IMPROVING THE THROUGHPUT OF AN MT PROCESSOR
R. B. Garcia, J. R. Ardengh, J. Echaiz

Labaratorio de Investigacion de Sstemas Distribuidos LIS Di
Dpto. de Ciencias de la Computacion
UniversidadNaciond del Su
E-mail: {rbg, jra, je}@cs.uns.edu.ar

1 Introduction

Multithreading (MT), by simultaneously using both the thread-level parall elism and the instruction
level parallelism of a workload, exploits the available resources more dficiently than single-thread
procesors all owing a better throughpu, i.e there ae more instructions per cycle (IPC), over the single
thread approach. An MT approach isa chip multiprocessor (CMP) [1], which is a static one that could
exploit a moderate amourt of the ILP on a fixed number of threals. The other one, simultaneous
multithreading (SMT) [2], uses dynamic medhanisms and pdicies to exploit the available ILP of a
varying number of threads. SMT using bath TLP and ILP interchangeably will provide larger IPC
rates than CMP. However, due to its complex and tightly couped microarchitedure, SMT increases
the presaure on cycle time.

A previous work of Agarwal et a. [4] shows that in the future tedhndogies, as wire delays
grow relative to gate delays, the improvement in clock rate and IPC becomes diredly antagonistic.
With conventional microarchitecures, designers are faced with a difficult choice increase the dock
rate aygressvely at the st of reducing IPC, or miti gate the dedine in IPC by slowing the rate of the
clock speed growth. Compared to de SMT solution, CMP acaomplishes a cgadty scding which can
reducetheimpad of higher clock frequenciesin the IPC (Ilessdeeper pipeli nes).

We aame an MT processor composed o two engines: the MT front-end urit and the MT
exeaution core. The front-end fetches, deades and renames instructions from severa threads and pus
them into ore or severa instruction qleues. The exeaution core exeautes thaose instructions, retires
nonspeallative results, and sends a signal to the front-end ead time abranch misgrediction is
deteded. Adoping a producer-consumer relationship between the two enginesiit is possble to study
how the front-end's instruction ddlivery limits exeaution performance and also it permits roughly
independent designs of these units.

The goal of our design isan MT front-end urit that maximizes, for a fixed number of fetch
resources, the overal instruction bandwidth of an exeaution workload with varying number of
threads. In aprevious work [3] we have measured the IPC rate for two “pure” gpproadies: CMP-based
and SMT-based, considering their implementation complexities. The requirement for MT front-end
designs 2was nat to increase the g/cle time and nd to consume too much additional chip area
compared to a single-thread front-end that was used for reference (ALPHA 21264 in order to
preserve single thread performance

As we natice in this reseach, the inter-thread instruction seledion is orthogonal to share or
distributed fetch storage. In ather words, the instruction seled medhanism only requires widening the
per-thread fetch width, regardlessof the fetch storage organization. The results reved that per-thread
fetch bufers couged with per-thread instruction seledion are essntial, while deaeasing the per-



https://core.ac.uk/display/15778394?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

thread decode/rename width aleviate ¢ycle time presaure with little impad in single- and multi-
thread performance

The results of simulation, wsing workloads with dfferent number of threads, identify the lost
cycles in an MT procesr. In case of a few threads, ore or two, Hock fragmentation and
misgredicted branches are fundamentals in the increase of the CPI. With an increased number of
threals, block fragmentation is attenuated, bu it remains the penalty of the misgredicted branch
hazards.

2 Objectives

We ae going to investigate suitable solutions to the remaining cycles lost in an MT processor. We
know that current branch prediction schemes are based on recognizing branching patterns, and are
extremely effedive for some branches. However other branches will never fit into this category
becaise they are data-dependent on relatively randam data. For those branches prediction is naot
sufficient despite the use of an elaborate predictor. In case of having only one threal the problem is
that we can na hide the block fragmentation, like the cae of a workload with several threals. Also,
we have plenty of unused resources.

We oonsider exploring severa options to improve the throughpu of an MT processor in two
diff erent scenarios:

A workload with many threads

e Using some kind d branch predictor confidence [8] it is feasible to seled the more confident
threadsin order to improve the utili zation d the fetch resources and reducethe lost CPU cycles.

A workload with afew threads

» Speallatively exeaute multiple paths of exeaution exploiting the existing resources, ore primary
path (the predicted ore) and forked aternative paths [5, 6. If there is ggnificant progressdown
the arred path when the branch is resolved, we can €li minate the misgrediction penalty.

» We ae going to explore solutions to the problem of block fragmentation: managing multiple, non
sequential instructions in a single gycle [7]. The ideais to use the idle fetch clusters to increase
the dfedive, per-thread, fetch width.

3 Futurework

We ae going to evaluate through simulation the possbility of improving the CPl comparing a
baseline of a standard seledion d the instruction threads (ICOUNT) against the ided case of a perfed
confidence etimator for speaulation control. We ae going to simulate different condtions of
exeaution analyzing the nature of the lost cycles. Those results all ow the evaluation d the potential in
performanceimprovement with our methods of confidence estimation.

We have studied dfferent aternatives of confidence evaluation d the bibli ography, they will
be simulated and compared against our own confidence branch prediction estimation.



Bibliography

1. L. Hammond, B. A. Nayfeh, K. Olukotun,. “A Single-Chip Multiprocessor”, IEEE Computer,
1997.

2. D. M. Tulsen, S. J. Eggers, H. M. Levy. “Simultaneous Multithreading: Maximizing On-Chip
Parallelism”, Proc. of the 22ndInt. Symp. onMicroarchitecure 1999

3. J. C.Moure, D: J. Rexadhs, E. Luque. “Fetch Unit Design for Multithreaded Processors”

4. V.Agawal, M. S. Hrishikesh, S. W. Kedler, D. Burger. “Clock Rate versus IPC: The End d the
Road for Conventional Microarchitedures’, ISCA “27 Proc. 2000

5. P. L. Ahua, K. Skadron, M. Martonasi, D. W. Clark. “Multi path Exeaution: Oppartunities and
Limits’.

6. S. Walace B. Calder, D. M. Tullsen. “ Threaded Multi ple Path Exeaution”, Proc. ISCA 25, 1998.

7. T. M. Conte, K. N. Menezes, P. M. Mills, B. A. Patel. “Optimization d Instruction Fetch
Medhanisms for High Issue Rates’, ISCA “95.

8. E. Jambsen, E. Rotenberg, J. E. Smith, “Asdgning Confidence to Condtiona Branch
Predictions’, Proc. of the 29th Int. Symp. onComputer Architedure 1998

9. JC. Mouwre, D. |. Rexadhs, E. Lugue, R. B. Garcia, “Scdable Simultaneous Multithreading
(ScSMT)”, PARCO 1999



