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Abstract

In this paper we consider the problem of decomposing a given integer matrix A into

an integer conic combination of consecutive-ones matrices with a bound on the number

of columns per matrix. This problem is of relevance in the realization stage of intensity

modulated radiation therapy (IMRT) using linear accelerators and multileaf collimators

with limited width. Constrained and unconstrained versions of the problem with the

objectives of minimizing beam-on time and decomposition cardinality are considered. We

introduce a new approach which can be used to find the minimum beam-on time for both

constrained and unconstrained versions of the problem. The decomposition cardinality

problem is shown to be NP-hard and an approach is proposed to solve the lexicographic

decomposition problem of minimizing the decomposition cardinality subject to optimal

beam-on time.

Keywords: intensity modulated radiation therapy, multileaf collimator sequencing, field

splitting, beam-on time, decomposition cardinality.
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1 Introduction

In intensity modulated radiation therapy (IMRT), linear accelerators (linacs) (Figure 1) are

used to deliver radiation to a target volume (the tumor tissue). The linac is mounted on a

gantry which is able to rotate along a central axis while the patient is positioned on a couch

that can rotate as well. In this way, it is possible to irradiate the patient from almost any

angle. A number of radiation beams is selected and optimal fluence profiles for each beam

are determined, which are represented as integer intensity matrices (IMs). The entries of

an intensity matrix represent exposure times for particular bixels or beamlets of a radiation

beam.

Figure 1: Medical linear accelerator from outside and inside.

Images courtesy of Varian Medical Systems, Inc. All rights reserved.

Source: http://varian.mediaroom.com/index.php?s=13&cat=12&mode=gallery

Radiation passes through a multileaf collimator (MLC) (Figure 2) which realizes the flu-

ence profile. The MLC consists of several pairs of identical tungsten alloy leaves. The leaves

are positioned in opposing pairs and can move towards the opposing leaf or away from it to

block or open the radiation beam. Thereby, the intensity of radiation can be individually

controlled for each bixel, which is defined by an area of the radiation field the size of which is

equal to the width of a leaf times the length of a minimal feasible move of the leaf. A beam

shaping region (or aperture) can thus be created as shown in Figure 2. In this aperture, all

areas not covered are irradiated with the same intensity. Because the dose delivered to the

patient body is proportional to exposure time, by overlaying several apertures it is possible

to form any intensity matrix. For more details on the planning process of IMRT please see

Schlegel and Mahr [2002] and Ehrgott et al. [2008] and references therein. Example 1.1 shows

how a multileaf collimator is used to create an IM of different intensities.

Example 1.1. If each of the light grey cells in Figure 3 corresponds to a radiation intensity

of value one, and each of the dark grey cells corresponds to an intensity of value two then the

overall intensity distribution can be modeled by the integer intensity matrix
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Figure 2: Multileaf collimator showing an aperture.

Image courtesy of Varian Medical Systems, Inc. All rights reserved.

Source: http://varian.mediaroom.com/index.php?s=13&cat=22&mode=gallery

A =


0 1 1 1

1 1 2 0

0 1 1 2

1 1 0 0

 .

The planning process of intensity modulated radiation therapy involves three optimization

problems: the optimal selection of the number and angle of the beam directions to be used

(the beam angle or geometry optimization problem), the optimization of the fluence maps

or intensity matrices for each chosen direction (the fluence map or intensity optimization

problem) and finally, the collimator sequencing or realization problem. For an overview of

optimization techniques used in IMRT planning we refer to Ehrgott et al. [2008]. In this

paper we only discuss the realization problem. Therefore, we assume that the number and

directions of the beams from which the patient is going to be irradiated are already fixed and

that optimal intensity matrices for each of these beams are known. The realization problem

is to find an efficient delivery sequence, i.e., a sequence of apertures via MLC adjustments to

deliver the corresponding intensity matrix ensuring the best possible treatment. Throughout

this paper we will consider step-and-shoot static IMRT where the radiation is turned off

during the leaf adjustments, i.e., leaves do not move during irradiation.

Depending on the design of MLCs, there may be several technical constraints that have to

be respected in the realization problem. In this paper, we consider the maximum leaf spread

constraint and the interleaf collision constraint. The maximum leaf spread constraint restricts

the maximum distance between opposing leaves, whereas the interleaf collision constraint

restricts leaves to be positioned so that they do not overlap the opposing leaves in the adjacent

rows.
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Figure 3: Leaf positions of an MLC and intensity profiles.

Maximum leaf spread and field splitting. The mechanical design of MLCs restricts

the allowable apertures since no leaf can have a larger distance from the vertical center line of

the MLC than a certain threshold value. For example, size limits for Elekta and Varian MLCs

are 12.5 cm and 15 cm, respectively [Chen et al., 2011]. Therefore, large intensity matrices

(radiation fields) need to be split into several (adjacent) subfields, where the width of each

subfield is not allowed to be larger than a given threshold value. There are two versions of

this problem as stated by Chen et al. [2011]:

1. Splitting using vertical lines without overlapping of the subfields,

2. Splitting using vertical lines, allowing overlapping of the resulting subfields. In the

literature this problem is often referred to as field splitting with feathering [Wu et al.,

2000, Liu and Wu, 2010].

In this paper, we focus on field splitting with feathering since the former can be considered

as a special case of the latter.

Example 1.2. Consider the intensity matrix A from Example 1.1,

A =


0 1 1 1

1 1 2 0

0 1 1 2

1 1 0 0

 .

Suppose that the maximum field width is three. Then, in order to realize the intensity profile

we need to split it into at least two subfields. For example, we can split the intensity matrix
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A into two subfields

A1 =


0 1 0

1 1 0

0 1 0

1 1 0

 , A2 =


0 1 1

0 2 0

0 1 2

0 0 0

 ,

such that no overlapping of the subfields occurs, i.e., each entry of the matrix A is covered

by only one of the subfields:

A =


0 1 1 1

1 1 2 0

0 1 1 2

1 1 0 0

 ,

where the light grey part represents A1 and the dark grey part represents A2.

On the other hand, if overlapping is allowed the desired intensities in the feathering region

are represented by the sum of subfields in the feathering region. Consider the following split

of A into two subfields

A1 =


0 1 1

1 1 0

0 1 0

1 1 0

 , A2 =


0 0 1

0 2 0

0 1 2

0 0 0

 .

Then the desired intensity profile is achieved as

A =


0 1 1 + 0 1

1 1 0 + 2 0

0 1 0 + 1 2

1 1 0 + 0 0

 ,

where the matrices A1 and A2 overlap in the third column of A (colored grey) which is

represented as the sum of the third and first column of the matrices A1 and A2, respectively.

Interleaf collision constraint. Some commercial MLCs restrict leaf positions in an

aperture. More precisely, a leaf is not allowed to be positioned further than the opposing

leaves in the adjacent rows. For example, leaf collision occurs in the last row of the second

beam shape in Figure 3, where the right leaf is positioned further left than the opposing left

leaf in the third row. This leaf configuration is allowed for some types of MLCs where interleaf

collision is permitted, whereas for some types of MLCs it is not permitted. Figure 4 shows

how the same aperture can be achieved without violating the interleaf collision constraints.

Obviously, for some beam shapes we might need more than one leaf setting to avoid leaf

collisions. MLC sequencing with leaf collision constraints is extensively studied in Kalinowski

[2005] and Baatar et al. [2005]. In Section 2, we will briefly present the results relevant to

this research.
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Figure 4: Leaf positions of an MLC without leaf collision.

The realization problem has a great impact on the quality of the radiation treatment.

The quality of the segmentation can be characterized by several features of the segmentation

(see, e.g., Ehrgott et al. [2008], Lim and Lee [2008], Pardalos and Romeijn [2009], Chen et al.

[2011]). In this paper we consider the total beam-on time and total number of shape matrices

(see Definition 2.1). The total beam-on time represents the total amount of time a patient is

exposed to radiation, whereas the number of shape matrices represents the total number of

adjustments of the leaves (apertures) of the MLC required to deliver the IM. Although the

realization problem is a multi-objective optimization problem, the algorithms that have been

developed for sequencing with field splitting consider only beam-on time (see, e.g., the exact

algorithms introduced by Kamath et al. [2007] and Chen et al. [2011]). Our paper will address

the cardinality objective function in the sequencing problem with field splitting which, to the

best of our knowledge, has never been discussed in the literature to date. We also consider

the field splitting problem as a lexicographic optimization problem. Moreover, we extend our

approach to MLCs with interleaf collision constraints, which also has not been covered in the

existing literature. We would like to mention that some of this research originated in the

Diploma thesis of Raschendorfer [2011].

The rest of the paper is organized as follows. Decomposition problems without field

splitting are reviewed in Section 2. The decomposition problem with field splitting is discussed

in Section 3, where we also propose our lexicographic optimization approach. We address the

complexity of the problems with a single objective and introduce new formulations which can

be used for both constrained and unconstrained versions of the problems. Section 4 presents

numerical results. In Section 5 we summarize the contributions made by this article and give

suggestions for further work.

6



2 MLC Sequencing without Field Splitting

In this section we review the most relevant results in the literature on MLC sequencing without

field splitting. We will follow the notation used in Baatar et al. [2005].

Definition 2.1. An m× n matrix Y = (yi,j), i = 1, ...,m, j = 1, ..., n is called a consecutive

ones matrix or a C1 matrix, if for each row i, i = 1, ...,m, there exists an integer pair [`i, ri),

`i, ri ∈ {1, ..., n+ 1}, such that

yi,j =

{
1 if `i ≤ j < ri,

0 otherwise,

i.e., the ones occur consecutively in a single block in each row.

Obviously, any aperture can be represented as a C1 matrix [Ahuja and Hamacher, 2004,

Baatar et al., 2005, Ehrgott et al., 2008, Neumann, 2009] where ones and zeros represent the

bixels where radiation is allowed to pass through or is blocked, respectively. The intervals

[`i, ri) can be interpreted as the left and right leaf positions, respectively, for the ith pair of

leaves. Totally blocked rows can be represented by any of the intervals [`i, ri) with `i = ri.

However, it is worth mentioning that they represent different leaf configurations. Some of the

representations might not be valid for MLCs with interleaf collision constraint. For example,

the second leaf configuration shown in Figure 3 is not valid for such MLCs since collision

occurs between the left leaf in the third row and the right leaf in the fourth row. Hereafter,

we refer to a C1 matrix as a shape matrix if it represents a valid leaf configuration. Let us

denote the set of all C1 matrices as C. For the sake of brevity, we do not specify the dimension

of the matrices which will be clear from the context.

Definition 2.2. Let A ∈ Zm×n≥0 and C′ ⊆ C. Then, a C1 decomposition with respect to C′ is

defined by non-negative integers αk and C1 matrices Yk such that

A =
∑
Yk∈C′

αkYk.

Indeed, the realization problem is a decomposition problem: An integer matrix A is de-

composed into an integer conic combination of C1 matrices [Ahuja and Hamacher, 2004,

Baatar et al., 2005, Ehrgott et al., 2008]. Coefficients αk represent the beam-on time corre-

sponding to the shape matrices Yk and are measured in monitor units (MU). The sum of the

coefficients represents the total beam–on time and the number of non–zero coefficients rep-

resents the cardinality of the decomposition. The problem of minimizing the total beam-on
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time (BOT ) can be formulated as

BOT (A) = min

|C′|∑
k=1

αk

(BOT ) s.t.

|C′|∑
k=1

αkYk = A,

αk ∈ Z≥0, k = 1, . . . , |C′|,

Yk ∈ C′, k = 1, . . . , |C′|,

where C′ is the set of all admissible shape matrices and BOT(A) is the minimum total beam-

on time for a C1 decomposition of the matrix A. This formulation can represent both versions

of the problem, i.e., the problem with or without interleaf collision constraints. In the first

case, the subset C′ corresponds to the set of all C1 matrices which can represent beam shaping

regions without violating the constraint. In the latter case, any C1 matrix is a shape matrix,

i.e., C′ = C. From now on, to be short, we say the problem is unconstrained if there is no

interleaf collision constraint and constrained otherwise.

In both versions of the problem, we have an exponential number of possible shape matrices.

Thus, (BOT ) is a large scale integer program. However, this problem can be solved efficiently

in linear time. There are different constructive exact algorithms available in the literature,

see, for example, Baatar et al. [2005] and Engel [2005] for the beam-on time problem without

interleaf collision constraint as well as Baatar et al. [2005] and Kalinowski [2005] for the

constrained case. For the unconstrained problem, the minimum beam-on time can be obtained

directly from the intensity matrix.

Theorem 2.3. [Engel, 2005, Baatar et al., 2005] For the unconstrained problem, i.e., C′ = C,
the minimum total beam-on time is

BOT (A) = max
i=1,...,m

n+1∑
j=1

max {0, ai,j − ai,j−1} , (1)

where ai,0 = ai,n+1 = 0 for all rows i = 1, . . . ,m.

For the constrained problem, the relationship between the total beam-on time and shape

matrices can be characterized using a pair of integer matrices:

Theorem 2.4. [Baatar et al., 2005] A matrix A ∈ Zm×n≥0 has a C1 decomposition w.r.t. C′

with total beam-on time β if and only if there exist m × (n + 1) matrices L = (`i,j) and
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R = (ri,j) with non-negative entries such that

`i,j − ri,j = ai,j − ai,j−1, i = 1, . . . ,m, j = 1, . . . , n, (2)

β =
n+1∑
j=1

`i,j =
n+1∑
j=1

ri,j , i = 1, . . . ,m, (3)

k∑
j=1

`i−1,j ≤
k∑
j=1

ri,j , i = 2, . . . ,m, k = 1, . . . , n+ 1, (4)

k∑
j=1

`i,j ≤
k∑
j=1

ri−1,j , i = 2, . . . ,m, k = 1, . . . , n+ 1, (5)

where ai,0 = ai,n+1 = 0 for all rows i = 1, . . . ,m.

Constraints (4) and (5) represent the interleaf collision constraints. Note that Theorem 2.4

is valid for MLCs without interleaf collision constraints, in which case we neglect constraints

(4) and (5). Matrices L and R represent a set of C1 decompositions and a decomposition can

be extracted in linear time (for more details see Baatar et al. [2005]).

The minimization of the number of shape matrices can be formulated as

DC(A) = min

|C′|∑
k=1

γk

(DC) s.t.

|C′|∑
k=1

αkYk = A,

αk ≤ Mγk, k = 1, . . . , |C′|,

αk ∈ Z≥0, k = 1, . . . , |C′|,

γk ∈ B, k = 1, . . . , |C′|,

Yk ∈ C′, k = 1, . . . , |C′|,

where M is a sufficiently large number, e.g., M > max{aij : i = 1, . . . ,m; j = 1, . . . , n}, B
represents the binary set {0, 1} and binary variables γk are introduced to count the number

of shape matrices used in a C1 decomposition.

In the literature, the problem (DC) is commonly referred to as minimum decomposition

cardinality problem. We denote by DC(A) the minimum number of shape matrices required

in a C1 decomposition of an integer matrix A.

Obviously, both the (BOT ) and (DC) problems are feasible for any positive integer matrix

A and a feasible solution can be obtained easily. It is shown that the minimum decomposition

cardinality problem is strongly NP-hard even for single–row [Baatar et al., 2005] and single–

column [Collins et al., 2007] matrices. Consequently, the (DC) problem is strongly NP-hard

for both constrained and unconstrained versions of the problem.
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More generally, considering both beam-on time and decomposition cardinality as objec-

tives to be minimized, the field segmentation problem can be presented as the following

multicriteria optimization problem:

min

( ∑|C′|
k=1 αk∑|C′|
k=1 γk

)

s.t.

|C′|∑
k=1

αkYk = A,

αk ≤ Mγk, k = 1, . . . , |C′|,

αk ∈ Z≥0, k = 1, . . . , |C′|,

γk ∈ B, k = 1, . . . , |C′|,

Yk ∈ C′, k = 1, . . . , |C′|,

where the objectives represent the total beam-on time and the number of shape matrices.

In the literature, a lexicographic optimization approach is proposed to find a Pareto optimal

solution of the problem (see, for example, Baatar et al. [2005] and Kalinowski [2005]).
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3 The Matrix Decomposition Problem with Field Splitting

Analogously to Section 2, MLC sequencing with field splitting can in general be formally

presented as a multicriteria optimization problem. Let us introduce the notation [ P ]q to

represent a m×n matrix where columns q to q+w−1 are represented by the matrix P ∈ Rm×w

and the remaining columns are all being 0. Note that the matrix P might have zero entries

or even all zero columns. Using this notation, we can formally represent the multicriteria

optimization problem for the matrix decomposition problem with field splitting as follows:

min

( ∑d
k=1

∑|C′|
t=1 αkt∑d

k=1

∑|C′|
t=1 γkt

)

(FS) s.t. A =
d∑

k=1

[ Ak ]sk

Ak =

|C′|∑
t=1

αktYt, k = 1, . . . , d,

αkt ≤ Mγkt, k = 1, . . . , d, t = 1, . . . , |C′|,

Ak ∈ Zm×w+ , k = 1, . . . , d,

sk ∈ {1, . . . , n} , k = 1, . . . , d,

γkt ∈ B, k = 1, . . . , d, t = 1, . . . , |C′|,

αkt ∈ Z+, k = 1, . . . , d, t = 1, . . . , |C′|,

Yt ∈ C′, t = 1, . . . , |C′|,

where d is the number of subfields and [ Ak ]sk represents a m×n matrix with columns from

sk to sk + w − 1 represented by the matrix Ak and the remaining columns all being 0. Here

w is the maximum leaf spread. In other words, the matrix A is split into d submatrices with

w columns each, such that the C1 decompositions of the submatrices yield an as small as

possible total beam-on time and decomposition cardinality. Note that the column indices sk

are unknown and submatrices Ak can be overlapping.

In the literature, the number of subfields is usually defined as d = d nwe (see, for example,

Chen et al. [2011]) which we follow in this paper. In practice the number of subfields is two

or three.

The field splitting problem, to the best of our knowledge, has never been considered as a

multi-objective optimization problem or even as a single objective optimization problem with

the cardinality objective even though both objectives are important in IMRT [Ehrgott et al.,

2008]. Moreover, algorithms minimizing the beam-on time often produce a large number

of shape matrices [Ehrgott et al., 2008]. We propose a lexicographic optimization approach

to find a Pareto optimal solution of the problem (FS). This Pareto optimal solution has a

practical significance which can be interpreted as prioritization of reducing the total time a
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patient is exposed to radiation and then decreasing the treatment time by minimizing the

number of shape matrices within the given beam-on time. In this section we investigate the

MLC sequencing problem with field splitting and develop related theory.

3.1 Minimization of Beam-on Time

There are several algorithms available in the literature for minimizing the beam–on time

with field splitting with feathering region, for example, see Kamath et al. [2007] or Chen

et al. [2011]. However, those algorithms are for the unconstrained version of the problem.

In this section we develop a new approach which can be used for both the constrained and

unconstrained versions of the problem. The minimization of beam-on time with field splitting

can be formally presented as:

FSBOT (A) = min
d∑

k=1

BOT (Ak)

(FSBOT ) s.t. A =
d∑

k=1

[ Ak ]sk ,

Ak ∈ Zm×w+ , k = 1, . . . , d,

sk ∈ {1, . . . , n} , k = 1, . . . , d.

Due to Theorem 2.4, each subfield Ak can be presented by a pair of matrices Lk and Rk.

Moreover, minimum beam–on time of each subfieldAk can be represented by the sum of entries

in any row of the matrices. In this way, without considering the shape matrices explicitly, we

can represent the beam-on time and interleaf collision constraints using the pair of matrices

Lk and Rk. However, we use a reformulation of Theorem 2.4 in terms of cumulative matrices

derived from the pair of matrices Lk and Rk. This leads us to a simpler formulation and

proof of complexity of the (FSBOT ) problem with field splitting than applying the theorem

directly.

For intensity matrix A, let us denote by c`i,j and cri,j the row-wise cumulative sum of the

entries of the matrices L and R, respectively, i.e.,

c`i,j =

j∑
q=1

`i,q, cri,j =

j∑
q=1

ri,q, i = 1, . . . ,m, j = 1, . . . , n+ 1. (6)

Then Theorem 2.4 can be restated in terms of cumulative sums c`i,j and cri,j as follows.

Theorem 3.1. A matrix A ∈ Zm×n+ has a C1 decomposition w.r.t. C′ with total beam-on

time β if and only if there exist m × (n + 1) matrices C` = (c`i,j) and Cr = (cri,j) with
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non-negative entries such that

c`i,j − cri,j = ai,j , i = 1, . . . ,m, j = 1, . . . , n, (7)

β = c`i,n+1 = cri,n+1, i = 1, . . . ,m, (8)

c`i,j−1 ≤ c`i,j , i = 1, . . . ,m, j = 2, . . . , n+ 1, (9)

cri,j−1 ≤ cri,j , i = 1, . . . ,m, j = 2, . . . , n+ 1, (10)

c`i−1,j ≤ cri,j , i = 2, . . . ,m, j = 1, . . . , n+ 1, (11)

c`i,j ≤ cri−1,j , i = 2, . . . ,m, j = 1, . . . , n+ 1. (12)

We have additional constraints (9) and (10) which ensure that the entries of the matrices

C` and Cr represent cumulative sums. The proof is evident from Theorem 2.4 and (6).

The interleaf collision constraints are given by constraints (11) and (12). Theorem 3.1 is

valid for the unconstrained problem as well, since we can just disregard the interleaf collision

constraints in that case. Existence of matrices C` and Cr represents the necessary and

sufficient condition for existence of a C1 decomposition with total beam-on time of β in a

more compact form than matrices L and R. Due to equations (6), matrices L and R can be

obtained easily from matrices C` and Cr. Theorem 3.1 leads us to the following necessary

and sufficient condition for decomposability in field splitting with respect to beam–on time.

Theorem 3.2. A matrix A ∈ Zm×n≥0 can be split into d subfields Ak ∈ Zm×w≥0 with total beam

on time β if and only if there exist positions of the subfields (s1, . . . , sd) and pairs of matrices

C`k and Crk, k = 1, . . . , d, with non–negative entries such that

β =

d∑
k=1

βk, (13)

A =

d∑
k=1

[ C`k − Crk ]sk (14)

βk = c`ki,w+1 = crki,w+1, k = 1, . . . , d, i = 1, . . . ,m, (15)

crki,j ≤ c`ki,j , k = 1, . . . , d, i = 1, . . . ,m,

j = 1, . . . , w, (16)

c`ki,j−1 ≤ c`ki,j , k = 1, . . . , d, i = 1, . . . ,m,

j = 2, . . . , w + 1, (17)

crki,j−1 ≤ crki,j , k = 1, . . . , d, i = 1, . . . ,m,

j = 2, . . . , w + 1, (18)

c`ki−1,j ≤ crki,j , k = 1, . . . , d, i = 2, . . . ,m,

j = 1, . . . , w + 1, (19)

c`ki,j ≤ crki−1,j , k = 1, . . . , d, i = 2, . . . ,m,

j = 1, . . . , w + 1, (20)

Proof. Apply Theorem 3.1 for each subfield Ak.
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Then the problem (FSBOT ) can be represented in terms of the cumulative matrices as

min
d∑

k=1

βk

(FSBOT ′) s.t. (14)− (20)

c`ki,j , c
rk
i,j , βk ∈ Z≥0, k = 1, . . . , d, i = 1, . . . ,m, j = 1, . . . , w + 1,

sk ∈ {1, . . . , n} , k = 1, . . . , d.

(FSBOT ′) can be used for both constrained and unconstrained versions of the problem.

For the unconstrained case we have to remove constraints (19) and (20) which represent the

interleaf collision constraints. Some of the constraints in the formulation are redundant and

can be removed or reformulated to make the formulation compact and tighter. However, we

keep the formulation as it is stated in order to avoid complicated notations and make it easier

to follow the main ideas.

The state-of-the-art exact algorithms proposed by Kamath et al. [2007] and Chen et al.

[2011], for unconstrained beam-on time minimization, consider all possible positions of the

subfields and for any fixed positions an optimal split is obtained using constructive algorithms.

In this paper we follow the same exhaustive approach to find the minimum beam–on time

and corresponding positions of the subfields.

For any fixed positions s = (s̄1, . . . , s̄d) of the subfields the corresponding integer program

(FSBOT ′) can be solved efficiently. Indeed, the feasible set is an integral polyhedron.

Theorem 3.3. For any fixed positions of the submatrices the problem (FSBOT ′) can be

solved in polynomial time.

Proof. We provide a sketch of the proof. We show that for any fixed positions s = (s̄1, . . . , s̄d)

of the subfields the corresponding feasible set defined by constraints (14) to (20) is an integral

polyhedron. The coefficient matrix provided by (14) to (20) can be represented by a block

matrix [C̃` C̃r] where C̃` and C̃r represent coefficients corresponding to the variables c`ki,j and

crki,j , respectively. Consider any subset J ` of columns of the matrix C̃`. One can show that

the set J ` can be partitioned into two subsets J `1 and J `2 such that the following inequality

holds for any row i of the matrix C̃`:

0 ≤
∑
j∈J`

1

c̃`i,j −
∑
j∈J`

2

c̃`i,j ≤ 1.

Note that each row of the matrix C̃` has at most two non-zero entries. The same statement

is true for the block matrix C̃r. Then, the proof immediately follows from the well known

Ghouila-Houri characterization of total unimodularity [Ghouila-Houri, 1962].
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3.2 Decomposition Cardinality

In this section we consider the field splitting problem with the decomposition cardinality

objective.

Theorem 3.4. The minimum decomposition cardinality problem with with field splitting is

a strongly NP-hard problem even for a single row intensity matrix and field splitting without

feathering.

Proof. Let us consider a row intensity matrix

A = (a1, a2, . . . , aw, 0, . . . , 0, a2w) ∈ Z2w

with the last w entries being 0 except for the very last entry. Obviously, d = 2 and the matrix

must be split as

A = [(a1, a2, . . . , aw)]1 + [0, . . . , 0, a2w]w+1.

The second matrix can be realized using a single shape matrix. Thus, finding the decomposi-

tion with minimum number of shape matrices for the single row matrix A with field splitting

is equivalent to finding a decomposition with minimum number of shape matrices of the row

matrix (a1, a2, . . . , aw), which is strongly NP-hard [Baatar et al., 2005].

Therefore, the minimum decomposition cardinality problem with field splitting is strongly

NP-hard for both constrained and unconstrained versions of the problem even for fixed

positions of the submatrices.

Using constraints with big M, as in (FS), one can formulate the decomposition cardinality

problem with field splitting as an integer program. However, it is well known that big M

constraints lead to poor LP relaxations. Therefore, we look for an alternative formulation

without the big M constraints. This can be achieved due to the following necessary and

sufficient condition for decomposability with respect to the number of shape matrices for a

single field which characterizes the relationship between decomposition cardinality and beam–

on time.

Theorem 3.5. An intensity matrix B ∈ Zm×n≥0 can be realized using p shape matrices if and

only if for some q there exists a decomposition

B =

q∑
k=1

αkBk (21)

with αk ∈ Z≥0, Bk ∈ Zm×n≥0 , k = 1, . . . , q, such that

p =

q∑
k=1

BOT (Bk). (22)
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Proof. If B can be realized using p shape matrices, i.e.,

B =

p∑
k=1

αkSk

then by choosing q = p and Bk = Sk, k = 1, . . . , p we get the decomposition.

Suppose, for some q, there is a decomposition of B

B =

q∑
k=1

αkBk

with

p =

q∑
k=1

BOT (Bk).

For each matrix Bk, k = 1, . . . , q, consider a realization

Bk =

BOT (Bk)∑
j=1

Skj .

Then the matrix B can be represented as an integer linear combination of p shape matrices

as

B =

q∑
k=1

αk

BOT (Bk)∑
j=1

Skj .

Note that q, the number of matrices, is not fixed in Theorem 3.5 . Moreover, some of the

shape matrices might be used several times. From Theorem 3.5 the following characterizations

of the decompositions with smallest cardinality can immediately be deduced.

Corollary 3.6. Let p be the minimum decomposition cardinality of B.

1. The following statements are true for any decomposition B =
∑q

k=1 αkBk with p =∑q
k=1BOT (Bk), where αk ∈ Z≥0, k = 1, . . . , q.

(a) Bk 6= Bh for all k 6= h, k, h = 1, . . . , q.

(b) For any realizations of the matrices

Bk =

qk∑
j=1

γkjSkj with BOT (Bk) =

qk∑
j=1

γkj , k = 1, . . . , q,

• DC(Bk) = BOT (Bk), i.e., γkj = 1 for all k = 1, . . . , q, j = 1, . . . , qk;

• Skj 6= Sht for all k 6= h, k, h = 1, . . . , q and j = 1, . . . , qk, t = 1, . . . , qt.
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2. There always exists a decomposition of B which satisfies the conditions in 1. and

αk 6= αh

for all k 6= h, k, h = 1, . . . , q.

Corollary 3.6 characterizes well the decompositions of a matrix B with the smallest car-

dinality. Moreover, it provides the opportunity to express the decomposition cardinality of a

matrix by the sum of minimum beam-on times of the matrices used in the decomposition (21).

In other words, the decomposition cardinality problem is equivalent to the decomposition of

the intensity matrix into an integer conic combination of integer matrices such that the sum

of total beam-on times of the integer matrices are minimized. The necessary and sufficient

condition can be extended for the field splitting problem as follows.

Theorem 3.7. An intensity matrix A ∈ Zm×n≥0 can be split into d submatrices Ak ∈ Zn×w≥0
which can be realized using p shape matrices in total if and only if there exist positions

(s1, . . . , sd) such that for some q1, . . . , qd we have

A =

d∑
k=1

qk∑
z=1

αkz[Bkz]sk ,

p =
d∑

k=1

qk∑
z=1

BOT (Bkz)

with αkz ∈ Z≥0, Bkz ∈ Zm×w≥0 for all k = 1, . . . , d, z = 1, . . . , qk.

We leave the proof to the reader. It can be done in the same manner as the proof of

Theorem 3.5. Moreover, if p is the minimum cardinality then Corollary 3.6 holds for any

submatrix Bkz.

Based on Theorem 3.7, the decomposition cardinality problem with field splitting can

formally be stated as

min

d∑
k=1

qk∑
z=1

BOT (Bkz)

(FSDC) s.t. A =
d∑

k=1

qk∑
z=1

[ zBkz ]sk ,

Bkz ∈ Zm×w≥0 , z = 1, . . . , qk, k = 1, . . . , d,

sk ∈ {1, . . . , n} , k = 1, . . . , d.

where qk is the number of different values of the coefficients of the matrices Bkz in the integer

decomposition of the matrix Ak. The number of different values qk can be determined by the
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largest possible entry of the matrix Ak and the coefficients of the matrices Bkz must be in

the range 0 ≤ z ≤ qk.
Further, due to Theorem 3.1, we can represent each subfield Bkz and the minimum beam–

on time BOT (Bkz) by a pair of matrices Ckzl and Ckzr, which leads us to the following

formulation of the problem:

min

d∑
k=1

qk∑
z=1

βkz

(FSDC ′) s.t. A =

d∑
k=1

qk∑
z=1

z[ (Ckzl − Ckzr) ]sk , (23)

βkz = ckzli,w+1 = ckzri,w+1, i = 1, . . . ,m, z = 1, . . . , qk, (24)

k = 1, . . . , d,

ckzri,j ≤ ckzli,j , i = 1, . . . ,m, j = 1, . . . , w, (25)

z = 1, . . . , qk, k = 1, . . . , d,

ckzli,j−1 ≤ ckzli,j , i = 1, . . . ,m, j = 2, . . . , w + 1, (26)

z = 1, . . . , qk, k = 1, . . . , d,

ckzri,j−1 ≤ ckzri,j , i = 1, . . . ,m, j = 2, . . . , w + 1, (27)

z = 1, . . . , qk, k = 1, . . . , d,

ckzli−1,j ≤ ckzri,j , i = 2, . . . ,m, j = 1, . . . , w + 1, (28)

z = 1, . . . , qk, k = 1, . . . , d,

ckzli,j ≤ ckzri−1,j , i = 2, . . . ,m, j = 1, . . . , w + 1, (29)

z = 1, . . . , qk, k = 1, . . . , d,

ckzli,j , c
kzr
i,j , βkz ∈ Z≥0, i = 1, . . . ,m, j = 1, . . . , w + 1, (30)

z = 1, . . . , qk, k = 1, . . . , d,

sk ∈ {1, . . . , n} , k = 1, . . . , d. (31)

Note that, for any optimal solution of (FSDC ′), the submatrices Ckzl and Ckzr define a

matrix Bkz for which BOT (Bkz) = DC(Bkz). Thus, any algorithm for minimizing beam on

time can be used to extract the actual shape matrices for each subfield Bkz. For example, we

can use the algorithm proposed in [Baatar et al., 2005] to extract the shape matrices from

the matrices Ckzl and Ckzr which can be done in linear time.

3.3 Lexicographic Optimization

We use a lexicographic approach to find a Pareto optimal solution of (FS), i.e., first we

minimize the total beam-on time and then the total number of shape matrices with respect

to the minimum beam-on time. The minimum beam–on time can be obtained efficiently

by solving a finite number of linear programs, as proposed in Section 3.1. However, not
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all optimal solutions of (FSBOT ) lead us to a Pareto optimal solution of the field splitting

problem (FS). This can be demonstrated by the following example.

Example 3.8. Consider a field splitting problem with w = 5, d = 2 and a single row intensity

matrix

A =
(

1 1 1 1 1 2 2 2
)
.

Obviously, there is only one possible position for the subfields, precisely s1 = 1 and s2 = 4.

Moreover, one can easily see that the minimum beam-on time is three for the field splitting

with w = 5. The matrix A can be split in two different ways such that minimum beam-on

time is achieved:(
1 1 1 1 1 2 2 2

)
= [ 1 1 1 0 0 ]1 + [ 1 1 2 2 2 ]4,(

1 1 1 1 1 2 2 2
)

= [ 1 1 1 1 1 ]1 + [ 0 0 2 2 2 ]4.

The total minimum beam-on time for both cases is three. However, we need three and two

shape matrices, respectively, to achieve the minimum beam-on time.

Therefore, in order to find a Pareto optimal solution we have to consider all subfield

positions at which the minimum total beam–on time β∗ is achieved. In other words, we have

to solve the following integer program for each s∗ that yields the minimum beam–on time:

min
d∑

k=1

|C′|∑
t=1

γkt

(FSDC(s∗)) s.t.
d∑

k=1

qk∑
z=1

zβkz = β∗,

(23)− (30).

Note that we are using only the subfield positions but not the actual subfields that provide

the minimum beam–on time β∗.
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4 Numerical Results

We tested our approach using CPLEX 12.6 embedded in C++ on a Linux machine with 32Gb

RAM, Intel Xeon 6 core, 3.5 GHz. We used 47 clinical examples varying in size from 5 to 23

rows and 6 to 30 columns, with the maximum intensity level amax varying between 9 and 40

(instances 1 – 17 and 33 – 62 in Table 1). In addition, we used 15 instances of size 10×10

with entries randomly generated between 1 and 14 (instances 18 – 32 in Table 1). For all

instances we considered four versions of the field splitting problem with feathering regions

– splitting the intensity matrix into two and three subfields, i.e., d = 2 and d = 3, for the

constrained and unconstrained cases. To be concise, we refer to the problems with d = 2

and d = 3 as two and three splitting, respectively. Table 1 shows the size and maximum

intensity levels of the intensity matrices as well as the number of subfields, width and number

of possible splitting positions for the subfields. We did not include the number of possible

splitting positions for the two splitting problem since for each instance there is a unique

set of positions for the subfields. In Table 1, the instances are listed in lexicographically

increasing order according to (w, n,m) and file name. The entire data set is available at

http://dx.doi.org/10.17635/lancaster/researchdata/211.

4.1 Minimizing Beam–on Time

First we tested our proposed LP based approaches for constrained and unconstrained versions

of the (FSBOT ′) problems. The computational results are shown in Table 2. Each instance

of the (FSBOT ′) problem was solved in less than one second. In three splitting, for some

instances the minimum beam–on time was achieved for several sets of subfield positions. For

example, for instance 62 the minimum beam–on time was achieved for 4 and 10 different

sets of subfield positions for the constrained and unconstrained versions of three splitting,

respectively. Each set of positions that provided the minimum beam–on time was then used

as a candidate set of positions for the subfields in the lexicographic approach.

4.2 Minimizing Beam–on Time and Decomposition Cardinality

The main purpose of the numerical study was to test the method for two and three splitting

with feathering region in both the unconstrained and constrained case when both objectives

beam–on time and cardinality are considered. To the best of our knowledge, there is no

existing algorithm which does that. So we compared our lexicographic approach with another

approach, which is based on the following idea that once the subfields are obtained we can

use single field sequencing algorithms to produce the shape matrices for each subfield. We

implemented two versions of this approach that we compared with the lexicographic approach

(referred to as lexOp).

First the subfields are obtained using exact algorithms which minimize the total beam–
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d = 2 d = 3 d = 2 d = 3

# m n amax w w #s # m n amax w w #s

1 5 6 27 4 2 1 32 10 10 14 6 4 3

2 5 7 27 5 3 3 33 14 10 10 6 4 3

3 5 7 30 5 3 3 34 14 10 10 6 4 3

4 5 8 18 5 3 2 35 14 10 10 6 4 3

5 5 8 25 5 3 2 36 14 10 10 6 4 3

6 11 8 21 5 3 2 37 14 10 10 6 4 3

7 9 9 10 6 4 4 38 15 10 10 6 4 3

8 9 9 10 6 4 4 39 11 11 22 7 5 5

9 10 9 10 6 4 4 40 9 12 29 7 5 4

10 10 9 10 6 4 4 41 9 12 31 7 5 4

11 10 9 10 6 4 4 42 11 12 16 7 5 4

12 11 9 14 6 4 4 43 11 12 19 7 5 4

13 11 9 16 6 4 4 44 11 12 26 7 5 4

14 9 10 10 6 4 3 45 9 13 29 8 6 6

15 9 10 35 6 4 3 46 11 14 22 8 6 5

16 9 10 40 6 4 3 47 10 15 26 9 7 7

17 10 10 10 6 4 3 48 22 15 26 9 7 7

18 10 10 14 6 4 3 49 23 16 33 9 7 6

19 10 10 14 6 4 3 50 23 17 27 10 8 8

20 10 10 14 6 4 3 51 22 18 31 10 8 7

21 10 10 14 6 4 3 52 22 21 31 12 10 10

22 10 10 14 6 4 3 53 22 22 22 12 10 9

23 10 10 14 6 4 3 54 20 23 10 13 11 11

24 10 10 14 6 4 3 55 22 23 24 13 11 11

25 10 10 14 6 4 3 56 20 25 9 14 12 12

26 10 10 14 6 4 3 57 16 27 10 15 13 13

27 10 10 14 6 4 3 58 15 28 9 15 13 12

28 10 10 14 6 4 3 59 16 28 10 15 13 12

29 10 10 14 6 4 3 60 16 28 10 15 13 12

30 10 10 14 6 4 3 61 16 29 10 16 14 14

31 10 10 14 6 4 3 62 16 30 10 16 14 13

Table 1: Description of the 62 instances numbered by #. The columns are m for the number of

rows, n for the number of columns, amax for the maximum intensity level. The number d is the

number of subfields, w indicates the subfield width (number of columns), and #s the number of

possible splitting positions.

21



on time in field splitting with feathering regions. For the unconstraned case, we used the

state–of–art algorithm proposed by Kamath et al. [2007] and for the constrained case, due

to the lack of an alternative algorithm in the literature, we used the LP model developed

in Section 3.1. Then, for each subfield, a single field sequencing algorithm is used to find

a decomposition subject to the minimum beam on time of the subfield. We considered two

different approaches to find a decomposition of each subfield, namely the sweep technique

[Bortfeld et al., 1994] and mixed integer programming.

The sweep technique is computationally efficient and provides a decomposition with min-

imum beam–on time. However, it might produce a large number of shape matrices. On the

other hand, the exact MIP approach requires more computation time but provides a decom-

position with the smallest number of shape matrices. In the MIP approach we adapted the

(FSDC ′) formulation for a single field, by setting n = w and d = 1, to solve the minimum

cardinality problem for each subfield. We refer to the first combination as the “KB” approach

and to the latter as the “KMIP” approach in the unconstrained case and as “FSBOTB” and

“FSBOTMIP” in the constrained case.

In our implementation of the lexicographic approach if there are multiple sets of subfield

positions for the (FSDC ′) problem then we used the best decomposition cardinality from

previous sets of subfield positions as an upper bound for the subsequent (FSDC(s∗)) problems

in order to reduce the computational effort. For each mixed integer program we set a time

limit of 600 seconds and an upper limit of 6 on number of threads used by CPLEX.

Unconstrained case. Tables 3 and 4 present the results for the unconstrained two

and three splitting problem, respectively. Columns labeled “KB” represent results obtained

using the field splitting algorithm proposed by Kamath et al. [2007] and the sweep technique,

whereas columns labeled “KMIP” represent results obtained using the algorithm of Kamath

et al. [2007] followed by MIP.

The “KB” approach was the fastest to produce a decomposition, in less than 1 second

for each instance (which is why we omit computation times in Tables 3 and 4. However, it

produced a much larger number of shape matrices in comparison to the “KMIP” approach

and our “lexOp” method. Solutions provided by “KMIP”‘ were on average 52.3% and 51.3%

better than those provided by the “KB” approach for the two and three splitting problems,

respectively.

For the two and three splitting problems, CPLEX was able to solve to optimality 57 (61)

instances using the “KMIP” approach and 50 (57) instances using the “lexOp” approach.

That is, CPLEX was able to solve more instances exactly using the “KMIP” than the “lexOp”

approach and it solved those instances faster. This can be explained by the size and number

of MIP problems considered in the two approaches. For example, for three splitting instance

24, “KMIP” requires to solve three (FSDC ′) problems with d = 1, i.e., one for each subfield

of size 10× 4 whereas “lexOp” requires the solution of two (FSDC ′) problems with d = 3 for

the intensity matrix of size 10× 10, one for each candidate set of positions that provides the
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minimum beam-on time, see Table 4.

We have to note, however, that the “KMIP” approach did not provide a Pareto optimal

solution for 80% (40 out of 50) respectively 80.7% (46 out of 57) of instances solved to

optimality for both the “KMIP” and “lexOp” approaches for the two and three splitting

problems, respectively. For those instances, “KMIP” provided on average 9.5% more shape

matrices than “lexOp”.

For the two splitting problem, 12 instances were not solved to optimality with the “lexOp”

approach within the time limit. However, in 8 out of 12 of those instances, the feasible

solutions obtained with the “lexOp” approach were not worse than those obtained with the

“KMIP” approach, despite 7 of these instances being solved to optimality for the “KMIP”

approach. The remaining 4 instances were not solved to optimality for both approaches and

“KMIP” provided better solutions than “lexOp”. The indices of these instances (51, 52, 53

and 55) are highlighted in bold in Table 3.

For the three splitting problem, 5 instances were not solved to optimality using the “lexOp”

and 1 instance using the “KMIP” approach. However, only for instance 53 did the lexico-

graphic approach provide a feasible decomposition with larger number of shape matrices than

“KMIP”. On average “lexOp” provided 9% fewer shape matrices than “KMIP”.

Constrained case. The results for the constrained two and three splitting problems are

shown in Tables 5 and 6. We observed the same general behaviour as for the unconstrained

version of the problems. The “FSBOTB” was the fastest approach but also the worst in terms

of the number of shape matrices produced.

For the two splitting problem, 52 instances were solved to optimality for both the “FS-

BOTMIP” and “lexOp” approaches. For these instances, “lexOp” produced on average 10.5%

fewer shape matrices than “FSBOTMIP”. We also note that “FSBOTMIP” failed to produce

a Pareto optimal solution for 44 out of those 52 instances. Of the remaining 10 instances, 4

were solved to optimality and a feasible solution was obtained for 6 using the “FSBOTMIP”

approach. Using the “lexOp” approach, CPLEX found feasible solutions for eight instances,

but failed to produce a feasible solution for instances 52 and 53. Comparing the eight in-

stances, the feasible solutions obtained for “lexOp” had a greater number of shape matrices

than “FSBOTMIP” for the three instances 49, 51 and 55 and a smaller number of shape

matrices for the other five, despite four of these five being solved to optimality with the the

“FSBOTMIP” approach.

For the three splitting problem, CPLEX was able to produce 60 optimal and 2 feasible

solutions using the “FSBOTMIP” approach. Using the “lexOp” approach it produced optimal

solutions for 52 and feasible solutions for 9 instances, whereas it failed to produce any feasible

solution for instance 53. Comparing the 52 instances which were solved to optimality using

both approaches, we observe that the lexicographic approach produced on average 10% fewer

shape matrices. For 41 of the 52 instances, the optimal solution obtained for “FSBOTMIP”

was not Pareto optimal. Finally, for seven of the nine instances for which CPLEX only found
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a feasible solution using the “lexOp” approach, the number of shape matrices was still smaller

than for the optimal solution obatined using the “FSBOT MIP” approach.

Unconstrained Constrained

d = 2 d = 3 d = 2 d = 3 d = 2 d = 3 d = 2 d = 3

# β∗ β∗ #s∗ # β∗ β∗ #s∗ # β∗ β∗ #s∗ # β∗ β∗ #s∗

1 50 69 1 32 43 44 1 1 50 69 1 32 43 44 1

2 34 45 1 33 24 31 1 2 34 45 1 33 29 32 1

3 40 49 1 34 28 34 2 3 40 49 1 34 30 34 1

4 36 52 1 35 28 32 1 4 36 52 1 35 28 32 1

5 46 64 2 36 23 29 3 5 46 64 2 36 23 29 3

6 36 45 1 37 28 32 1 6 36 45 1 37 28 32 1

7 19 22 1 38 26 32 1 7 19 22 1 38 26 32 1

8 20 26 1 39 34 50 2 8 20 26 1 39 34 50 2

9 20 22 1 40 58 69 1 9 20 22 1 40 58 69 1

10 18 25 2 41 57 74 1 10 18 25 2 41 59 76 1

11 20 27 1 42 28 29 2 11 20 27 1 42 28 29 2

12 27 31 1 43 38 53 1 12 29 33 1 43 38 53 1

13 22 33 1 44 51 47 2 13 22 34 1 44 51 51 1

14 20 29 2 45 58 68 1 14 20 29 2 45 58 68 1

15 58 75 1 46 34 36 1 15 58 75 1 46 50 42 1

16 78 93 1 47 49 50 4 16 78 93 1 47 54 54 3

17 22 27 2 48 48 47 1 17 22 27 2 48 57 49 1

18 43 46 1 49 51 56 1 18 43 48 1 49 68 63 1

19 44 47 1 50 46 47 2 19 44 47 1 50 46 47 2

20 44 49 1 51 56 56 2 20 44 49 1 51 56 56 2

21 38 43 2 52 57 56 1 21 39 43 1 52 58 58 2

22 43 47 1 53 66 62 1 22 43 47 1 53 66 62 1

23 42 46 1 54 14 16 2 23 42 46 1 54 14 16 2

24 41 48 2 55 45 37 1 24 41 48 1 55 45 37 1

25 39 45 1 56 19 20 3 25 43 49 1 56 19 20 3

26 40 47 2 57 16 20 4 26 40 47 2 57 17 21 10

27 44 49 1 58 20 19 3 27 44 49 1 58 20 19 3

28 46 51 1 59 17 24 5 28 46 51 1 59 18 24 3

29 47 50 1 60 17 21 4 29 47 53 1 60 21 24 9

30 48 52 1 61 19 19 1 30 48 54 1 61 20 20 1

31 44 47 1 62 22 25 4 31 44 47 1 62 23 26 10

Table 2: Numerical results for (FSBOT ′): β∗ is the minimum beam-on time and #s∗ is the number

of sets of subfield positions where the minimum is achieved.
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KB KMIP lexOp KB KMIP lexOp

# DC DC t (sec.) DC t (sec.) # DC DC t (sec.) DC t (sec.)

1 18 10 0 9 4 32 34 13 2 13 600

2 18 9 1 8 1 33 23 11 1 10 2

3 16 9 0 7 2 34 26 12 0 11 1

4 21 10 0 9 6 35 28 12 1 12 4

5 22 11 1 10 5 36 21 12 0 11 2

6 23 9 0 9 4 37 26 11 0 11 4

7 18 11 0 8 0 38 25 13 1 12 5

8 20 9 1 8 0 39 28 14 1 12 8

9 19 9 0 8 1 40 42 14 7 14 601

10 14 9 0 8 0 41 44 15 34 14 430

11 20 10 0 8 1 42 24 12 0 10 2

12 20 11 0 10 2 43 27 13 1 10 11

13 18 10 0 8 1 44 36 12 7 12 48

14 20 10 1 10 0 45 41 16 10 15 600

15 43 13 13 12 57 46 26 12 1 11 3

16 37 15 7 13 598 47 30 14 0 12 83

17 20 10 1 9 1 48 36 14 19 15 600

18 38 12 2 11 26 49 35 14 8 14 227

19 34 13 2 12 18 50 39 16 600 15 600

20 38 14 1 12 36 51 45 18 609 20 601

21 35 12 8 11 14 52 45 17 609 25 600

22 36 14 1 12 26 53 50 20 841 23 600

23 38 13 1 12 13 54 14 8 0 8 1

24 38 13 3 13 600 55 39 18 616 21 600

25 34 14 0 12 13 56 19 13 1 13 3

26 36 13 34 13 600 57 16 11 1 10 1

27 40 14 2 12 16 58 17 13 1 12 2

28 37 15 3 12 36 59 17 11 1 11 4

29 36 14 2 13 600 60 17 10 0 10 1

30 39 14 3 12 53 61 18 12 1 12 3

31 36 13 2 12 40 62 21 13 1 13 5

Table 3: Results for two splitting in the unconstrained case. DC denotes the smallest cardinality

found by each approach and t the total time required in seconds.
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KB KMIP lexOp KB KMIP lexOp

# DC DC t (sec.) DC #s∗ t (sec.) # DC DC t (sec.) DC #s∗ t (sec.)

1 21 13 1 13 1 4 32 40 17 1 15 1 6

2 19 10 0 10 1 1 33 27 13 0 13 1 1

3 16 10 1 10 1 1 34 32 13 0 13 2 2

4 23 13 0 12 1 3 35 32 16 1 14 1 1

5 24 14 0 13 2 10 36 29 14 0 13 3 2

6 29 13 1 13 1 0 37 30 14 0 13 1 2

7 21 11 0 10 1 1 38 32 14 0 13 1 1

8 23 13 0 12 1 0 39 37 15 1 14 2 9

9 19 10 0 10 1 1 40 45 16 3 14 1 448

10 21 12 0 11 2 0 41 46 18 9 16 1 508

11 23 11 0 11 1 1 42 26 13 0 11 2 1

12 23 13 0 11 1 1 43 34 15 0 14 1 3

13 24 10 0 10 1 0 44 38 15 1 14 2 10

14 27 14 0 12 2 1 45 44 18 5 15 1 481

15 47 17 2 15 1 61 46 32 16 0 14 1 4

16 42 17 1 16 1 264 47 33 18 1 14 4 9

17 25 12 1 11 2 0 48 42 19 1 16 1 601

18 38 15 0 14 1 10 49 49 20 601 15 1 597

19 41 16 0 15 1 7 50 43 21 5 17 2 1201

20 42 16 1 14 1 12 51 46 21 5 19 2 1201

21 38 15 0 14 2 5 52 45 22 7 21 1 601

22 44 16 1 15 1 6 53 56 21 159 22 1 600

23 39 15 0 14 1 5 54 16 10 1 10 2 1

24 44 17 1 15 2 10 55 37 19 2 14 1 302

25 40 17 0 14 1 3 56 20 16 0 13 3 12

26 37 16 1 15 2 6 57 19 12 1 11 4 9

27 42 16 0 14 1 4 58 18 13 0 12 3 7

28 38 16 0 15 1 10 59 21 14 1 12 5 21

29 44 17 1 15 1 5 60 21 13 0 11 4 5

30 42 16 0 15 1 7 61 18 12 1 12 1 3

31 40 16 0 15 1 21 62 24 18 1 14 4 35

Table 4: Results for three splitting in the unconstrained case. DC denotes the smallest cardinality

found by each approach, #s∗ is the number of FSDC(s∗) problems solved and t the total time in

seconds.
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FSBOTB FSBOTMIP lexOp FSBOTB FSBOTMIP lexOp

# DC DC t (sec.) DC t (sec.) # DC DC t (sec.) DC t (sec.)

1 17 10 2 9 6 32 38 15 6 13 74

2 20 9 0 8 2 33 25 12 1 11 17

3 17 10 0 8 7 34 28 13 0 13 6

4 20 11 1 9 11 35 27 14 1 12 4

5 23 12 1 12 66 36 23 11 1 11 3

6 30 12 1 9 9 37 25 12 1 11 2

7 18 11 0 9 1 38 24 14 0 12 3

8 20 11 0 9 1 39 29 14 1 12 40

9 19 9 0 9 0 40 40 15 11 15 600

10 15 11 0 9 1 41 41 15 67 14 364

11 19 12 1 8 1 42 24 11 0 10 2

12 20 12 0 10 3 43 31 13 3 12 19

13 19 9 1 8 1 44 38 13 9 12 108

14 18 11 0 10 1 45 43 16 28 15 600

15 40 13 19 12 134 46 39 15 4 15 23

16 38 15 10 13 419 47 37 17 2 15 71

17 21 11 0 10 1 48 45 17 34 16 600

18 38 15 2 13 61 49 55 20 604 27 600

19 39 16 2 14 43 50 44 21 602 18 601

20 41 15 2 14 600 51 47 21 608 30 600

21 36 14 11 12 36 52 53 25 602 600

22 38 15 7 13 46 53 55 22 1159 600

23 37 15 2 12 36 54 14 8 0 8 1

24 38 15 3 14 18 55 41 19 727 24 600

25 36 14 2 13 19 56 19 13 1 13 10

26 37 15 3 13 488 57 17 11 2 10 6

27 41 14 2 13 34 58 17 13 3 12 12

28 38 15 1 14 70 59 18 12 1 11 9

29 38 17 2 14 143 60 19 14 1 14 5

30 37 17 4 14 105 61 19 12 2 12 12

31 38 15 9 14 54 62 22 14 2 13 10

Table 5: Results for two splitting in the constrained case. DC denotes the smallest cardinality

found by each approach and t the total time required in seconds.
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FSBOTB FSBOTMIP lexOp FSBOTB FSBOTMIP lexOp

# DC DC t (sec.) DC #s∗ t (sec.) # DC DC t (sec.) DC #s∗ t (sec.)

1 20 13 1 13 1 5 32 41 17 1 17 1 13

2 23 13 0 10 1 1 33 29 14 0 14 1 3

3 18 10 3 10 1 1 34 31 16 0 14 1 2

4 25 12 0 12 1 6 35 31 16 1 14 1 8

5 28 15 1 13 2 49 36 28 15 0 13 3 4

6 30 14 0 13 1 1 37 29 15 0 13 1 1

7 21 12 0 11 1 1 38 32 14 1 13 1 3

8 23 13 0 12 1 1 39 38 17 411 15 2 94

9 19 10 0 10 1 1 40 46 17 13 16 1 600

10 21 14 0 11 2 1 41 46 19 26 18 1 600

11 25 14 1 11 1 1 42 25 12 1 12 2 3

12 24 14 0 12 1 1 43 38 17 1 15 1 17

13 26 11 0 11 1 1 44 39 18 1 15 1 67

14 25 14 1 12 2 2 45 42 20 5 16 1 600

15 39 17 1 15 1 102 46 34 17 0 15 1 20

16 44 17 3 16 1 516 47 37 18 1 15 3 89

17 26 13 0 11 2 1 48 42 21 3 18 1 600

18 41 17 1 16 1 16 49 57 20 602 21 1 601

19 43 16 1 16 1 12 50 44 20 43 19 2 1200

20 42 17 1 15 1 36 51 49 20 455 19 2 1200

21 41 16 0 15 1 14 52 51 22 578 29 2 1200

22 43 16 1 16 1 14 53 54 24 606 1 600

23 42 16 1 15 1 14 54 16 10 0 10 2 3

24 41 18 0 16 1 16 55 37 20 4 19 1 600

25 43 18 1 16 1 8 56 20 15 0 13 3 97

26 40 17 0 15 2 13 57 18 14 1 11 10 68

27 42 16 1 16 1 13 58 18 15 0 12 3 11

28 40 19 1 17 1 37 59 24 16 1 13 3 253

29 44 19 1 17 1 13 60 21 16 1 13 9 113

30 41 17 0 16 1 30 61 19 13 2 12 1 21

31 40 19 1 16 1 8 62 24 17 1 13 10 532

Table 6: Results for three splitting in the constrained case. DC denotes the smallest cardinality

found by each approach, #s∗ is the number of FSDC(s∗) problems solved and t the total time in

seconds.

28



5 Conclusion

In this paper we discussed the realization problem in IMRT with objective functions total

beam-on time and decomposition cardinality. In particular, we focused on the usage of linear

accelerators and multileaf collimators with limited width (maximum leaf spread constraint)

which led us to the investigation of field splitting with feathering. We addressed unconstrained

and constrained (interleaf collision constraint) versions of the problem and developed a new

approach to determine the minimum beam-on time for both these cases. Furthermore, we

proved the decomposition cardinality problem with field splitting to be NP-hard even for

a single row intensity matrix and without feathering. We then introduced a lexicographic

approach that minimizes the decomposition cardinality subject to minimum beam-on time.

The approaches presented in this article use integer programming formulations that we im-

plemented to obtain numerical results for clinical as well as randomly generated instances.

We compared our new lexicographic approach with other approaches which first solve the

beam-on-time problem with field splitting and then apply either a heuristic or exact algo-

rithm to minimize the number of shape matrices in the decomposition of the subfields. The

results show that using the sweep-technique as a heuristic is very fast, but far inferior in

terms of number of shape matrices. Our lexicographic approach clearly results in the lowest

number of shape matrices, but may not find an optimal (or even feasible) solution in some

cases if computation time is limited. Even then, feasible solutions found are often better than

optimal solutions found by the sequential approach. We note that the few instances in which

the lexicographic approach did not find any feasible solutions were among the instances with

the largest number of rows.

In future work we intend to address the problems discussed in this paper by means of

heuristics. This alternative approach will help to produce at least feasible solutions for those

instances of (FSDC) for which the exact methods presented here failed to produce such

solutions within the fixed time limit.
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