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ABSTRACT7

This study revisits the stability of hydromechanical gates for upstreamwater surface regulation, also known asAMIL8

gates. AMIL gates are used in irrigation canals, where they are often installed in series. From the regulation perspective,9

instabilities are undesired, as they generate waves and fluctuations in the discharge. We describe a mathematical model10

for an AMIL gate as a nonlinear dynamical system, which permits to analyse the dynamic interaction between the11

local water level and the gate position. The feedback effect of the gate on the water level is introduced by considering12

a storage volume of length l. In the derived model, waves are simplified to fluctuations of the flat water surface of13

the storage volume. Although previous studies used the same model, none has clarified the sensitivity of the model14

to the parameter l. The role of this parameter is investigated and it is calibrated with experimental measurements.15

The precision of the regulation is described by the decrement, the range of the water level around the target level.16

Based on the mathematical model, a relationship for calibration of the gate and precision of regulation is presented.17

The subsequent stability analysis of the dynamical system focuses on five control parameters and sheds light on their18

influence on the gate behaviour. Hopf bifurcations are identified, which separate stable equilibrium solutions from19

stable periodic solutions. Further work might consider the implications of the periodic solutions on gates that work in20

series, as well as envision the innovative use of such gates outside of the domain of irrigation canals to obtain dynamic21

environmental flows in hydropower systems.22

INTRODUCTION23

Hydromechanical gates for upstream water surface regulation, also known as AMIL gates, are used in gravity24

irrigation systems to control water levels upstream of their location for varying flow rates in the main canal (Rogers25

and Goussard 1998; Ramirez-Luna 1997; Montañés 2005; GEC Alsthom 1992). This flow rate may vary if the inflow26

upstream changes or as water is removed via lateral off-takes from the main canal according to a varying demand.27

AMIL gates are a specific type of radial gates, used as automatic control structures in order to cope with these28

variations in flow rate by opening or closing in response to the current water level. Their objective is to maintain the29
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water level in a certain range around their trunnion axis. This range is referred to as decrement (Ramirez-Luna 1997;30

GEC Alsthom 1992) and can be related to the gate properties (calibration of mass and centre of gravity).31

A photo and an illustration of an AMIL gate are shown in figures 1 and 2. In addition to typical radial gates, they32

are equipped with a toroidal float attached to the upstream side of the gate leaf, counterweights on the downstream33

side, and a damping device to reduce oscillations. As the gate is operated only by the water force, AMIL gates are34

counted among the hydromechanical gates (Cassan et al. 2011).35

Through the interaction of the gate and the local water level, oscillations are possible and are indeed observed,36

particularly when the damping element (see ahead) is worn out (Ramirez-Luna 1997; Montañés 2005) (and Bernhard,37

2015, unpublished; available by contacting the authors). Fig. 1 and two videos in the supplementary material show38

an aged experimental AMIL gate at École Polytechnique Fédérale de Lausanne in Switzerland (EPFL) that exhibits an39

oscillating behaviour. This behaviour was triggered by operation of the lateral off-take structures in the foreground of40

the photo. We can see a wave propagating in the upstream direction. Waves, and thus oscillating behaviour in general,41

are undesired as they are likely to affect the discharges in the main canal and the lateral off-takes.42

A number of other authors have investigated instabilities related to gate operation in irrigation canals in general or43

more specifically instabilities of AMIL gates.44

Litrico et al. (2007) developed a general method for stability analysis of automatic gates in open-channels. The45

Saint-Venant equations (1D shallow water equations) for the open-channel dynamics were combined with a model of46

the automatic gate in order to derive the governing equations. The method was based on linearisation and Laplace47

transform of these governing equations. To simplify, only a static relationship between the gate opening and the water48

level was assumed, i.e. the gate is in equilibrium with the water level at each instant. This was based on the assumption49

that gate dynamics are negligible in front of the pools dynamics. Litrico and Fromion (2009) used a similar approach50

also throughout (Litrico and Fromion 2009).51

Stability of AMIL gates was specifically investigated in (Corriga et al. 1977; Corriga et al. 1980; Ramirez-Luna52

1997). Corriga et al. (1977) investigated an AMIL gate connected to a short, level pool and considered a dynamic53

interaction between the gate position and the water level. A calibration of the gate, that results in zero total decrement,54

was implicitly assumed. The model was linearised and the step responses of the linear and the nonlinear systems were55

compared. By means of the Laplace transform, a transfer function of the linear system was derived. Instabilities were56

discovered and their existence was related to the value of the damping parameter. However, no study on the influence57

of the choice of the level pool length was done. This seems to be an important problem to address, given that the level58

pool is a simplifying assumption based on a model-related – not problem related – parameter.59

Corriga et al. (1980) considered two long canals connected by an AMIL gate. The Saint-Venant equations were60

used for the canals and the gate was modelled with an adaptation of the model developed in (Corriga et al. 1977).61

The adaptation included the assumption of a static gate. The system was identified to be unconditionally stable for62
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subcritical flows.63

Ramirez-Luna (1997) applied the approach that was later described in (Litrico et al. 2007) to three different64

hydromechanical gate types including AMIL gates. The findings for AMIL gates were also reported in (Ramirez-Luna65

et al. 1998). The angular moment exerted by the water on the gate was based on (Corriga et al. 1977), but it was refined66

by taking into account the decrement. Canal hydrodynamics were then modelled using the Saint-Venant equations.67

When connected to a canal, the gates were also assumed to be in a static equilibrium, based on the different time68

scales of the gates and canals considered in the study. Coupling of a single canal to an AMIL gate was determined69

to be unconditionally stable, while coupling of multiple canal reaches with AMIL gates were identified to be possibly70

unstable. For the latter case, a stability criterion was developed. These instabilities, however, were not attributed to the71

coupling of a canal reach to an AMIL gate, but rather to the interaction between canal reaches through waves.72

Above overview shows that in most of the previous studies (apart from (Corriga et al. 1977)) the gate was assumed73

to be in static equilibrium with the current water level. The time scale of the gate dynamics were assumed to be much74

shorter than the dynamics of canal reaches in typical irrigation networks. The gate dynamics were thus neglected and75

the gate’s purpose consisted only in determining the boundary conditions for the water level and the discharge based76

on the static equilibrium law (illustrated further on by Fig. 4).77

However, observed wave formation through gate oscillation suggest that, on a local spatial scale of the order of the78

generated surface perturbations, the dynamics of a gate and a canal can be of similar time scales. (Wave formation79

was observed for example at an experimental gate at EPFL and is shown in Fig. 1 and by two videos provided as80

supplementary material.) A dynamic gate-water level relation seems required in order to characterise the dynamics81

of the instability and to envision the use of such gates outside of irrigation canals, e.g. to generate non-proportional82

releases at water intakes (Razurel et al. 2015; Gorla and Perona 2013). We adopt an approach similar to the one in83

(Corriga et al. 1977), but differing in some basic aspects. We use a model that allows for a decrement (by considering84

an arbitrary position for the centre of gravity as in (Ramirez-Luna 1997)) and also distinguish between submerged and85

free flowing discharge of the gate. The gate response to perturbations depends on various gate parameters and can be86

investigated with a stability analysis. We investigate systematically the influence of the level pool length l as well as87

the other model parameters (damping, discharge, and decrement). Lyapunov and asymptotic stability theory is used88

in order to determine the parameter domains in which instabilities might occur. Besides using linearised methods we89

attempt a characterisation of the nonlinear system.90

This article can be outlined as follows. In section 2 the technical description and the dimensionless gate parameters91

are presented. Then, in section 3we derive themathematical model describing the dynamics and expose the relationship92

between the decrement and the calibration, that can be attained by altering the position of the centre of gravity using93

the counterweights. In section 4 we then assess the stability of the derived system with respect to various control94

parameters. In section 5 the model is calibrated to two observed dynamic behaviours of the EPFL gate.95
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TECHNICAL GATE DESCRIPTION AND DIMENSIONLESS GEOMETRY96

An AMIL gate in a trapezoidal canal can be characterised by the geometrical quantities shown in Fig. 2.97

Gate dimensions are described by: gate axis height Ya; gate radius R; float radius r; bottom width of gate leaf b;98

top width of gate leaf D; width of float bF .99

The float is of constant width and thickness and corresponds thus to a toroid with a rectangular cross section of side100

lengths bF and (r −R). The width of the float is assumed to be a fraction of the canal width at the bottom (bF/b = 0.8).101

The gate position is given by θ, which is defined as the angle between the horizontal line and the lower part of the102

float. Other angles are: extension of gate leaf below float ωF ; position of centre of gravity in polar coordinates ωCG103

and rCG . The position of the closed gate can be expressed using above quantities as104

θc = arcsin(Ya/R) − ωF . (1)105

The canal is characterised by: bottom width b; side slope of trapezoidal canal wall α.106

Vertical heights are defined as: upstream, controlledwater levelY1, which is the target of the regulation; downstream107

water level Y3; vertical opening of gate Yg (not shown). The gate opening can be expressed as108

Yg = Ya − R sin(θ + ωF ). (2)109

Further quantities are needed to define the model that we develop in section 3. For the conservation of angular110

momentum we will refer to: angular damping coefficient cω; moment of inertia of movable parts of the gate about the111

gate axis I. We also consider a volume of water in front of the gate of length l. In- and outflow of this volume are112

designated by Qi and Qg. To express the gate discharge Qg, a discharge coefficient µ is used, combining the effect of113

the contraction and velocity coefficient (Cc and Cv). Note that we neglect the slope of the canal bottom at the gate.114

Brochures by gate manufacturers indicate 21 typical gate sizes with varying geometries (e.g. see (GEC Alsthom115

1992)). These 21 sizes can be grouped into four classes with distinct dimensionless characteristics. By using the top116

width of the gate leaf D as scaling, we define dimensionless length parameters as follows117

Ỹa =
Ya
D

b̃ =
b
D

R̃ =
R
D

r̃ =
r
D
. (3)118

The dimensionless gate parameters of these typical sizes are shown in Fig. 3 and the group averages are shown119

in table 1. Table 1 shows additionally the values of the gate used in (Corriga et al. 1977).To facilitate comparison120

we base our stability investigations on the same gate. (The gate in (Corriga et al. 1977) is based on D = 3.95m,121

I = 4500Nms2/rad, cω = 20000Nms/rad, and l = 1m.)122

4



MATHEMATICAL MODELLING123

AMIL Gate as a Dynamical System124

In the following, the dynamical system description of an AMIL gate in a trapezoidal canal is derived.125

Gate Movement126

To determine the gate movement, we follow closely Corriga et al. (1977, Ramirez-Luna (1997) and consider the127

moments on the gate acting about the gate axis128

I
d2θ

dt2 + cω
dθ
dt
= Mw (θ,Y1) + Mg (θ). (4)129

We refer with Mw respectively Mg to the moments exerted by the water respectively by gravity on the gate (the sign is130

defined by the direction of θ, i.e positive sign of M in the direction of closing gate). As third moment, we consider the131

effect of the angular damping coefficient cω .132

The moment by gravity Mg depends on the position of the centre of gravity (ωCG, rCG ) and the mass m of the133

movable parts of the gate. Referring to Fig. 2 we can write134

Mg (θ) = −mrCGg cos(θ + ωCG ). (5)135

To compute the moment due to the water, we simplify by assuming a hydrostatic pressure distribution along the136

gate leaf based on the water level Y1. In doing so we follow (Corriga et al. 1977; Ramirez-Luna 1997). Preliminary137

investigations (Bernhard, 2015, unpublished; available by contacting the authors) compared the hydrostatic model138

to a model based on conservation of momentum over a control volume. The simpler hydrostatic model was able to139

reproduce more faithfully measured equilibrium positions of the EPFL gate as well as Computational Fluid Dynamics140

(CFD) simulations for three different gate positions. Hence, we neglect non-hydrostatic effects. As AMIL gates are141

radial gates and have a radial float with a curvature centred in the gate axis, the water pressure on the gate leaf and142

curved float surface does not exert a moment about the gate axis. We furthermore assume that any water mass on the143

downstream side of the gate doesn’t exert any moment either. Thus, it is sufficient to consider only the bottom part of144

the float for the moment due to the water. We can express the hydrostatic pressure p as a function of θ and Y1 and the145

distance r̂ to the gate axis146

p(r̂, θ,Y1) = ρg
(
Y1 −

(
Ya − sin(θ)r̂

))
, (6)147

and integrate the moment about the gate axis over the float bottom. This leads to the expression for the moment exerted
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by the water (7)

Mw (θ,Y1) = −bF

∫ r

R

r̂ p(r̂, θ) dr̂ (7)

= −bF ρg
(

r2 − R2

2
(Y1 − Ya) +

r3 − R3

3
sin(θ)

)
. (8)

The angular damping coefficient is assumed to be constant, although the elongation of the dashpot used for damping148

depends on the current gate position. The reader might refer to (Ramirez-Luna 1997), where this nonlinear effect is149

further treated. To include it, additional parameters describing the exact attachment configuration would need to be150

defined. However, when using the parameters given by (Ramirez-Luna 1997), the nonlinear effect remains small as151

shown recently (Bernhard, 2015, unpublished; available by contacting the authors) and it will therefore be neglected152

in this study by using a constant angular damping coefficient.153

Water Level Change154

Modelling a level pool allows dynamic interaction between the gate position and the water level. This level pool155

acts as a finite control volume for mass conservation of an incompressible fluid (Munson et al. 2009). It allows to156

transform the effect of a change in the gate position via a change in discharge into a change in the water level. Note that157

a level pool represents a simplification of reality and that the length we choose for this reservoir is a model parameter158

that can be linked to reality for example through calibration.159

Considering a length l, the level pool leads to a volume160

V = blY1 + tan(α)lY 2
1 . (9)161

Note that only the volume in front of the gate is considered (between the first two dashed, red lines in Fig. 2) and that162

the volume below the gate is approximated with a constant value regardless of the gate position. Change in the level163

pool volume is related to the in- and outflow by a simple reservoir volume balance equation164

dV
dt
= Qi −Qg, (10)165

or, in terms of water level Y1 by using (9)166

dY1
dt
=

1
l (b + 2 tan(α)Y1)

(Qi −Qg). (11)167
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Discharge Through the Gate168

The flow rate or discharge through the gate needs to be expressed as a function of Y1, θ, and Y3. We distinguish169

between free and submerged flow depending on the downstream water depth. In case of free flow we replace Y3 with170

CcYg, which represents the depth of the vena contracta.171

The discharge law and coefficients we use are based on (Corriga et al. 1977). The law computes the total discharge172

as a sum of an orifice flow and free weir discharge by considering two distinct areas σori f ice and σ f ree. These areas173

are shown for the free flowing gate in Fig. 2 and they represent the unobstructed areas between the canal bottom and the174

downstream depth Y3 (σori f ice), respectively between the downstream depth Y3 and the upstream depth Y1 (σ f ree). For175

simplicity, the same correction factor µ is used for both these discharges, similar to (Corriga et al. 1977). To express176

the discharge over each area we make the common assumptions of horizontal flow, atmospheric pressure within the177

weir nappe, as well as uniform and small approaching velocity upstream of the gate (Munson et al. 2009). We write178

the discharge as179

Q =
∫ Y1

0
u( ŷ)b( ŷ)dŷ. (12)180

To express the discharges for the two distinct areas with the problem parameters, we need to distinguish between the181

cases Y3 > Yg (submerged) and Y3 < Yg (e.g. free flow), where Yg = Yg (θ) refers to the gate opening from equation (2).182

For Y3 < Yg (e.g. for free flow Y3 = CcYg) we decompose the total discharge in an orifice part: Q1, a free weir part183

through the area below Yg: Q2, and a free weir part through the area on the side of the gate: Q3. This leads to184

Qg = Qg, f ree = Q1 +Q2 +Q3, (13)185

where

Q1 = µ
√

2g (Y3(b + tan(α)Y3))
√

Y1 − Y3 (14a)

Q2 = µ
√

2g[ 2
3 b((Y1 − Y3)3/2 − (Y1 − Yg)3/2)

+ 4
15 tan(α)

(
(3Y3 + 2Y1)(Y1 − Y3)3/2

− (3Yg + 2Y1)(Y1 − Yg)3/2
)
]

(14b)

Q3 = µ
√

2g
(

2
32 tan(α)Yg (Y1 − Yg)

) √
Y1 − Yg . (14c)

For Y3 > Yg (submerged case) we follow (Corriga et al. 1977) and write186

Qg = Qg,submerged = µ
√

2g(σori f ice +
2
3σ f ree)

√
Y1 − Y3, (15)187
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where

σori f ice = bYg + Y 2
g tan(α) + 2Yg tan(α)(Y3 − Yg) (16a)

σ f ree = 2Yg tan(α)(Y1 − Y3). (16b)

Corriga et al. (1977) modelled submerged conditions with a varying downstream depth, based on the discharge188

itself. The applied formulation does not always yield physical solutions, especially for low discharges at almost closed189

gate. For submerged conditions, we impose therefore a fixed downstream depth, independent from the flow rate, and190

consider the free flowing gate separately.191

Next, we normalise the input discharge by introducing a hypothetical nominal discharge Qn as a scaling192

Q′i =
Qi

Qn
. (17)193

For both, free and submerged gates, we define the nominal discharge as the free discharge at completely open gate with

the water level at axis height, i.e.

Qn B Qg, f ree (θ = 0,Y1 = Ya,Y3 = CcYg). (18)

Combined system and nondimensionalisation194

Combining the derived models for the variation of the gate position (4) and water level (11), we can derive a

dynamical system governed by the following basic equations

d2θ

dt2 = −
cω
I

dθ
dt

+
1
I

[
− bF ρg

(
r2 − R2

2
(Y1 − Ya) +

r3 − R3

3
sin(θ)

)
− mrCGg cos(θ + ωCG )

]

(19a)

dY1
dt
=

1
l (b + 2 tan(α)Y1)

[
QnQ′i −Qg (θ,Y1,Y3)

]
. (19b)

With basic algebraic manipulations we reformulate (19) as

d2θ

dt2 = c1
dθ
dt
+ c2(Y1 − Ya) + c3 cos(θ) + c4 sin(θ) [rad/s2] (20a)

dY1
dt
= c6

1
b + 2 tan(α)Y1

[
QnQ′i −Qg (θ,Y1,Y3)

]
, [m/s] (20b)

where the definitions of the constants c1 to c6 are reported in appendix I.195
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We now derive the dimensionless form of the basic equations (20) by introducing a length scale Λ and a time scale

τ, to scale all the lengths (Y, l, R, r,...) and time

Y = ΛỸ t = τt̃ .

Based on the geometrical normalisation it is straightforward to choose Λ = D. We assume a time scale τ =
√

D
g .

Equations (20) can then be reformulated as

d2θ

dt̃2 = C1
dθ
dt̃
+ C2(Ỹ1 − Ỹa) + C3 cos(θ) + C4 sin(θ) [rad2] (21a)

dỸ1
dt̃
= C6

QnQ′i −Qg (θ, Ỹ1, Ỹ3)

b̃ + 2 tan(α)Ỹ1
, [−] (21b)

where the constants C1 to C6 in equations (21) are given in appendix I.196

The system designated by equations (21) can be rewritten as three first-order equations

d
dt̃
θ1 = θ2 (22a)

d
dt̃
θ2 = C1θ2 + C2(Ỹ1 − Ỹa) + C3 cos(θ1) + C4 sin(θ1) (22b)

d
dt̃

Ỹ1 =
C6

b̃ + 2 tan(α)Ỹ1
(QnQ′i (t̃) −Qg (θ1, Ỹ1, Ỹ3(t̃)), (22c)

which is a system of the form197

d
dt̃

x = F(x, t̃), (23)198

with states x = (θ1, θ2, Ỹ1)T B (θ, d
dt̃ θ, Ỹ1)T .199

Equations (22) characterise a three-dimensional, nonautonomous, nonlinear dynamical system. The inputs to the200

system are Q′i (t̃) and Ỹ3(t̃) (if submerged). By integrating system (22) it is possible to simulate a transient response to201

time dependent inputs.202

However, most of the stability analysis in this study is based on the assumption that the inputs are constant in time.203

In that case, the inputs can be regarded as parameters of a completely autonomous system204

d
dt̃

x = F(x). (24)205

Based on equation (24) we define an equilibrium point x∗ such that F(x∗) = 0.206
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Calibration of the Gate and Control Parameters207

In the following, we show how the mass of the gate and the position of the centre of gravity can be related to the208

decrement in Ỹ1.209

We define the decrement as the difference in the equilibrium state Ỹ1 between completely closed gate θ1 = θc210

(Q′i = 0) and completely open gate θ1 = 0. Fig. 4 shows the equilibrium states Ỹ ∗1 vs. θ∗1 for various Q′i . The figure211

indicates the decomposition of the total decrement into a decrement above (d̃A) and a decrement below the gate axis212

(d̃B). Given these definitions we can derive an analytical expression for ωCG and m̃rCG as function of d̃A and d̃B by213

considering the equilibrium points at these two positions. According to the above definition of the decrement, these214

gate positions are in principle θ1A = 0 and θ1B = θc . However, we can remain more general by using arbitrary positions215

x∗A = (θ1A, 0, Ỹa + d̃A)T and x∗B = (θ1B, 0, Ỹa − d̃B)T . Setting equation (22b) at these positions to zero yields216




m̃rCG = −
(r̃2−R̃2)d̃A/2+(r̃3−R̃3) sin(θ1A)/3

cos(θ1A+ωCG )

m̃rCG = −
(r̃2−R̃2)(−d̃B )/2+(r̃3−R̃3) sin(θ1B )/3

cos(θ1B+ωCG ) .

(25)217

Considering the specific positions θ1A = 0 and θ1B = θc , equation (25) simplifies eventually to

tan(ωCG ) = tan(ωCG + kπ) ∀k ∈ Z

=
1

tan(θc)
−

1
d̃A

2(r̃3 − R̃3)
3(r̃2 − R̃2)

+
d̃B

d̃A

1
sin(θc)

(26)

Thus, an analytical expression for ωCG and m̃rCG is given by




ωCG = π + arctan( 1
tan(θc ) −

1
d̃A

2(r̃3−R̃3)
3(r̃2−R̃2)

+
d̃B

d̃A

1
sin(θc ) )

m̃rCG = 1
cos(ωCG )

(
− r̃2−R̃2

2 d̃A

)
.

(27)

Note that we assumed d̃A , 0 to derive (25). If one imposes d̃A = 0, the centre of gravity comes to lie perpendicular218

to the float bottom (ωCG = π/2) in order to have a balanced gate at complete opening θ1 = 0. Corriga et al. (1977)219

assumed a perfectly calibrated gate, i.e. d̃A = d̃B = 0. This corresponds to the ideal case, regulating the water level220

without any deviation from Ỹa. Given Ỹ1 = Ỹa, the gate is in equilibrium for any position θ1. Under this assumption,221

we have ωCG = π/2, and the mass has to compensate precisely the immersed float m̃rCG = (r̃3 − R̃3)/3. Therefore,222

the terms C3 and C4 become zero and the system simplifies.223

The information available in (GEC Alsthom 1992) indicates a typical total decrement d̃A + d̃B of 0.02 (-). In the224

following analysis, we assume d̃B = 0 and d̃A = 0.02.225

The typical functioning of the AMIL gate is illustrated by Fig. 5. A free gate, subject to a step-like increasing226
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input Q′i (t̃), is simulated starting at the equilibrium state. Simulation a) shows that with the arrival of the increased227

discharge the gate opens and the water level rises within the limits defined by the decrement. By opening the gate the228

increase in water level is mitigated. We can furthermore compare the behaviour of the same gate with different damping229

coefficients and different level pool lengths (b) and c)). While the strongly damped gate a) follows the equilibrium230

curve closely, the less damped gate b) oscillates during the transition from one equilibrium point to the other. We can231

observe that the shorter level pool b) influences the trajectory of these oscillations as the water level rises more quickly.232

The observed oscillations are possible due to the assumption of a dynamic equilibrium between gate and water level,233

instead of a static relationship, that would simply follow the equilibrium curve.234

Once a gate geometry and size is chosen (i.e. α, b̃, b̃F , Ỹa, R̃, r̃ ,ωF , Ĩ) and further constants are defined (µ = CcCv),235

five control parameters m remain to completely define the autonomous system (24). We can recast the function F to236

use these parameters m as arguments and the system becomes237

d
dt̃

x = F(x,m) m =



c̃ω

Q′i

d̃A

l̃

Ỹ3



, (28)238

which is the form we analyse in the following.239

STABILITY ANALYSIS AND NONLINEAR EFFECTS OF CONTROL PARAMETERS240

Preliminary Consideration241

We start with investigating the two limit cases, where the level pool dynamics happen on a much faster (l̃ � 1) or242

slower scale (l̃ � 1) than the gate dynamics. Note first that the constants C1,C2, and C4 are of order O(1), C3 is of243

order O(10−2), and C6 is of order O(l̃−1).244

For l̃ � 1 (C6 → 0) we infer from equations 21 (or equations 20) that oscillations of Ỹ1 are slow and Ỹ1 can be

considered constant. Equation 21a describes the gate movement, during which a constant value for Ỹ1 can be assumed.

The eigenfrequency of this subsystem is given by linearising equation 21a around an equilibrium point x∗ (i.e. Ỹ ∗1 and

θ∗) which yields:

ω0 =
√

C3 sin(θ∗) − C4 cos(θ∗) (29a)

ω =

√
ω2

0 −

(
C1
2

)2
=

√
ω2

0 −
( c̃ω

2

)2
, (29b)

for both the undamped (ω0) and the damped (ω) subsystem. A critical damping c̃ω,crit separates under- from245
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overdamped systems, when ω0 < c̃ω/2. Furthermore, note that when the gate is perfectly calibrated, the terms C3 and246

C4 are zero. In that case if the water level is perturbed, equation 21a doesn’t allow a feedback of θ and is thus unstable.247

For l̃ � 1 (C6 → ∞) the evolution of Ỹ1 becomes very fast compared to the gate. Dividing equation 21a by C6 and248

taking the limit of C6 → ∞, results in static relationship Ỹ1 = f (θ), which is stable.249

To summarise the findings of the limit cases, we conclude that the system is generally stable for both – small and250

large – values of l̃. The gate and level pool subsystems can thus be regarded as interfering with each other only if their251

time scales are similar, i.e. in an intermediate range of l̃.252

In the following analysis, we consider a base state of the control parameters m0. Varying one parameter at the253

time, we observe the change in the qualitative behaviour of the solutions. Equilibrium points, their stability (Lyapunov254

or asymptotic), one-parameter bifurcations points and the corresponding limit cycles (including their stability) are255

investigated by means of a combination of analytical and numerical methods. For comparison with (Corriga et al.256

1977) this analysis is based on the same gate. Besides the geometric gate properties mentioned in table 1, we use257

values based on either (Corriga et al. 1977): Ĩ = 0.0103, and µ = CcCv = 0.65 (Cc = µ/0.97); or from (GEC Alsthom258

1992): α = arctan(1/2). The base set of control parameters is given by259

m0 =



c̃ω,0

Q′
i,0

d̃A,0

l̃0

Ỹ3,0



=



1.0

0.5

0.02

0.253

0.25



. (30)260

Influence of c̃ω261

Linear stability of equilibrium points for the parameters m0 can be studied with the eigenvalues of the Jacobian262

( ∂F
∂x ) after linearisation (Guckenheimer and Holmes 1993). Due to the complexity of the system, only one equilibrium263

point is computed numerically. The eigenvalues of the Jacobian, evaluated at the equilibrium point, are shown in264

Fig. 6 for various values of c̃ω for both, free and submerged gate. In both cases, we observe a single real and negative265

eigenvalue and a pair of complex conjugate eigenvalues. The pair of complex eigenvalues has a positive real part for266

low values of c̃ω but it becomes negative above a certain limiting value. These limiting values c̃ω,lim are 1.670 and267

1.097 for the free respectively the submerged gate. The equilibrium point is thus unstable at the lower values, but is268

stabilised at the higher damping. Numerical simulations with the nonlinear system (28) using slightly perturbed initial269

conditions confirmed this stabilising value of c̃ω . The eigenvalues remain in the left half-plane, i.e. stable, for further270

increases in the damping parameter c̃ω . We note that above another specific value of c̃ω the pair of complex conjugate271

eigenvalues becomes real valued (c̃ω,crit = 42.0, respectively 14.8). This critical damping value illustrates the effect272
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of the level pool (equation 21b), which was neglected for c̃ω,crit in the preliminary considerations. The qualitative273

characteristics of this plot of the eigenvalues in Fig. 6 are similar to the plot of the roots of the transfer function shown274

in (Corriga et al. 1977).275

Simultaneous passing of the imaginary axis by two eigenvalues, while no other eigenvalue has zero real part,276

indicates a Hopf bifurcation at the parameter value of the crossing (Guckenheimer and Holmes 1993). A Hopf277

bifurcation describes the emergence of limit cycles from an equilibriumpointwhen a parameter is varied (Guckenheimer278

and Holmes 1993; Ermentrout 2002). We investigate this bifurcation of the nonlinear system at c̃ω,lim with the software279

package XPPAUT (Ermentrout 2002), containing the numerical continuation software AUTO (Doedel and Oldeman280

2012).281

Fig. 7 shows the one-parameter bifurcation diagrams for various control parameters for the submerged system.282

These diagrams show the gate position θ1 in equilibrium position respectively the minimum and maximum values on283

the limit cycles, as well as the periods T̃ of the limit cycles. We note the emergence of stable limit cycles when the284

damping is below the limiting value. Having stable limit cycles, the system undergoes a supercriticalHopf bifurcation.285

The existence of these periodic solutions is confirmed numerically. Periodic solutions, found using a boundary286

value approach,are shown in Fig. 8. (The applied procedure is based on (Higgins 2013), which also explicits the287

derivation of the boundary value problem.)288

The evolution of the gate position and water level during a cycle and the trajectory in the state space are shown289

for the free gate (left) and the submerged gate (right) for m0. Both systems are shown for the same damping ratios290

c̃ω/c̃ω,lim and Q′i is chosen for each system separately to yield similar equilibrium positions in θ1. The trajectories are291

in agreement with the values shown by Fig. 7. We observe a phase shift in the trajectories between gate position θ1292

and water level Ỹ1. The periods and Floquet multipliers of these periodic solutions are shown in table 2. With only one293

Floquet multiplier of magnitude 1 or higher, the limit cycles are stable.294

Influence of Q′i295

To assess the influence of the parameter Q′i we first look at the linear stability of the equilibrium point for the296

base parameters m0. The eigenvalues of the Jacobian are shown in Fig. 9 for various values of Q′i for the submerged297

gate. The free gate is not shown, behaving qualitatively similar. As the equilibrium point depends on the value of298

Q′i , the Jacobian needs to be re-evaluated at each (numerically found) equilibrium point. Again, there exists a limiting299

value Q′
i,lim

of 0.5638 (respectively 0.8217 for the free gate) stabilising the system. Again, numerical simulations with300

perturbed initial conditions confirmed these limiting values.301

The evolution of the eigenvalues in the complex plane for varying Q′i is similar to the evolution for varying c̃ω . A302

supercritical Hopf bifurcation for the parameter Q′i is expected and confirmed by the second bifurcation diagram in303

Fig. 7.304
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The resulting periodic solutions for values below Q′
i,lim

are qualitatively similar to the ones shown in Fig. 8 for305

variations in c̃ω . The magnitude of the oscillations increase with decreasing Q′i , an observation that can readily be306

inferred from the bifurcation diagram.307

The response to the step-like inputQ′i (t) shown in Fig. 5 illustrates the change in stability due toQ′i . Fig. 10 compares308

the response to such a step-like input for the free and submerged gate using the same damping ratio c̃ω/c̃ω,lim = 0.61,309

based on c̃ω,lim for the initial value of Q′i . The input Q′i (t̃) increases from 0.2 to 0.7. Both gates are unstable at the310

initial value of Q′i and start to oscillate. The systems stabilise with increasing discharge as they are stable at the final311

value of Q′i . The damping c̃ω of the submerged gate used for the simulation is lower compared to the free gate (1.80312

vs. 1.17).313

Influence of d̃A and Ỹ3314

The relationship between Q′i and c̃ω,lim is illustrated by Fig. 11. It shows the free gate system using various values315

for d̃A in a), while the submerged gate system uses d̃A,0 = 0.02 but various submergence depths Ỹ3 in b). Generally, the316

limiting values c̃ω,lim decrease with increasing discharge (i.e. larger gate openings), illustrating again the stabilising317

effect of large Q′i . A shift in the x-axis can be observed between the plots showing the limiting values for the same318

system, but either using Q′i or θeq (compare for example subplots b) and d)). These shifts depend on the value of d̃A319

or Ỹ3. This is caused by the influence of these parameters on the equilibrium position θeq for the same Q′i .320

An increase in the decrement d̃A might have a stabilising or destabilising effect on the system, i.e. requiring321

a lower/higher damping, depending on the Q′i considered. However, the destabilising effect seems to be explained322

through the change in the equilibrium position θeq for different decrements. Indeed judging only by the free gate plot323

against θeq in c), an increase in the decrement decreases the c̃ω,lim for almost all equilibrium positions.324

For the submerged gate, an increase in the downstream depth Ỹ3 stabilises the gate. It is likely that this is caused by325

the reduced sensitivity of the gate discharge Qg to the gate position θ1 (i.e. a smaller ∂Qg

∂θ ). This can be observed for326

the various values of Ỹ3 in Fig. 11 (subplots b) and d)).327

Influence of l̃328

Already highlighted by the preliminary considerations, the system is generally stable in the limits l̃ � 1 and l̃ � 1,329

unless the total decrement is set to zero, where stability occurs only in the lower limit l̃ � 1. These observations are330

confirmed by Fig. 12, showing the real part of the second eigenvalue of the linearised system as a function of l̃. The331

bifurcation diagram for l̃ in Fig. 7 identifies two supercritical bifurcations. The period of the limit cycle, shown in the332

same figure, differs strongly.333

Fig. 13 shows the identified limiting damping parameter c̃ω,lim as a function of l̃. We notice that the value of l̃334

resulting in the highest c̃ω,lim depends on the value of d̃A.335
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PRACTICAL CALIBRATION OF MODEL PARAMETER L̃ TO MEASURED DYNAMICS336

We recall that the level surface is a simplifying assumption, using amodel-related – not problem-related – parameter337

l̃. In the following, we calibrate this parameter l̃ to observed wave interactions with a canal. We performed video338

measurements of the dynamical behaviour of the experimental gate at EPFL. Two distinct dynamic regimes have been339

recorded. Videos of the two behaviours are available as electronic supplementary material (S2 and S3). The gate340

position during the two dynamic responses is shown in Fig. 14.341

In behaviour A), the upper end of the canal reach upstream of the gate, situated at a distance L, acts as a reflecting342

boundary for incoming waves. A periodic solution develops as the waves in the canal and the gate synchronise. The343

periodic solution corresponds to a standing wave in the canal with the gate oscillating at the same frequency.344

Behaviour B) corresponds to a transient response, describing the gate rising, after being initially locked in closed345

position. Over the short period of time we consider, the reflecting upstream boundary has no effect on the gate, as the346

perturbations generated by the gate travel with a finite speed.347

Both measurements were taken under free flowing conditions. The gate setup at EPFL is described by the following348

measured quantities: D = 0.81m, R = 0.63m, r = 0.685m, Ya = 0.367m, b = 0.46m, bF = 0.36m, ωF = 0.173m/R,349

α = arctan(1/2), ωCG = 1.61rad, mrCG = 8.13kgm,and the estimated dynamic properties: I = 7.67Nms2/rad, and350

cω = 69.0Nms/rad. The canal reach ends at a distance L = 4.17m upstream of the gate leaf in a boundary, where the351

inflow enters the canal reach through the bottom part.352

The length of the level pool volume can be calibrated to reproduce the observed behaviour. While situation A) is353

representative of a short canal reach under the influence of an upstream reflecting boundary, situation B) can describe354

an infinitely long canal reach, where the generated perturbations are not reflected upstream. These two situations can355

be characterised by two different values of l̃.356

For behaviour A), we can describe the standing wave in the canal with standing wave theory (SWT). We recall the357

sensitivity of the frequency of the gate to the model parameter l̃, observed in the bifurcation diagram (Fig. 7). This358

allows us to estimate l̃ for a given frequency. We combine both of these approaches to estimate the parameter l̃ for359

AMIL gates with canals of various lengths L showing standing wave behaviour.360

In the observed case, the ratio of the flow velocity to the wave celerity is small (U0/c � 1). Therefore, we apply361

classic SWT using a constant celerity in both directions. SWT allows us to determine the frequency of a specific mode362

for a canal of a given length L. Based on that the parameter l̃ can be determined by adjusting the frequency of the363

gate to the standing wave in the canal. In behaviour A) both ends of the canal were antinodes, i.e. the amplitude of364

the oscillations is at its maximum. This can be translated to boundary conditions prescribing the gradient of the water365

level to be zero. The frequency of the modes is then given by fn = nc/(2L), where the wave celerity is related to the366

equilibrium water level by c =
√
gY ∗1 . The observed behaviour A) corresponds to the mode with n = 4, giving us a367

theoretical frequency by wave theory of f4,SWT = 0.93Hz or ω4,SWT = 5.85rad/s (using Y ∗1 = 0.385m for both). The368
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level pool length required to obtain the same frequency of gate oscillations is l̃SWT = 0.043.369

However, the frequency of the observed behaviour does not exactly coincide with the one predicted by standing370

wave theory. Further studies including nonlinear effects may explain such differences. The measured frequency was371

fmeas = 0.81Hz or ωmeas = 5.09rad/s. The level pool length corresponding to this frequency is l̃meas,A = 0.05.372

We consider behaviour B) over roughly two oscillation cycles, corresponding to the time before the perturbations373

return. (The inflow Qi was adapted to compensate the flow above the gate that occurred during the measurement.) A374

parameter l̃meas,B = 0.14 was calibrated for this behaviour. Transient effects from the reflection of the waves remain375

after the two oscillations cycles, but eventually the gate stabilises.376

The model simulation for the parameters l̃meas,A and l̃meas,B and two different inflow discharges are superimposed377

onto Fig. 14. Note that using the value of l̃ = 0.253 from (Corriga et al. 1977) would result in too low frequencies to378

reproduce either behaviour A) nor B).379

In conclusion the choice of l̃ thus depends on the type of dynamic one wants to reproduce.380

CONCLUSION AND OUTLOOK381

In this article a mathematical model was developed based on (Corriga et al. 1977; Ramirez-Luna 1997) and382

investigated with respect to various control parameters. The model was used to reproduce two kinds of dynamic383

behaviour of an experimental gate. For the calibration of the counterweights, we presented an analytical formula384

permitting to impose a specified decrement. The stability analysis allowed to determine limiting values for the385

damping parameter c̃ω,lim. We’ve shown a change in behaviour at these limiting values from stable equilibria to stable386

periodic solutions – a supercritical Hopf bifurcation. The periodic solutions are not desired in irrigation canals, leading387

to fluctuations of discharges in the main canal and lateral off-takes. The constant inflow parameter Q′i exhibits similar388

influence on the system as c̃ω,lim.389

The identified limiting values depend on the model parameter l̃. It is therefore important to use a representative390

level pool length l̃ or to simply select the most conservative damping c̃ω,lim among the estimates obtained with a wide391

range of l̃.392

In view of the typically slow canal dynamics in irrigation canal networks (Corriga et al. 1980; Ramirez-Luna393

1997), the dynamic interactions between the water level and the gate are considered negligible by other authors and394

the simplification of a static gate appropriate. On the other hand, the model based on a level pool, used throughout395

this work, allows to consider the dynamic interaction between the local water level and the AMIL gate. This dynamic396

interplay might become more important under circumstances where faster water level dynamics are present (e.g.397

irrigations canals exhibiting resonance behaviour or situations outside of irrigation canals). Refraining from the static398

gate simplification, by using the level pool model, seems more appropriate in those circumstances.399

To complement existing studies (e.g. (Ramirez-Luna 1997)), the model developed here can suggest a different400
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approach to study interaction of AMIL gates installed in series. In canals exhibiting strong resonance behaviour and401

weak wave attenuation, waves generated by a non-static gate-water level relationship – possible to model with the402

derived system – might reach and influence other AMIL gates up- or downstream.403

To operate run-of-the-river hydropower plants, non-proportional water distribution from rivers is an efficient404

alternative to fixed-percentage (proportional) releases of the incoming flow (Razurel et al. 2015; Gorla and Perona405

2013; Perona et al. 2013). AMIL gates might constitute a possible, energy-free means for this repartitioning. We406

envision that the combination of a weir in the river and an AMIL gate with an adapted float form in the derived canal407

might allow to implement non-proportional dynamic environmental flows, hence the importance of similar studies that408

address stability conditions.409

APPENDIX I. CONSTANTS410

Constants for Dimensional System411

c1 = −
cω
I

[s−1] (31a)

c2 = −
bF ρg

I
r2 − R2

2
[rad/(s2m)] (31b)

c3 = −
bF ρg

I
mrCG

bF ρ
cos(ωCG ) [rad/s2] (31c)

c4 = −
bF ρg

I

(
r3 − R3

3
−

mrCG

bF ρ
sin(ωCG )

)
[rad/s2] (31d)

c6 =
1
l

[m−1] (31e)

(31f)

Constants for Dimensionless System412

C1 = c1τ = c̃ω =
cω
I

√
Λ

g
[−] (32a)

C2 = c2τ
2
Λ = −

1
Ĩ

r̃2 − R̃2

2
[rad] (32b)

C3 = c3τ
2 = −

1
Ĩ

m̃rCG cos(ωCG ) [rad] (32c)

C4 = c4τ
2 = −

1
Ĩ

(
r̃3 − R̃3

3
− m̃rCG sin(ωCG )

)
[rad] (32d)

C6 =
τ

Λ

c6
Λ
=

1
√
gΛ5/2

1
l̃

[s/m3] (32e)

17



c̃ω =
cω
I

√
Λ

g
[−] (33a)

Ĩ =
I

ρb̃FΛ5
[rad−1] (33b)

m̃rCG =
mrCG

b̃F ρΛ4
[−] (33c)
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TABLE 1. Mean values of the dimensionless gate parameters for the four groups and the values used in (Corriga et al.
1977).

Group # of
gates

Ỹa b̃ R̃ r̃ ωF

(rad)
θc
(rad)

1 9 0.448 0.565 0.565 0.665 0.401 0.517
2 8 0.448 0.563 0.633 0.733 0.347 0.440
3 3 0.446 0.560 0.705 0.806 0.264 0.421
4 1 0.450 0.563 0.788 0.888 0.192 0.417
(Corriga
et al. 1977)

1 0.430 0.567 0.633 0.658 0.314 0.434
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TABLE 2. Periods and Floquet multipliers for the different periodic solutions shown in Fig. 8

Free Gate
cω

c̃ω, lim
Period Floquet 1 Floquet 2 Floquet 3

0.999 28.847 1.000 0.996 2.877 × 10−7

0.998 28.848 1.000 0.992 2.902 × 10−7

0.996 28.850 1.000 0.985 2.955 × 10−7

0.990 28.857 1.000 0.962 3.119 × 10−7

0.980 28.869 1.000 0.923 3.409 × 10−7

Submerged Gate

0.999 29.491 1.000 0.996 1.537 × 10−6

0.998 29.491 1.000 0.992 1.544 × 10−6

0.996 29.492 1.000 0.984 1.559 × 10−6

0.990 29.495 1.000 0.961 1.603 × 10−6

0.980 29.502 1.000 0.922 1.676 × 10−6
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Fig. 1. Photo of an experimental AMIL gate exhibiting oscillating behaviour and creating waves.
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Fig. 2. Longitudinal and cross-section of gate illustrating the geometric parameters.
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Fig. 4. Equilibrium position in the projected state space for varying Q′i . The two components d̃A and d̃B (above and
below gate axis) of the total decrement are shown.
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Fig. 5. Time evolution (left) and projected state space trajectory (right) of the free gate system as response to a
step-like input Q′i (t̃) for various damping values and level pool lengths (a,b,c). The red, dashed equilibrium curve is
superimposed onto the state space plot. Parameters: d̃A = 0.08; a) c̃ω = 2.25, l̃ = 0.25; b) c̃ω = 1.75, l̃ = 0.25; c)
c̃ω = 2.25, l̃ = 0.1; otherwise base parameters from equation (30).
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Fig. 11. Limiting damping c̃ω,lim as a function of Q′i for the free gate system (top) with various values for d̃A and the
submerged gate system (bottom) with d̃A,0 = 0.02 and various submergence depths Ỹ3.
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of c̃ω = 1.3.
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Fig. 14. Measurements (circles) and model simulations (lines) of the two dynamic behaviours measured on the EPFL
gate. The left graph shows three cycles of the oscillating gate, when the standing waves have formed. The right part
shows the rising of the gate (blue and orange circles correspond to two measurements of the phenomenon).
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