig. 12. The two values of the mean of the Gaussian function µ1, µ3, represent two time points of the day: 9

am and 5 pm, respectively, in the unit of minutes. σ is the standard deviation of the Gaussian function. C is a

dimensionless scaling factor, introduced in order to obtain a realistic propensity value.
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RC

RM RA nil

choose
?

move
?

arrive

continue
?

Fig. 13. The states of the process of the Pedestrian component. RC is ReadyToChoose, RM is ReadyToMove,

RA is ReadyToArrive, and reaching the nil state is equivalent to the component being removed from the

system.

Ratemove(nfrom,nto,Trfc(nto,nfrom)) =


1

Dstn(nfrom,nto)
if Trfc(nto,nfrom) = 0

1
Dstn(nfrom,nto) · Trfc(nto,nfrom)

otherwise.

where:
Trfc(nto,nfrom) is the number of pedestrians travelling from nto to nfrom

(�ese are travelling in the opposite direction to the pedestrian evaluating this function),
Dstn(nfrom,nto) is the distance between nto and nfrom.

Fig. 14. The rate at which components move from current to the next node depends on the tra�ic on the

edge between the current and the next node, in the opposite direction. This model only reflects the case

where only the people travelling in the opposite direction slow the pedestrian down.

assigning location loc0 (most-north) as the start location reaches its peak at 5:00 pm and as the goal
location - at 9:00 am. For location loc20 (most-south) this trend is reversed, i.e., the propensity of it
being assigned as the start location of a new Pedestrian is highest at 9:00 am and as the goal location
- at 5:00 pm. We used the Gaussian function (see Fig. �) to model this increase in propensity.

6.1.2 Movement and routing. A Pedestrian component is always trying to reach its goal location
(see Fig. �). In order to do that, it performs a sequence of actions, which changes its state in the
cycle shown in Fig. �. �e behaviour of a Pedestrian component in the Meadows model is very
similar to that of the Pedestrian component in the basic model (see Fig. �). A path is chosen a�er
which the move takes place. �ere is also a check to see if the �nal destination has been reached.
When the Pedestrian component is in the ReadyToChoose state, it must perform the choose

? action,
which will determine the next node which the component will change its current location to.

In a fashion similar to the way the start and goal locations are chosen before a new Pedestrian is
created, multiple PathNode components compete with each other to decide which one of them is
going to synchronize with the Pedestrian component on the choose

? action, determining the next
location for the Pedestrian to move to.

�e propensity of synchronising with a particular PathNode on the choose
? action is given

by the function shown in Fig. �. �e propensity is calculated for each potential next node. �is
formula was chosen in order to model intention of the Pedestrian component to move towards
its goal node, while at the same time avoiding routes with heavy congestion. Let us �rst consider
the case when the value of tra�c is 0 (there are not any other Pedestrian components travelling
along the same connection). In that case, the propensity depends only on the value of the Dstn
factor. Dstnd is a measure of how much closer the Pedestrian will get to its goal node, by moving
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Pr�oose(nnext ,ncurr ,nдoal ) =



Dstnd
Trfc(nnext ,ncurr )

if Trfc(nnext ,ncurr ) > 0

and Dstnd ≥ 0,

−1
Dstnd · Trfc(nnext ,ncurr )

if Trfc(nnext ,ncurr ) > 0

and Dstnd < 0,

−1
Dstnd

if Trfc(nnext ,ncurr ) = 0

and Dstnd < 0,

Dstnd if Trfc(nnext ,ncurr ) = 0
and Dstnd ≥ 0.

where:
ncurr ,nдoal ,nnext are the current, goal and (prospective) new location of a Pedestrian component,

Dstnd = Dstn(ncurr ,nдoal ) − Dstn(nnext ,nдoal ),
Dstn(n1,n2) is the distance between two given nodes,

Trfc(nnext ,ncurr ) is the number of pedestrians whose current
location is nnext and next location is ncurr .

Fig. 15. The propensity of choosing a particular node as the next location.

to the next node. It is computed by calculating the di�erence between the Pedestrian’s distance to
its goal from the current node and from the next potential node. If the value of Dstnd is positive,
the current node is further from the goal node than the next potential node - and so, moving to the
next node is desired since it brings the Pedestrian closer to its goal. �e propensity value of such a
move is proportional to the potential decrease in distance from the goal, represented by Dstnd . If
the value of Dstnd is negative, moving to the next potential node takes the Pedestrian further away
from its goal node, and so the propensity value associated with this move is inversely proportional
to the value of Dstnd .

�e same relationship between the value of Dstnd and of propensity is also used in the case
when there is a non-zero tra�c on the connection to the potential node. �e propensity of choosing
a node is always inversely proportional to the measured tra�c.

�e graph structure of the network of paths is incorporated into the system using a di�erent
approach than in the basic model. Rather than invoking the ExistPath function in order to
determine whether two nodes are connected by an edge or not, a special expression from the space
syntax available in the newest version of CaSL is used. �e locA in locB .post expression evaluates
to a boolean value which is true if the locA location is in the post set of the locB location, and false
otherwise.

�e predicate of the choose
? action uses the above syntax to ensure that there exists an edge

from the Pedestrian component to the PathNode component which the Pedestrian is a�empting to
synchronize with.

If there is more than one PathNode in the postset of the Pedestrian component location, a given
PathNode is more likely to be chosen over another if it is closer to the goal node of the Pedestrian,
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Store of Pedestrian component:

startL start location
goalL goal location
currL current location
nextL next location
prevL previous location
stime time of arrival

Behaviour of Pedestrian component:

Choose def
= choose

?[` in my.currL.post](`){my.nextL← `}.Move

Move def
= move

?[⊥]〈my.currL,my.nextL〉{my.prevL← my.currL,my.currL← my.nextL}.Arrive
Arrive def

= [my.currL = my.goalL]arrive[>]〈my.goalL,my.stime〉.kill+
continue?[⊥]〈〉.Choose

Initial state of Pedestrian component: Arrive

Store of Generator component:

startL start location
goalL goal location

Behaviour of Generator component:

AssignStart def
= assignStart

?[>](start){my.startL← start}.AssignGoal
AssignGoal def

= assignGoal
?[>](goal){my.goalL← goal}.Spawn

Spawn def
= spawn

?[⊥]〈〉.AssignStart

Initial state of Generator component: AssignStart

Fig. 16. The Pedestrian and Generator components of the Meadows model

and less likely to be chosen if the edge between the current location of the Pedestrian leading to
that node has more tra�c than the edge leading to the other node.

�is introduces a form of routing - Pedestrians are more likely to choose paths with less tra�c.
�e distances between nodes are pre-computed and are hard-coded into the model in the form

of a globally accessible two-dimensional look-up table. When the Pedestrian component arrives in
its goal node, it is removed from the system.

Moving from one node to another is a Carma action. �e rate of the action was chosen to re�ect
the delay caused by the distance between two nodes, as well as the congestion on the path leading
from one node to another (see Fig.�). �e value of the distance as well as the value of the measured
tra�c are inversely proportional to the resulting rate of the movement action. �is means that, for
example, on average a Pedestrian will traverse two 50 m long paths in the same time as it would
traverse a single 100 m long path.
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Store of PathNode component:

nodeL location of node
arrived number of pedestrians that have arrived at this node as a goal

timeSum sum of times taken by pedestrians arriving at this node as a goal

Behaviour of PathNode component:

Advert def
= choose

?[>]〈my.nodeL〉.Advert

Arrive def
= arrive

?[my.nodeL = arrL](arrL, startTime)
{my.arrived ← my.arrived + 1, timeSum := timeSum + (now − startTime)}.Arrive

StartAssign def
= assignStart

?[⊥]〈my.nodeL〉.StartAssign

GoalAssign def
= assignGoal

?[⊥]〈my.nodeL〉.GoalAssign

Initial state of PathNode component: Advert | Arrival | StartAssign | GoalAssign

Fig. 17. The PathNode component of the Meadows model

6.2 Results

We simulated the model for the following two cases:
(1) all the lanes are available to the Pedestrians,
(2) one of the segments (the middle segment of the Middle Meadow Walk, the edge between

nodes 1 and 4) is closed, for example because of having been �ooded.
�e scenarios described above are two possible example situations to explore. If required, the

model can be easily adapted to di�erent path closure situations.
�e results presented in Fig. � are dependant on the shape of the network of paths as well as the

constants in the formulas. At any node a Pedestrian has to make a decision, which in our system is
modelled by the stochastic nature of Carma actions. �e outcome depends on how congested the
potential lanes are, as well as on how optimal the next node is in terms of its distance from the
goal location. Varying the weights of these two factors can have an in�uence on the behaviour in
the system.

For each of the two scenarios we obtained snapshots of the state of the systems at four times of
the day: t ∈ [9, 13, 17, 21] (hours). �e snapshots presented in Fig. �–� show average amounts
of pedestrians on graph edges measured in the time period (t − δ , t + δ ), where δ = 1hour. �e
two colours of arrows denote two opposite directions of the movement of pedestrians. �e length
of an arrow represents the proportion of pedestrians travelling in one direction and pedestrians
travelling in the other direction to the total number of pedestrians on that edge. �e total number
of pedestrians on a given edge is represented by the arrow’s thickness.

�e result show that in the initial scenario, a large portion of pedestrians choose to travel along
the Middle Meadow Walk. In the second scenario, the closure of the central segment of �e Middle
Meadow Walk forces pedestrians to choose a di�erent path instead. �is increases the tra�c on the
nearby lanes, however the lanes that are farther away are not signi�cantly a�ected, as the tra�c
disperses through the network more evenly a�er a number of movement steps.
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Space:

Nodes set of coordinate pairs representing nodes in the graph
Connections set of node pairs representing edges in the graph
Distances a two-dimensional lookup table of pre-computed distances between pairs of nodes

Measures:

tra�c(n1,n2) the number of pedestrians whose current location is n1 and next location is n2
arrived(n) the number of pedestrians who �nished their route at the node n

Evaluation context:

µp (γs ,γr ,α) =



Prgoal
(
γs (nodeL), now

)
if α = assignGoal

?

Prstart
(
γs (nodeL), now

)
if α = assignStart

?

Pr�oose
(
γs (nodeL),γr (currL),γr (nextL).дoal ,

tra�c(γr (nextL),γr (currL)
)

if α = choose
?

1 otherwise

µw (γs ,γr ,α) = 1

µr (γs ,α) =


Ratespawn

(
now

)
if α = spawn

?

Ratemove
(
γs (currL),γs (nextL),

tra�c(γs (nextL),γs (currL)
)

if α = choose
?

λfast otherwise

µu (γs ,α) =


∅,

(
Pedestrian, {startL← γs (startL), goalL← γs (goalL), stime← now}

)
if α = spawn

?{}
, 0 otherwise

Initial collective:

Meadows def
=

(
Generator, ∅

)
‖

(
PathNode, { nodeL 7→ Nodes1 }

)
‖ . . . ‖

(
PathNode, { nodeL 7→ Nodesp }

)
Fig. 18. Environment and evaluation context of the Meadows model

Developing and analysing this model illustrates the usage of the Carma language and its so�ware
suite for the purpose of developing models based on real data. At present, the only data on the
Meadows city park available for analysis is the geographic data from the Google Maps API and the
bike count data from the City Council, measured at a single point in the park. If real world data
measuring pedestrian tra�c at a number of locations around the park becomes available, it may be
used to parametrise the presented model, which would allow us to evaluate the predictive power of
the model.
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Fig. 19. Scenario (1) at time t = 9 Fig. 20. Scenario (2) at time t = 9

Fig. 21. Scenario (1) at time t = 13 Fig. 22. Scenario (2) at time t = 13

Fig. 23. Scenario (1) at time t = 17 Fig. 24. Scenario (2) at time t = 17

Fig. 25. Scenario (1) at time t = 21 Fig. 26. Scenario (2) at time t = 21
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7 CONCLUSIONS

In this paper, we have formulated a mesoscopic model of a system of pedestrian movement as a
collective adaptive system where the actions of some participants within the system are in�uenced
by the actions (or even the presence) of others. We approached the creation of a more detailed and
more realistic model by building on the experience which we gained in creating a basic model with
simple and regular symmetric structure. �e insights obtained from this basic model directed our
a�ention to likely issues with the more realistic model, and deepened our understanding of the
e�ects of local decisions on global behaviour.

�e degree of self-awareness in the system gained through the (local) recognition and a�empted
avoidance of congestion in the network by the participants within the system itself makes the
problem di�erent in character from a traditional network-�ow problem where data is routed
through a network without even local knowledge of congestion ahead. Adaptive systems naturally
give rise to phenomena such as these where the decisions of one participant are in�uenced by the
decisions of another seemingly entirely independent participant and the longer-term consequences
of a decision are usually infeasible to predict at the time of making the decision, and it may even
be di�cult to understand the path from decision to consequence in retrospect.

�e suite of experiments which we carried out on the models presented here, and the many
variants of these which were created in the model development process, provided us with a
convincing demonstration of the applicability of the Carma modelling tools to a mesoscopic
modelling problem and evidence of the practical e�ectiveness of the Carma process calculus as
an intellectual vehicle for expressing intelligent density-dependent movement across an arbitrary
network topology.

We made extensive use of the CaSL language, which enriches the core Carma process calculus
with additional language features thereby making it possible to express large models cleanly by
using data types and data structures to represent structured information in the model, allowing
the model to be statically checked for model coherence at compile-time. �is eliminated a ra�
of potential modelling errors, streamlining the process of model creation. CaSL additionally
supports arbitrary function de�nitions for the propensity functions which give rise to probability
distributions over model actions, allowing us to model user behaviour accurately; and general rate
functions, allowing us to model timing behaviour accurately. In addition, it provides spatial data
structures, allowing us to represent physical separation and distance accurately.

Taken as a modelling exercise, we have found our creation of a model of pedestrian movement
on the Meadows to be a valuable one. �e consequences of network separation and path loss
are not easy to see and the results from our model analysis show the surprising e�ects of even
small changes to the network structure. Our development of a detailed spatial model of the
system, parameterised by up-to-date user measurement data, gives us a precise formal means of
investigating even compound changes to the network, and presenting the results of the analysis
back to system stakeholders in a form which will enable them to take well-informed planning
decisions, supported by objective analysis evidence.
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